Mon.Not.R.Astron.Soc.000,000–000(0000) Printed13April2015 (MNLATEXstylefilev2.2) + The radio afterglow of Swift J1644 57 reveals a powerful jet with fast core and slow sheath 5 1 P. Mimica1⋆, D. Giannios2, B. D. Metzger3 and M. A. Aloy1 0 2 1DepartamentodeAstronom´ıayAstrof´ısica,UniversidaddeValencia,46100,Burjassot,Spain 2DepartmentofPhysicsandAstronomy,PurdueUniversity,525NorthwesternAvenue,WestLafayette,IN47907,USA r p 3ColumbiaAstrophysicsLaboratory,ColumbiaUniversity,NewYork,NY,10027,USA A 0 13April2015 1 ] E ABSTRACT H We model the non-thermaltransient Swift J1644+57as resulting from a relativistic jet . h poweredbytheaccretionofatidally-disruptedstarontoasuper-massiveblackhole.Accom- p panyingsynchrotronradioemissionisproducedbytheshockinteractionbetweenthejetand - thedensecircumnuclearmedium,similartoagamma-rayburstafterglow.Anopenmystery, o however,istheoriginofthelate-timeradiore-brightening,whichoccurredwellafterthepeak r t ofthejettedX-rayemission.Here,we systematicallyexploreseveralproposedexplanations s forthisbehaviourbymeansofmulti-dimensionalhydrodynamicsimulationscoupledtoaself- a [ consistentradiativetransfercalculationofthesynchrotronemission.Ourmainconclusionis that the radio afterglow of Swift J1644+57 is not naturally explained by a jet with a one- 2 dimensionaltop-hatangularstructure.However,amorecomplexangularstructurecomprised v ofanultra-relativisticcore(LorentzfactorΓ∼10)surroundedbyaslower(Γ∼2)sheathpro- 1 videsareasonablefittothedata.Suchageometrycouldresultfromtheradialstructureofthe 6 3 super-Eddingtonaccretionfloworastheresultofjetprecession.Thetotalkineticenergyof 0 theejectathatweinferof∼few1053ergrequiresahighlyefficientjetlaunchingmechanism. 0 Ourjetmodelprovidingthebestfittothelightcurveoftheon-axiseventSwift J1644+57is . usedtopredicttheradiolightcurvesforoff-axisviewingangles.Implicationsforthepresence 1 ofrelativisticjetsfromTDEsdetectedviatheirthermaldiskemission,aswellastheprospects 0 5 fordetectingorphanTDE afterglowswith upcomingwide-fieldradiosurveysandresolving 1 thejetstructurewithlongbaselineinterferometry,arediscussed. : v Keywords: radiationmechanisms:non-thermal– galaxies:active galaxies:jets galaxies: i nuclei–hydrodynamics–radiativetransfer X r a 1 INTRODUCTION timescalesareexpectedtoresultfromcoherent processessuchas ‘giant pulses’ from Galactic pulsars (e.g. Jessneretal. 2005) and Radioastronomyisundergoing arevolutioninthestudyof time- cyclotronmaseremissionfrombrowndwarfsandplanets(Berger domain phenomena due to the advent of sensitive wide-field ar- 2002;Hallinanetal.2008).Brighterextra-galacticanalogsofsuch rays. At meter wavelengths these include LOw Frequency AR- events have not yet been detected (although see Thorntonetal. ray (LOFAR; vanHaarlemetal. 2013), the Murchison Widefield 2013;Spitleretal.2014),butmayaccompanyrareviolentevents, Array (MWA; Lonsdaleetal. 2009) and the Long Wavelength suchasgiantmagnetarflares(Lyubarsky2014)andthemergerof Array (LWA; Ellingsonetal. 2009). At centimetre wavelengths binaryneutronstars(Hansen&Lyutikov2001). (GHz frequencies) a new generation of wide-field facilities is alsobeingdeveloped,suchasApertif/WesterborkSynthesisRadio At centimeter wavelengths and on longer timescales, in- Telescope(WSRT;Oosterlooetal.2009),MeerKAT (Boothetal. coherent synchrotron sources may instead dominate the tran- 2009), and the Australian Square Kilometer Array Pathfinder sient sky. These generally result from the shock interaction be- (ASKAP;Johnstonetal.2008).However, despitetheoverallma- tween rapidly expanding matter from an energetic explosion and turityof radio astronomy, surprisingly littleisknown about what dense ambient gas. Known examples include radio supernovae astrophysicalsourceswilldominatethetransientsky. (Weileretal. 2002), off-axis (‘orphan’) afterglows of gamma- The brightest sources at meter-wavelengths on short ray bursts (Totani&Panaitescu 2002), and other relativistic out- flows from the core collapse of massive stars (e.g., SN 2009bb; Soderbergetal. 2010). The transient Swift J164449.3+573451 ⋆ E-mail:[email protected] (hereafterSwiftJ1644+57)istheprototypeforanewtypeofrel- 2 P.Mimica, D.Giannios,B. D. Metzgerand M.A. Aloy ativistictransientthatwillalsocontributesignificantlytothevari- ableradiosky(Giannios&Metzger2011). SwiftJ1644+57 was characterised by powerful non- 10-9 thermal X-ray emission (Bloometal. 2011; Levanetal. 2011; 101 -1s] BSwurirfotwJ1s6e4t4a+l.5720a1n1d; Zaapuodseirtieornetcaoli.nc2i0d1e1n)t.wTihthe ltohnegnudculreautisonofoaf mJy] -2cm previouslyquiescentgalaxyleadtotheconclusionthatitwaspow- f [ν 10-10 erg e(SreMdBbHy)rfaoplildowacincgretthioentiodnaltoditshreupcteionntraolfsausptearrm(aas‘stiivdealbdliascrkuphtioolne 100 114...489 GGGHHHzzz F [X 15.4 GHz event’,orTDE;Carter&Luminet1982;Rees1988),althoughal- 2443..46 GGHHzz 10-11 ternativeexplanationshavebeenproposed(e.g.Quataert&Kasen 0.3-10 keV 2012).TherapidX-rayvariabilitysuggested anorigininternalto 10-1100 101 102 a jet that was relativistically beaming its radiation along our line time [days] of sight, similar to the blazar geometry of normal active galactic nuclei(Bloometal.2011).SwiftJ1644+57wasalsocharacterised Figure 1. Radio light curves of SwiftJ1644+57 at observing frequen- byluminoussynchrotronradioemission,thatbrightenedgradually cies1.4,1.8,4.9,15.4,24.4and43.6GHzfromBergeretal.(2012)and over the course of several months (Zaudereretal. 2011). Unlike Zaudereretal.(2013).AlsoshownaretheSwiftXRTobservations inthe 0.3−3 keV band (brown crosses, right axis). Note the broad secondary the rapidly varying X-ray emission, the radio emission resulted maximumintheradio occurring ∼ 6months after trigger, wellafter the from the shock interaction between the TDE jet and the dense X-raymaximum. external gas surrounding the SMBH (Giannios&Metzger 2011; Bloometal. 2011), similar to GRB afterglows. A second jetted TDE,SwiftJ2058+05, withsimilarX-rayandradiopropertiesto risetoSwiftJ1644+57, inorder toidentify which(if any) of the SwiftJ1644+57wasreportedbyCenkoetal.(2012). proposedmodelsbestreproducetheradiodata. JettedTDEsinprincipleofferauniqueopportunitytowitness This paper is organised as follows. In §2 we review the ob- thebirthof anAGN,thusproviding anatural laboratorytostudy servationsofSwiftJ1644+57andsummarisepreviousworkonits the physics of jet production across a wide range of mass feed- interpretation.§3describesourmodelforthejetandthetechnical ingrates.ObtainingabetterunderstandingofSwiftJ1644+57and detailsofscenariosthatweconsider.In§4wedescribeourresults. J2058+05 would thus have far-reaching consequences for topics §5describesapplicationsandimplicationsofourresults,includ- such as the physics of relativistic jet formation and super Ed- ingtheinferredphysicalstructureofTDEjetspoweredbysuper- dington accretion,theconditions (e.g.distributionof accretingor Eddingtonaccretionandtheprospectsfordetectingorphanjetted outflowing gas) in nominally quiescent galactic nuclei, and pos- TDEswithfutureradiosurveys.In§6wesummariseourresults. sibly even the astrophysical origin of ultra-high energy cosmic rays (Farrar&Gruzinov 2009; Farrar&Piran2014). Despitethis promise, theory has yet to fully exploit the wealth of data avail- 2 AJETTEDTIDALDISRUPTIONEVENT ableforSwiftJ1644+57.Accurate,multi-dimensionalmodelsfor 2.1 ObservationsofSwiftJ1644+57 TDEjetsareneededtoquantifyhowsimilareventswouldappear toobserversoffthejetaxis.Suchinformationisnecessarytocon- The two distinct components in the SED of SwiftJ1644+57 in- strainthepresenceofoff-axisjetsinTDEsdetectedviatheirquasi- dicated different origins for the X-ray and radio emission isotropic thermal emission (Boweretal. 2013; vanVelzenetal. (Bloometal. 2011, Burrowsetal. 2011). Rapid variability of the 2013)ortoassesshowjettedTDEswillcontributetofutureradio X-raysplacedtheiroriginatsmallradiiclosetotheSMBH,likely transientsurveys(Giannios&Metzger2011;Frailetal.2012). fromasourceinternaltothejetitself.Constraintsonthebrightness Perhaps the greatest mystery associated with temperatureandvariabilityoftheradioemissioninsteadplaceits SwiftJ1644+57 is the unexpected flattening or rebrightening originatlargerradii,wheretherelativisticoutflowbegantointer- of the high frequency radio light curves on a timescale of a actwiththeCNMsurroundingtheblackhole(Giannios&Metzger few months after its initial rise (Bergeretal. 2012; Fig. 1). This 2011).Figure1showstheobservedradioandX-raylightcurvesof behavior contradicts expectations of one-dimensional blast wave SwiftJ1644+57. models that assume energy input proportional to the observed Afterseveral days ofpeak activity,theX-rayluminosityde- X-rayemission,andwhichinsteadpredictthatthehighfrequency creasedasapowerlawLx ∝ t−α intimewithα ∼ 5/3,consistent emissionshoulddecayrapidlyoncethejetenergyistransferedto withthepredicteddeclineinthefall-backrate M˙ ofthedisrupted theblast (Metzgeretal. 2012). Thisbehavior suggests that either star(Rees1988).Unlesscoincidental,theapparentfactthatLx∝M˙ thetemporal or angular structureof thejetismorecomplex than impliesthatboththejetpowerLj trackedtheinstantaneousaccre- assumed in the basic models usually applied to GRB jets (e.g., tionrateandthattheradiativeefficiencyandthebulkLorentzfactor Bergeretal. 2012; Wangetal. 2014), or that some key physical oftheoutflowremainedrelativelyconstantthroughouttheevent1. processhasbeenneglected(e.g.,Kumaretal.2013). AmodelfortheradioemissionofSwiftJ1644+57usingthe first three weeks of data was developed by Metzgeretal. (2012, In this paper we model the hydrodynamical interaction be- hereafterMGM12),undertheassumptionthattheX-rayluminos- tween a TDE jet and the circumnuclear medium (CNM) using itytrackedtheinstantaneouskineticpowerofthejet.Thissudden oneandtwo-dimensionalrelativistichydrodynamical simulations. Assumingthat non-thermal electronsareacceleratedattheshock fronts,weexploitthesimulationresultstoperformaradiativetrans- 1 Substantial temporal variation of the bulk Lorentz factor would cause fer calculation for thesynchrotron radio emission. Our goal isto equally greatchanges inthebeamingdegree ofthejetemission,making provideacomprehensivestudyofthestructureofthejetthatgave hardtounderstandwhyLx∝M˙ for∼1yearaftertheTDE. SwiftJ1644+57:powerfuljetwith fastcoreandslowsheath 3 injectionofenergyintotheCNMproducesaforward-reverseshock environment.Thelatterwasassumedtoincludeboththeextended structure,whichactstodeceleratetheejecta.Theevolutionischar- hydrostaticatmospherewhichisproducedbyreturningstellarde- acterisedbytwostages:(1)anearlyphaseduringwhichthereverse bris(Loeb&Ulmer1997;Guillochonetal.2014)onsmallradial shockcrossesbackthroughtherelativisticallyexpandingejectathat scales (. 10−3 pc) and the CNM of the nuclear cluster on larger wasreleasedovertheinitialfew-dayperiodofpeakactivity;(2)a scales. The cocoon created by shocked CNM plays an important laterphaseduringwhichtherelativisticblastwaveundergoesself- role in the model of DeColleetal. (2012) in collimating the jet similarexpansion(Blandford&McKee1976). and,potentially,impactingthelate-timeradioemission.Thejetis Astrikingfeatureoftheearly-timeradiolightcurvewasthe onlyself-collimatedbyitsenvironment,however,ifitskineticlu- presenceofanachromaticbreakatt ∼ 10days(Fig.1).MGM12 minosityislessthanacriticalvaluewhichweestimatetobe∼1044 showed that this break could result from the transition between ergs−1usingtheformalismofBrombergetal.(2011),i.e.wellbe- stage (1) and (2), and that the temporal slopes of the pre- and low the peak (beaming-corrected) luminosity of SwiftJ1644+57, post-break light curve requires that the CNM density n scale &1045−46ergs−1. cnm with radius as ∝ r−β with β ∼ 2. MGM12 also constrained the Radiorebrighteningcouldinprinciplealsoresultfromthejet initial (unshocked) Lorentz factor Γ ∼ 10 and opening angle encounteringanabruptchangeintheradialslopeoftheCNMden- j θ ∼ 1/Γ ∼ 0.1 to values remarkably similar to those of blazar sityprofile.Suchabreakmightbeexpectedbecauseonsmallradial j j jets(e.g.Pushkarevetal.2009).TheestimatedvalueoftheCNM scalesthedensityprofileisexpectedtoapproachthatofaBondiac- density∼fewcm−3atradii∼1018cmfromtheSMBHwassome- cretionflowontotheSMBH(n ∼ r−3/2),whileonlargerscales cnm whatlowerthanthatmeasuredonasimilarradialscalefromSgA* outside the SMBH sphere of influence the density profile should inourowngalaxy(Bergeretal.2012).Thereverseshockindirectly flatten.However,paststudiesofGRBafterglowsshowthatchanges shapedtheearlylightcurvesofSwiftJ1644+57throughitseffect intheexternal density profileproduce onlyminor changes inthe onthehydrodynamics,buttheobservedsynchrotronemissionwas synchrotron light curve behavior (e.g. Mimica&Giannios 2011; probablydominatedbyelectronsacceleratedattheforwardshock Gatetal.2013,andreferencestherein)andrarelyrebrightening. (MGM12)2. Kumaretal. (2013) emphasise that electrons accelerated at Bergeretal. (2012) presented updated radio light curves of the forward shock are subject to Compton cooling by the X-rays SwiftJ1644+57, which showed the surprising radio rebrighten- fromthejet.Accordingtotheirmodel,theapparent excessinthe ing mentioned earlier (Fig. 1). This behavior deviated signifi- late radio emission is in fact a deficit in the early-time emission, cantly from that predicted by MGM12 for a blast-wave evolv- resulting from the synchrotron flux being suppressed due to the ing with constant energy, thus demanding that an additional lower effective cooling frequency of X-ray cooled electrons. Al- source of energy contribute to the forward shock at late times thoughX-raycoolingwillcertainlyplayaroleinshapingtheearly (e.g.BarniolDuran&Piran2013).Althoughatemporaryrebright- radio emission, it becomes less efficient as the jet spreads later- ening can be created by the self-absorption frequency passing ally, since a smaller fraction of the freshly accelerated electrons throughtheobserversfrequencyband(MGM12),suchatransition (onlythosewithintheopeningangleoftheoriginaljet)arecooled. cannotexplaintheobservedlightcurves. Kumaretal.(2013)alsoconsidertheeffectofX-raycoolingonop- ticallythinemission.Asweshow here,itseffectisnegligiblefor theradiobandsatwhichtheobservedemissionisselfabsorbed. 2.2 Proposedexplanationsfortheradiorebrightening A final possibility, which we advocate in this work, is that Aftertheone-zonejetmodelfailedtoreproducethelateradioex- the late radio brightening indicates that the jet responsible for cessobservedforSwiftJ1644+57,severalauthorsproposedexpla- SwiftJ1644+57possessedamorecomplexangularstructurethan the top hat structure adopted in most previous models. A natural nationsforthisapparentincreaseintheenergyoftheforwardshock (BarniolDuran&Piran2013).Webrieflyreviewthesepossibilities alternative is that the jet possesses an ultra-relativistic (Γj ∼ 10) here. coreresponsibleforthehardX-rayemission,whichissurrounded by a wider-angle, mildly relativistic (Γ ∼ 2) sheath. Core emis- Bergeretal.(2012)proposedthattheradiorebrighteningcan j be explained as the result of slower material catching up and in- siondominatestheearly-timeemission, whilethemoreenergetic sheathdominatesthelateradioemission(e.g.Tchekhovskoyetal. jectingenergytothedeceleratingforwardshockatlatetimes(e.g., 2014; Wangetal. 2014; see, however, Liuetal. 2015). This sce- Granot&Kumar2006).Inthismodeltheslowermaterialisejected aftertheinitialultrarelativisticjetstageanditcontains∼20times nario allows both components of the jet to be ejected simultane- more energy than the Γ ∼ 10 ejecta. The decline of the X-ray ouslyduringthefirstweeksfollowingtheTDE,buttheemissionis j initiallydominatedbythatproducedattheexternalshocksdriven lightcurvewasbelievedtoreflectthedecreaseinthejetpowercor- bythefastcore.Suchajetstructureisphysicallymotivatedifthe responding tothepredictedevolutionoftherateofmassfallback slow ejecta results from an initial phase of precession of the fast totheSMBH,indicatingthatthebeamingofthejetemission(and jet (Stone&Loeb 2012; Tchekhovskoyetal. 2014) or simply as thereforethejetLorentzfactor)didnotvarysubstantiallyoverthat the result of the separate fast and slow outflow components ex- period.Itisthusnotclearinthisscenariowhatprocessrevivedthe source,resultingintherequiredslowerandmorepowerfulsecond pected toaccompany super-Eddington accretion (Mineshigeetal. 2005; Coughlin&Begelman 2014; Jiangetal. 2014). A similar ejectionevent.Ontheotherhand,theenergetic,slowerejectamay fastcore/slowsheathconfigurationismotivatedbyblazarobserva- havebeenejectedsimultaneouslywiththerelativisticcomponent, e.g.,encasingit(seebelow). tions(Ghisellinietal.2005),indicating that such astructure may beagenericfeatureofrelativisticjets. DeColleetal. (2012) performed 2D hydrodynamic simula- tions of the interaction between the TDE jet and its surrounding TherichdatasetavailableforSwiftJ1644+57,nowspanning over threeyears, makes it possible to construct amuch more de- tailedmodelfortheafterglow,whichexplorestheeffectsoflateen- 2 With thepossible exception oftheradio emission during thefirst∼10 ergyinjection,complexangularstructure,andX-raycoolingofthe daysaftertrigger;seebelow. radiatingelectronsdescribedabove.However,mostmodelstodate 4 P.Mimica, D.Giannios,B. D. Metzgerand M.A. Aloy include only one dimensional hydrodynamics. Multi-dimensional wherev isthejetvelocity.TheexternalCNMisalsoinitialisedtoa j effects,suchasangularstructureandjetspreadingorpressurecon- coldtemperature,withapower-lawradialdensityprofilen ∝r−k cnm finementbytheshockedexternalmedium,becomeimportantasthe withk∼1−2.Finally,thejettoexternalmediumeffectiveinertia jetdeceleratestomildlyrelativisticspeeds.Indeed, sincebynow, densityratioη =ρ hΓ2/(ρ h Γ2 )issettobeconstantinall R j j j cnm cnm cnm ∼ 4yearsafterthetrigger,eventhefastestcomponents ofthejet oursimulationsandroughlyequalto1000. have decelerated to Γ . 2, modeling the jet as part of a spheri- cal flow is clearly inadequate. Multidimensional models are also necessary to properly address the emission observed by off-axis 3.1 1DSimulationDetails viewers,whichpeaksoonafterthejetbecomesmildlyrelativistic. A numerical grid with radial resolution ∆r = 1.1×1013 cm ex- Belowwedescribeaseriesofoneandtwo-dimensional hydrody- tendsfromtheinnerboundaryR=r =1016cm.Thelattervalue namic simulations that explore systematically the above physical j,0 istakentobesufficientlysmallsothatoursimulationsadequately effects in order to more accurately model the radio afterglow of followtheinitialjet-CNMinteractionsincludingthereverseshock SwiftJ1644+57. crossingofthejet.Thejetevolutionisfollowedforatotalduration of∼6.7×108s.Atotalof1600snapshotsofthejetstatearesaved atregularintervals(every8.3×104s)duringthefirst1.3×108s,af- 3 MODELDESCRIPTIONANDNUMERICAL terwardthetimeintervalbetweenthesnapshotsisprogressivelyin- PROCEDURE creased,resultinginanadditional785snapshotsbeingstoredover theremaining∼ 5.4×108s.Thecollectionofsavedsnapshotsis The numerical code MRGENESIS (Mimicaetal. 2007, 2009) is usedasaninputfortheSPEVcode(Mimicaetal.2009)inorderto usedtoperform1Dand2Drelativistichydrodynamicsimulations computethesynchrotronradiolightcurves.AppendixAprovides in spherical symmetry. MRGENESIS is a high-resolution, shock- additionaltechnicaldetailsonthelightcurvecalculationinSPEV. capturingschemewhichusesMPI/OpenMPforhybridparalleliza- tionandHDF5librariesforparallelinputandoutput. TheTDEjetresponsibleforSwiftJ1644+57ismodeledasa 3.2 2Dsimulationdetails relativisticoutflowwithatemporallyconstantLorentzfactorΓ and j akineticluminosityL thatvariesintimewithaformmotivatedby 2Dmodelsaresimulatedusingthesameinitialandboundarycon- j theobserved(isotropic)X-raylightcurve, ditionsasintheequivalent 1Dcase. Theradialandangular reso- lution are ∆r = 4×1014 cm and ∆θ = π/600 rad, respectively. L if t6t j,0 j We output the snapshots at exactly the same evolutionary times wLjh(te)re=t= 5L×j,01 0tt5j!s−5∼/31wifeekt>isttjh,eapproximateduration oft(h1e) catsrohsilboviusneeton1arDt’to3oc+mtah1sae’e-kdce(io§mmth3epe.n1usS)ti.aoPtInEitoaVnlshacrloaayulcc-loudtmrlaabpcteilioenrxngeismtpyfraeoorabkfsleitebdhmliest,h,wias.etoin.r∆ckthreiesaSmnSPdPEaEVi∆nVθm,conaunrose-tt j MRGENESIS. epochofpeakX-rayactivity(e.g.,Burrowsetal.2011).Thepeak luminosityL isrelatedtothetotalisotropicenergyofthejetac- j,0 ∞ cordingtoE = L (t)dt≈5L t/2.Motivatedbytheisotropic iso 0 j j,0 j 3.3 Non-thermalparticlesandemission energyradiatedinRthesoftX-rayband∼ 3×1053erg(Levanetal. 2011;Burrowsetal.2011),werequirethatE &3×1053erg.The Energeticelectronsareinjectedbehindtheforwardshockwithan iso true (beaming-corrected) energy of the jet is E = E f−1, where energyspectrum f(γ) ∝ γ−p,asmeanttomimictheeffectsofe.g. f = (1−cosθ) is the beaming fraction. In our moisodebl for fast, diffusive shock acceleration. The forward shock is identified us- fb j narrowjetsweassumeaninitialjetLorentzfactorΓ = 10andjet ing the algorithm described in Sec. 3.1. of Cuesta-Mart´ınezetal. j half-openingangleθ =1/Γ =0.1.Wealsoconsiderlowervalues (2015).ParticleaccelerationattheRSisignored,motivatedbythe j j ofΓ =2forθ <θ =1/Γ =0.5inthecaseofawider,slower lackofevidenceforasubstantialRSemissioncomponentfromthe j,s j,s j,s jet,ortwo-zonemodelswithbothfastandslowcomponents. observedradiolightcurvesofSwiftJ1644+57(MGM12;although Theinnerradiusofthenumericalgrid,R = r ,corresponds theRSmaybecontributingtothelow-frequencyemissionduring j,0 tothelocationwherethejetisinjected.Theinitialsizeofthera- the first week post trigger–see below). Fractions ǫe and ǫB of the dial grid for 1D simulations is r = 3.2×1017cm, but this is post-shockthermalenergyareplacedintorelativisticelectronsand out,0 periodicallyenlargedasthejetpropagatestolargerradii.Thisen- the magnetic field, respectively. Optionally, we allow that only a largementoccursinsuchawayastokeepthenumericalresolution fractionζeofavailableelectronsisacceleratedatshocks(weadopt per unit length constant in the radial direction, i.e. new uniform ζe = 1exceptwhereindicatedinSection4.2andinAppendixB). zonesareaddedtothegrideachtimeitisextended. For2Dsim- Weadopt p=2.2,ǫe =0.1andǫB =10−3 asfiducialvaluesofthe ulationstheangularcoordinateθhasafixedrange[0,π/2],while microphysical parameters, similar tothose used tofit GRB after- thejetisinjectedatR = r acrosstheangularrangeθ 6 θ.The glows(e.g.,Mimicaetal.2010). j,0 j ratioofthejetpressuretorestmassdensityisP(t)/ρ(t)c2 =0.01, Injectedparticlesloseenergytosynchrotroncoolingandadi- j j sothatitissufficientlysmallfortheinitialthermalpressureofthe abaticlosses,andinsomecaseswealsoincludeinverseCompton jet material to be negligible and, hence, the specific jet enthalpy, (IC)coolingbyX-rayphotons(ICcoolingoccursintheThomson h = 1+ε/c2 +P(t)/ρ(t)c2 ≃ 1(where ε is thespecific inter- regimeforparametersofinterest).TheelectronLorentzfactorsγ j j j j j naljetenergy).Thejetdensityρ(t)attheinner boundary isthen evolveaccordingto j relatedtothejetluminosityandLorentzfactoraccordingto dγ 1dlnρ 4 cσ = γ− T u′ +u′ γ2 (3) ρ (t)= Lj(t) , (2) dt′ 3 dt′ 3mec2 (cid:0) B rad(cid:1) j 4πr2 hΓ2vc2 wheret′,ρ,u′ and u′ arethetime,fluiddensity, magneticfield j,0 j j j B rad SwiftJ1644+57:powerfuljetwith fastcoreandslowsheath 5 andexternalradiationenergydensity,respectively,inthecomoving frame of the fluid. The value of u′ is only nonzero for models 10 rad includingICcooling(§4.1.2). ] 3 -m n c P 2 102 Γv c 4 RESULTS p m c [ v/ Exploring each of the proposed scenarios for the afterglow of P 5Γ SwiftJ1644+57(§2.2)acrosstheirfullparameterspacewouldre- ], quire at least tens of numerical simulations, resulting in a non- -3m 101 thermalemissioncomputationaltimethatiscurrentlynotfeasible c fortwodimensional(axisymmetric)simulations.Wethusadoptthe n [ T = 9.6 x 106 s strategyoffirstperformingalargenumberofexploratoryrunsun- dertheassumptionofsphericalsymmetryfortheblastwaveevo- lution(§4.1,§4.2).Resulting1Dlightcurvesarethencomparedto 10 20 0 theobservations,allowingustoidentifythemostpromisingmod- r [1016 cm] els,alongwiththejet/CNMparametersthatbestreproducetheob- servations. These most promising scenarios are then explored in 2 greatdetailbyrepeatingthemusingafulltwodimensionalcalcu- ] lation(§4.3). -3m n c P 2 101 Γv c 4.1 One-component1Dmodels p m c Webeginbyconsideringlightcurvesproducedbyone-component, [ v/ P 1Γ sθpj.hNeroitcealtlhyatsaylmthmouegtrhicthjeetsinwitiiathljaentoapsesnuimngedan(figxleedθj)doopeesnninogtfaancgtoler -3m], intothehydrodynamicevolutionintheonedimensionalmodel,its vreagluioenmduosetssftialcltboersinpteocitfiheedebmeicsasuiosnetchaelcaunlgautiloanr3s.izeoftheemitting n [c 100 T = 4.29 x 107 s 0 110 120 4.1.1 Fast,narrowjet 16 r [10 cm] Wefirstconsiderafast,narrowjetwithanisotropicenergyE = iso 1053ergexpandingintoastratifiedexternalmediumwiththeradial Figure2.Upper panel:Numberdensityn(fullline), thermalpressure P densityprofilen = n (r/1018cm)−k,wheren = 1.5cm−3 and (dashedline) andfour-velocity Γv/c(greyline) ofthefast, narrow jetat cnm 18 18 kisvariedbetween1,3/2,and2.ThejetLorentzfactorandhalf- thetimeT ∼ 9.6×106 s.Thereverseandforwardshocksarevisibleas openingangleareassumedtobeΓ =10andθ =0.1,respectively. discontinuities on the right half of the plot. The density peak marks the j j location of the contact discontinuity in both the top and bottom panels. Figure2showstwosnapshotsofthe1Djetevolution,corre- Lowerpanel:Sameasupperpanel,butforalaterstageinthejetevolution sponding to an early time in the jet evolution, shortly before the (T ∼4.3×107s).Bythistimethereverseshockhascrossedtheportionof RScrossestheejectainjectedatconstantluminosity(t∼107s;top thejetshown,whiletheregionnearthefrontofthejetisgraduallyentering panel), and alater time(t ∼ 4.3×107s; bottom panel). At early aself-similarevolution. timesboththeforwardandreverseshocksarestillclosetothehead ofthejet.Behindthedensejethead,whichisproducedduringthe normalizationoftheCMNdensityn forafixedvalueofη .Be- initialphaseof constant jetluminosity, thedensitydecreases toa 18 R minimumat∼1.5×1017cm.Atyetsmallerradii,thedensitythen causechangingEiso/n18doesmakeadifferenceinthecalculatedra- againincreases∝ r−2 (eq.[2])approaching thepointof jetinjec- dioemission,weexploitthisscalingfreedomtoperformalimited scanoftheparameter spacewithouthavingtoperformadditional tion.Inthemorephysical2Dcasethislow-densitytailleadstothe simulations. collapseofthejetchannelbythecocoon(§4.3.1). Figure3showsourresultsforthesyntheticradiolightcurves Therelativistichydrodynamical equationsareinvarianttoan incomparisontotheobservationsofSwiftJ1644+57(Fig.1).We overallchangeinthenormalizationofthedensityandlengthscale setn =5cm−3,whichsetsE =3.33×1053erg.Eachpanelcor- (Schecketal.2002).Equation(2)showsthatanincreaseinthejet 18 ISO respondstoadifferentradiofrequency,withdifferentvaluesofthe luminosity L (and hence E ) is equivalent to an increase in the j iso assumedCNMdensityindexkshownwithdifferentcolours.Thick andthinlinesshowlightcurveswithandwithoutsynchrotronself- absorption taken intoaccount. Asexpected, theearly-timeobser- 3 ContrastthiswithGRBafterglows,inwhichtheshockedjetmaterialhas vationscanbefitreasonablywellusingther−3/2profile(MGM12), Γdsuoshpeθpsjrneo>sstian1ffgeptcrhtieotrhoebtosoebtrhsveeerdvjeefltdubflxruebxay.kH,aiof.awec.,etovtrehreo,fffio∼nri(TtΓeDsohEθpjej)en2tisnw,gΓitshahnθrgejls<∼epe1oc,ftthtthoeertehbjaeytt ebmutistshieonlaistes-ttriomnegleymaibsssoiorbnedisactl<∼ea2r0lyGuHnzdderuprrinogdutcheedfi.rTsth1e0r−ad1i5o fromanotherwiseequivalentsphericaloutflow(Bloometal.2011).Models days,andthepeakateachfrequencycorrespondstothetransition forSwiftJ1644+57thatassumeasphericallysymmetricflowmaystrongly fromopticallythicktoopticallythinregime.Furthermore,ateach overestimatetheafterglowemissionoftheactualbeamedevent. frequency we can see the achromatic break in the optically thin 6 P.Mimica, D.Giannios,B. D. Metzgerand M.A. Aloy 3 10 obs. mJy] 110001 orrr---b132/2s. mJy] 110021 nn1188 == 51 0c0m c-m3-3 [ν [ν 100 f -1 f 10 -1 1.4 GHz 1.8 GHz 10 1.4 GHz 1.8 GHz 3 10 1 y] 10 y] 102 J J m 100 m 101 [ν [ν 100 f -1 f 10 -1 4.9 GHz 15.4 GHz 10 4.9 GHz 15.4 GHz 3 10 1 y] 10 y] 102 J J m 100 m 101 [ν [ν 100 f -1 f 10 24.4 GHz 43.6 GHz 10-1 24.4 GHz 43.6 GHz 101 102 101 102 101 102 101 102 time [days] time [days] time [days] time [days] Figure3.Radiolightcurvescalculated forourfiducial“fast,narrow”jet Figure4.SameasFigure3,comparingradiolightcurvesfromajetwith model (§4.1.1), with Eiso = 3.33×1053erg, n18 = 5 cm−3, ǫe = 0.2, higherdensityandenergy(Eiso =6.67×1054erg;dashedline)thatbetter ǫB=2×10−3.Thickandthinlinesshowthelightcurveswithandwithout fitsthelate-timeradiodatatotheEiso=3.33×1053ergmodelfromFigure3 synchrotronself-absorptionrespectively.Differentpanelsshowingdifferent (fullline)thatbetterfitstheearlydata.Inbothcasesweassumeanexternal observingfrequencies,withlinestylesshowingdifferentassumptionsabout densityprofilencnm∝r−3/2. thepower-lawslopeoftheradialdensityprofileoftheCNM,ncnm(r)∝r−k, wherek=1(fulllines),3/2(dashed),1(grey).Shownforcomparisonwith circlesaretheradioobservationsofSwiftJ1644+57(Fig.1). overall normalization, L = 0, 5×1047ergs−1, and 1048ergs−1. x,0 The observer time t is related to the simulation time t used in obs equation(1)accordingto lightcurves(thinlines).Asdiscussedin§2,thisbreakmarksthe jetdecelerationtime. rcosθ t =t− , (6) Figure4showsthelightcurvesforacaseinwhichn18 isin- obs c creasedto100cm−3 (andhenceE to6.67×1054 erg).Although iso whererandθaretheradiusandtheanglewithrespecttotheline the late radio emission is now reasonably well fit, the early-time ofsightoftheemittingparticleattimet. emission is somewhat overproduced. However, such narrow jets Figure 5 shows the radio light curves including IC cooling, sufferfromlatteraljetspeadingeffectsatratherearlystagesintheir calculatedassumingapowerfuljet(E =6.67×1054erg)andpa- iso evolutionthatarenotprobedby1Dmodels.InSect.4.3,weexplore rameters (k = 1.5, ǫ = 0.1, ǫ = 0.002) as necessary to match e B asimilar,fast/narrowjetmodelwith2Dsimulationsdemonstrating the late radio peak. IC cooling does noticeably influence the op- that,asaresultoflatteralspreading,thejetemissionisgreatlyun- tically thin synchrotron emission. However, the effect on the ob- derpredictsobservationsontimescaleslongerthan∼ 1month.We served, optically-thickemissionisalmost negligible, evenfor the havenotbeenabletofindany1-component jetmodel capableof highest assumed valueof L .Whentheemissionisstronglyab- x,0 explainingthelateradiorebrightening. sorbedtheobserveronlyseesthenewlyinjectedparticlescloseto theexternalshock,whiletheparticlesthathavecooledarealready 4.1.2 X-raycoolinginthefastjet locatedfurtherbehindandtheirsynchrotronemissiondoesnotes- cape.WethusconcludethatICcooling,withinanarrow-jetmodel, Kumaretal. (2013) propose that the flat radio light curve in cannotexplainthelateradiorebrightening. SwiftJ1644+57 results from an early-time deficit of the syn- chrotronemissioncausedbyICcoolingbyX-rayphotonsfromthe jet.Wetestthisideabyrunningjetsimulationsincludingradiative 4.1.3 Slow,widejet lossesinequation(3)accordingto To contrast with the fast, narrow jet model (Sec. 4.1.1) we also L (t )Γ u′rad = 4xπorb2sc , (4) consideraslow,widejetwithΓj =2andθj =0.5(Sec.4.1.1).Fig- ure6showsourresultsfortheslowjetlightcurves(dashedlines), whereΓisthebulkLorentzfactoroftheemittingparticlesandLx calculated for an external density n18 = 50 cm−3 and jet energy istheX-rayluminosity,whichscalesinthesamewayasthethejet E =3.33×1054erg,incomparisontotheequivalentfastjetcase iso power(eq.[1]),i.e.accordingto (fulllines).Theslowjetcanexplainthelatetimepeak,butitunder- t −5/3 predicts the early-time emission observed from SwiftJ1644+57. L (t )=L max 1, obs , (5) This is because a slow jet coasts for a long time before appre- x obs x,0 t ! j ciably slowing down, since it must first sweep up ∼ 1/Γ of its j whereagaint = 5×105sandweconsider severalvaluesforthe ownrest mass. Duringthisextended coastingphase, theemitting j SwiftJ1644+57:powerfuljetwith fastcoreandslowsheath 7 3 3 10 10 obs. obs. L = 0 fast mJy] 110021 LLXxX == 51x01480 4e7r ge rsg- 1s-1 mJy] 110021 slow [ν 100 [ν 100 f f -1 -1 10 1.4 GHz 1.8 GHz 10 1.4 GHz 1.8 GHz 3 3 10 10 y] 102 y] 102 J J m 101 m 101 [ν 100 [ν 100 f f -1 -1 10 4.9 GHz 15.4 GHz 10 4.9 GHz 15.4 GHz 3 3 10 10 y] 102 y] 102 J J m 101 m 101 [ν 100 [ν 100 f f 10-1 24.4 GHz 43.6 GHz 10-1 24.4 GHz 43.6 GHz 101 102 101 102 101 102 101 102 time [days] time [days] time [days] time [days] Figure5.RadiolightcurvesincludingtheeffectsofX-raycooling(§4.1.2), Figure6.Comparingradiolightcurvesfromaslow-widejet(Γj=2, θj= calculated forajetwithEiso = 6.67×1054ergexpandingintoak = 1.5 0.5;dashed lines) tothe fast-narrow jet (Γj = 10, θj = 0.1;full lines). mediumfordifferentvaluesoftheX-rayluminosity Lx,0 (eq.[5]).While Thickandthinlinesshowmodelsincludingandneglectingself-absorption, X-raycoolingcansuppressthesynchrotronemissionforanopticallythin respectively. Bothjets have Eiso = 3.33×1054 ergandpropagate intoa medium(thinlines),itseffectontheactualemissionisnegligiblebecause ncnm ∼ r−3/2externalmediumwithn18 = 50cm−3.Weassumeǫe = 0.1 thelatterisselfabsorbed(thicklines). andǫB=0.001. 3 area increases and so does the luminosity of the source at bands 10 wfahsterbeeftohreeermeaiscshiionngiistsseplefa-akb,swoirtbhedth.eTpheearkestiumlteindgeltiegrhmtcinuerdvebryiseeis- Jy] 1021 oεεBBb ==s. 00..000012 m 10 ther the thick-thin transition or the onset of the jet deceleration, by itself inconsistent with the relatively flat light curve observed f [ν 100 forSwiftJ1644+57.Thecomparisonbetweenthelightcurvespro- 10-1 1.4 GHz 1.8 GHz ducedbyafast-narrowjetandaslow-widejet(Fig.6)issuggestive 3 10 ofthefactthatdifferentpartsofauniquejet,movingatdifferentan- glesandwithdifferentLorentzfactors,couldaccountforboththe y] 102 J earlyandthelatetimelightcurveofSwiftJ1644+57. m 101 [ν 100 f -1 4.2 Two-component1Dmodels 10 4.9 GHz 15.4 GHz 3 10 Theone-component jetmodelsconsideredthusfarcanreproduce either the early or late time light curves well (Fig. 6), but none y] 102 J acceptably reproduce the entire emission. We are thus motivated m 101 to consider a two-component jet, comprised of a fast core (Γj = [ν 100 10) with a narrow half-opening angle of θ = 0.1 rad, which is f j 10-1 24.4 GHz 43.6 GHz surrounded byaslower sheath(Γ = 2) from0.1to0.5rad. Both components of the jet are assumed to possess an equal isotropic 101 102 101 102 energy E = 4×1054 erg.Weemployanexternal mediumwith time [days] time [days] iso an ∝ r−1.5 profileandn = 60cm−3.Asinpreviouscaseswe cnm 18 assumeǫ = 0.1,however weallowǫ tovarymodestlyaboutits Figure7.Lightcurvesofatwo-component1Djetmodel(§4.2)including fiducialvealue10−3soastoquantitativeBlyminimizethedifferences afast core(Γj = 10;θj = 0.1)surrounded byaslower sheath (Γj = 2; amongobservationaldataandoursyntheticmodels. θj=0.5,eachwiththesameisotropicenergyEiso=4×1054erg.Different linestylesshowdifferentchoicesoftheassumedpost-shockmagneticfield modeFliwguitrhe7ǫsh=ow1s0−th3eprreosvuidltessoaforeuars2o-ncaobmleporenpernets1eDntamtioodneol.fTthhee strengthǫB=10−3(fullline)and2×10−3(dashedline). B well-sampledν>∼15GHzlightcurve,butitunderpredictstheflux at low frequencies ν . 5GHzand early timest . 10 days. This excess at early times in the observational data appears to require either asignificant reduction of theoptical depth at timest . 10 days,oranadditionalemittingregionnotincludedinthecalcula- 8 P.Mimica, D.Giannios,B. D. Metzgerand M.A. Aloy tions,andquitelikely,acombinationofbothfactors.Mimicaetal. T=0.96×107s[111days] 30.00 (2009) showed that during theearly stages of the jet-CNMinter- 101 action the reverse shock that decelerates the jet material can be 103 particularlypowerful.Indeed,fortheadoptedparameters,therate m] 20.00 100 ocofmdipsasripabatlieotnootfheenoebrsgeyrvaetdthjeetrdevuerarstieonsh(o∼ck1p0edaakyssoinnathteimceassceaolef nth102 16y[c10 10.00 10−1Γβ SwiftJ1644+57).However,forthefiducialparametersadoptedin 101 10−2 thepresentpaper(includingthoseoftheCNM),theemissionofthe 0.00 −25.00 0.00 25.00 reverseshockisstronglyabsorbedbelow∼10GHzand,hence,the x[1016cm] reverseshockcontributionalonecannotaccountforthefluxdeficit T=4.3×107s[497days] ofourmodelsatearlytimes4.Thelackofadominantreverseshock 120.00 101 componentatearlytimesispotentiallysupportedbytheupperlim- 102 iwetvseeoerk,fs.thaa2ftt−eirf1t0wh%eeBocAnoTnthstierdi4egr.g8eaGrs(HmWzailleilrnesreeamvraapluoeeltaarolif.za2tht0ieo1n2ζ)eo.nWpatiermanmeosetcetae,lrhe,ostwhoef- nth 110001 16y[cm]10 6900..0000 11000−1Γβ synchrotronself-absorptionatboththeforwardandreverseshocks 10−1 30.00 issubstantiallyreduced,andevencountingonlytheforwardshock 10−2 0.00 emission,thefluxdeficitatearlytimescanbeameliorated(seeAp- −100.00 −50.00 0.00 50.00 100.00 x[1016cm] pendixBfordetails). T=11×107s[1276days] Themodelwithǫ =0.002,thoughslightlyoverpredictingthe B 101 300.00 101 observed emission, nevertheless provides a good candidate to set theinputforourfull2Dsimulationsdescribednext.Itisdesirable 100 m] 200.00 100 tfoulsll2igDhtclyasoevtehreprjeedtiwctiltlheexepmeriisesniocenlwatiethratlhsep1reDadminogd.eTlshiinscleeaindsthtoe nth10−1 16y[c10 10−1Γβ 100.00 earlier deceleration of the jet in comparison to spherical models, 10−2 resultinginlowerfluxatbandswheretheemissionisopticallythin 10−2 (seenextSection). 0.00 −250.00 0.00 250.00 x[1016cm] T=63×107s[7263days] 100 100 1200.00 10−1 m] 900.00 nth10−2 16[c10 600.00 10−1Γβ y 10−3 300.00 10−2 0.00 −750.00 0.00 750.00 x[1016cm] Figure8.Snapshotsofthehydrodynamicevolutionofthetwo-component 4.3 2Dsimulations jet.Thetimeintheuppertwopanelscorrespondstothetimesofthesnap- shotsinFig.2andFig.9.Ineachpanelthelefthalfshowsthe(comoving) Motivatedbytheimprovementsinaccommodatingthelightcurves numberdensitynthofthethermalfluid,whiletherighthalfshowsthefluid whenconsideringone-dimensionaltwocomponentmodels(Fig.7), four-velocity Γβ := Γv/c. Since bothfast(Γf = 10)andslow (Γs = 2) we perform 2D simulations of two component jet models with jetsareinjectedwiththesameluminositypersolidangle,nthinthe(more E = 4×1054 erg. The jet is injected at the inner grid bound- relativistic) fastjetisinitially ∼ Γ2/Γ2 lowerthanintheslowerjet.This iso s f ary(r =2×1016cm)intheangularrange[0,0.5]rad.Afastcore canbeseenintheuppertwopanels,wherethefastjetisseenasadark- j,0 (Γ =10)isinjectedbetween0and0.1rad,whileaslowersheath colouredchannel closetothesymmetryaxis.Notethatthedensitycolor f (Γ =2)isinjectedbetween0.1and0.5rad.Theexternalmedium scalechangesfrompaneltopanel.Thesphericalboundariesontheleftside s intowhichthejetispropagating hasar−3/2 profileand n = 60 ofsomepanels denotetheedgeofaradialgridwhichisperiodically ex- 18 tended,see§3. cm−3.ThejetluminositychangesintimeaccordingtoEq.1. Theradialresolutionofthesimulationsis∆r = 4×1014 cm (Sec.3.2),buttheradialgridisregularlyextendedasthejetprop- 4.3.1 Hydrodynamicevolution agatesintotheexternalmedium.Thisisachievedbystoppingthe Oursimulationstartsfromsufficientlyshortdistancefromthecen- simulationoncethejetheadnearstheouterradialedgeofthecur- tralenginesothatwecanfollowallthestagesofthejetdeceleration rentgrid,extendingtheradialgridandinitialisingwiththeexternal asthejetsweepsthroughtheCNM.Initiallyboththeslowandfast medium.Theangularresolutionis∆θ =π/600radandwealways jetsareoverdensewithrespecttoexternalmediumandpropagate simulatethefullrange[0,π/2]using300points. almost ballisticallyalongtheir initial opening angle (toppanel in Inordertocomputethelightcurvesthesnapshotsofthegrid stateneedtobesavedperiodically(Sec.3.1).Thetimeatwhichthe snapshotsarewrittenisexactlythesameasin1Dsimulations,thus 4 Besidesthefactthatitistechnicallyverychallengingtoaccuratelyde- enablingustodirectlycompare1Dand2Dmodelsbothinterms tectthereverseshockinthehydrodynamicsimulations,thereverseshock oftheirhydrodynamical evolution(Sec.4.3.1),aswellasintheir emissionisstronglysuppressedfortheparametersathand,whichjustifies observationalsignatures(Sec.4.3.2). ourchoiceofnotincludingitinthecurrentmodels. SwiftJ1644+57:powerfuljetwith fastcoreandslowsheath 9 slower shock it decreases almost to the slow jet value (Γ = 2). s 10 In order to estimate the shock front velocities, it is important to n (1D) 3] P (1D) considerthatthefastjetislaunchedtoexpandradiallyatanangle -m Γv (1D) θj =0.1and,thus,withavelocitycomponentperpendiculartothe 2c c 102 nP ((22DD)) rjeatmaxpirsesvs⊥ur∼eθpje(r1pe−nΓdi−fc2u)1la/2r=to0th.1ec.axBiaslawnecicnogncthluedfeastthaatndthseloswhojcekt m p Γnv ( 2(2DD-s)) c propagation speed towards the axis is very slow, while the effect P [ P (2D-s) 5Γv/ of theinitial(thermal) pressure imbalance between both jetsgets -3m], 101 Γv (2D-s) rneadrurocwedretodlaayreelrastiuvrerolyunthdiinnglatyheerbaeraomunodftthheeffaassttjjeett-w(sheeit,ees.hga.,dtehse- intherightsideofthesecondpanelofFig.9). c n [ T = 9.6 x 106 s Having explained the differences with previous jet stability studies caused by the pressure imbalance, we now use the re- sults of those works to analyze fast/slow jet interface properties. 0 Hardee&Hughes(2003)showedthatpressurematched,cylindri- 10 20 16 caljetswithafast-spineandaslow-sheatharemorestablethanjets r [10 cm] withoutslow sheaths. Inour 2Dmodel theroleof thesheath can beplayedbytheslowjet.Hardee&Hughes(2003)showthatthe 10 decreaseinthegrowthrateofKelvin-Helmholtzinstabilitiesispro- -3m] 101 T = 4.29 x 107 s portionaltothevelocityshear∆v.Inourcase,∆v=vfj−vsj ≃0.13c (v andv arethespeedsofinjectionofthefastandoftheslowjets, c fj sj 2 respectively).Theyalsofindthatthepresenceofanexternalmov- c p ingsheardampensasymmetricmodesandraisesthegrowthrateof m c thefundamentalpinchmode.Inthisregard,wenotethat,initially P [ 5Γv/ (T . 100days)thefastjetdoesnotdevelopanyrecollimationin- ], 100 duced by the pinching of the slow jet. Later (T & 100days), the -3m bowshockandthereverseshockproducedbytheslowjetpinchthe c beamofthefastjetonlyveryclosetothejethead(y∼2.8×1017cm; n [ toppanelofFig.8).Thispinchingspeedsupthebeamofthefast jetwhich,asaresult,propagatesabitfasterthanapure1D“jet” withthesameproperties.Thiseffectisvisibleinthetoppanelof 110 120 0 Fig.9,whereprofilesalongtheaxisofthe2Djetmodelarecom- r [1016 cm] paredwithanequivalent1Djetmodel.Thereweobservethatthe forwardshock of the1D jetmodel lagsbehind that of the2D jet Figure9.SameasFig.2,butinadditionshowingthevaluesattheaxisof (locatedatr ≃2.9×1017cm).AlsoinFig.9,wedisplaytheaxial thetwo-component2Djetsimulation(thinlines),anda2Dsimulationofa profilesofa2Djetwiththesamepropertiesasthefastandnarrow single-componentfastjet(brownlines).Forbettercomparison,resultsofa jet, but without a broader slow jet flanking it (“top-hat” 2D jet). 1Dsimulationwiththesame∆rasthe2Doneareshown(seeSec.3.2). Without the stabilisinginfluence on thedynamics of thebroader, slowerjet,thetop-hat2Djetclearlylagsbehind1Djetmodel.At latertimes(bottompanelof Fig.9),thesituationisreversed,and Fig.8).Atthisstage,bothfastandslowjetsmoveradiallyandare the2Deffects(transferoftransversalmomentum)makesthetwo- slowed down at the reverse shock (located at distance ∼ 1018cm componentjetbowshocktopropagateatsmallerspeed. at the second panel in Fig. 8). The reverse shock strongly com- Atthispointtherampressureofthefastjetis∼3timeslarger pressesand heatsthe jetmaterial.Theshock front can beclearly thanthatoftheslowjetandtheformer“breaks-out”ofthelatter’s seen in the right panels of Fig. 8 where the unshocked CNM is bowshock,ascanbeobservedfromthethirdpanelofFig.8.Inthe at rest (black area). Throughout this work, we assume that parti- subsequentevolution,theinitiallyoblatestructureoftheoutermost cleacceleratedat theexternal shock areresponsible for theradio bowshockofthefastjetbecomesincreasinglyprolate.AfterT ∼ emissionofSwiftJ1644+57. 20yr(bottompanelofFig.8),thelongitudinalsizesofthecavity Thereisafundamentalfeatureofthestructuredjetdynamics blownbythefastjetandtheslowjetcavitybecomecomparable. thatdeservesspecialattention:thejetisremarkablystablethrough- Another important difference we find between a top-hat 2D outmostofthesimulatedevolution.Ananalyticalstudyofthesta- jetmodelandourtwo-component jetmodelistheradialwidthof bilityofourconfigurationisrathercomplex(andbeyondthescope thebow-shock-to-reverseshockregion.Astimeevolvesthisradial of thispaper), thereasonbeing thatthefast jetisunderpressured widthbecomesshorterinthetop-hatjet,sincethereisnodynam- withrespect totheslow one. Thisbreaksoutacommonassump- icalcollimationexertedbythebroadcomponent. Forinstance, at tioninthestudyofrelativisticjets,namelythatthejetispressure- T ∼500days(bottompanelofFig.9andsecondpanelofFig.8), matchedwiththesurroundingmatter.Asaresultofthis,theslow/ theradialwidthoftheformerregionisof∼5×1016cmforthetop- fastjetinterfacedevelopsaRiemannstructureconsistingonapair hat2Djetmodel,whileitisabouttwiceaslargeinourreference ofshocksseparatedbyacontactdiscontinuity. Fortheconditions sheared2Djet.Thisdifferenceincreaseswithtime,particularlyaf- we study, both shocks move towards the jet axis, though the one tertheconstantinjectionphasesfinishes. shocking the fast jet isfaster (and weaker) than the one crossing Atlatertimestheinjectionluminosityinbothjetsdecreases. thebeam of theslow jet.Acrossthe faster shock, the jetLorentz Thetenuousjetfindsitselfsurroundedbyahotcocoonofshocked factorslightlydecreasesfromΓ = 10toΓ ∼ 9,whileacrossthe material. The pressure of the surrounding cocoon causes the jet f 10 P.Mimica,D. Giannios,B. D. MetzgerandM. A. Aloy 103 Atlowfrequenciestheemissionisabsorbedand1Dand2D y] 102 jceotnsichaalvley.vIenrythseim2Dilatrwloig-chotmcuprovneesnatssilmonuglaatisonthsethjeeteimsiesxspioanndfliantg- mJ 101 o1Dbs heirgvha trieosn.s tensearlierasaresultofthejetdecelerationandexpansionalong [ν 100 212DDD tloownwoe rcceoosmm.pp.. the azimuthal direction. In the 1D simulations such expansion is f -1 notallowedandthejetdecelerationtakesplacemoreslowly. 10 1.4 GHz 1.8 GHz At higher frequencies the 2D two-component jet emission 3 10 peaksearlierandatlowerluminosity.The1Dmodeloverpredicts y] 102 theopticallythinemissionbyfactorof∼3−5,takingintoaccount mJ 101 thatour 1Dtreatment alreadytakesintoaccount thattheopening [ν 100 angle of the jet is finite when calculating the emission. Models f thatassume1D,sphericallyemittingblastoverpredicttheresulting -1 10 4.9 GHz 15.4 GHz emission by alargefactor (∼ 100) for timescales∼ months after 3 theTDE. 10 Atearlytimes,whenallmodelsradiateinanopticallythick Jy] 102 regime, the differences among 1D and 2D models are negligible, m 101 andallofthemfallatroughlythesamedistancetotheobservations. [ν 100 However,theone-component 2Djetfailsbadlytoaccountforthe f 10-1 24.4 GHz 43.6 GHz observed flux after its light curve peak, when the flux decreases muchfaster thaneitherthetwocomponent 2Dmodel or thanthe 101 102 101 102 1Dsingle-component jetmodelsshowninFig.3.Forbrevity,we time [days] time [days] donotshowherethelightcurvesobtainedwithasinglecomponent 2Dslow-widejet,buttheeffectsonthelightcurveareverysimilar Figure10.SameasFig.7,butshowingthelightcurvesproducedby1D to the ones shown in Fig. 6 and discussed in Sect. 4.1.3 for 1D simulations(fulllines,correspondingtodashedlinesinFig.7)and2Dsim- ulationsofatwo-componentjet(redlines)forǫe=0.1,ǫB=0.002,aswell models.Consideringthata2Dhydrodynamical modelingismore asa2Dsimulationofone-componentfastandnarrowjet(greylines).Both realisticthanany1Dmodeling,wefindthattheordersofmagnitude 1Dand2DsimulationsassumeEiso = 4×1054 erg,anexternalmedium fluxdeficitinsinglecomponent 2Dfast-narrowjetmodelsatlate withr−3/2 profileandn18 = 60cm−3.Thefastandnarrowjet(Γf = 10) times,togetherwiththefluxdeficitofsinglecomponent2Dslow- spanstheangle from0to0.1rad, whiletheslowandwidejet(Γs = 2) widejetmodesatearlytimesisanunequivocalproofthatasingle extendsfrom0.1to0.5rad. componentjetcannotsimultaneouslyexplainbothearly-andlate- timeemission,andarguesinfavorofatwo-layerjetmodel. channel tocollapse(thirdpanelinFig.8).Atlatertimesverylit- tlenewinjectionofenergyandmomentumtakesplace.Theblast wavethatboundsthestructureofthecomplexcavitywillrelaxinto 4.3.3 Originofnon-thermalemission a spherical Sedov solution. While we do not follow its evolution As remarked in § 3.3, SPEV models non-thermal particle evolu- untilthislatestage,theresultingemission(ofinteresthere)isprac- tion by injecting them behind relativistic shock fronts. Figure 11 ticallysphericallysymmetricbytheendofthesimulation(seenext shows the particle distribution and density for the four hydrody- Section). namicsnapshotsdiscussedinFig.8. Even though there is substantial dissipation at the reverse shocks that can contribute to the emission the first ∼10days, we 4.3.2 Lightcurves only model particles accelerated at forward/external shocks. The Figure10showsacomparisonbetweenlightcurvescomputedfrom reason is threefold: (1) the emission from the reverse shock is 1Dand2Dsimulationswiththesameinitialconditions,aswellas stronglydimmedduetothestrongsynchrotronself-absorptionre- alightcurvecomputedfroma2Dsimulationofanone-component sultingfromtheadoptedmicrophysicalanddynamicalparameters jet (fast and narrow component only). Since the 2D simulations ofourmodels;(2)wefocusonthemonthtoyeartimescaleevolu- areperformedwithlowerresolutionintheradialdirectionincom- tionwherethereverseshockemissionisexpectedtobelesspromi- parison to the 1D ones, we have also performed 1D simulations nent; and (3) computing the reverse shock particle evolution and withreducedresolution(tomatchthe2Dradialgrid,dottedline). emissionisnumericallyverydemanding. Though,fromadynamicalpointofviewthedifferencesinchang- At early times (top panel in Fig. 11) the particles are con- ingresolutionarenegligible,theinitialspeedofpropagationofthe finedtoarelativelysmallvolumebehindtheshockfrontsandcon- forward (bow) shock of the jet isslightly different (∼ 10−3c; see tributetotheobservedemission.Atlatertimes(bottomtwopanels Mimicaetal. 2009), which slightly affects the flux arrival times inFig.11)asignificantfractionofparticlesstreamawayfromthe and the optical thickness of the overall ejecta. One can see that shockfrontsincethedistancebetweentheforwardshockandthe thereducedresolutionaffectsthepredictedopticallythinemission contactdiscontinuityseparatingtheshocked jetmaterialfromthe atearlytimes(dottedandfullthincurvesinFig.10).However,the shocked CNMalsogrows.Itshouldremarkedthatwestopinjec- emission at these stages is optically thick and the low resolution tion when γ of the electrons becomes less than ∼ 2. We have min has negligible effect on the emission (see thicklines). We, there- checked that our results do not depend on the exact value of the fore,expect thattheresolutionof the2D simulationsissufficient cutoff.Fort>∼10yearstheblastwaveentersthe“deepNewtonian” to capture the hydrodynamic evolution of the jet well enough to regime,whereγ ∼1forallfreshlyinjectelectronsandtheparti- min computetheresultingemission(seeAppendixAformoredetails cleaccelerationspectrumismodified(seeSironi&Giannios2013 onothernumericalparametersinfluencingtheemission.) fordetails).