ebook img

The radio afterglow of Swift J1644+57 reveals a powerful jet with fast core and slow sheath PDF

1.6 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The radio afterglow of Swift J1644+57 reveals a powerful jet with fast core and slow sheath

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed13April2015 (MNLATEXstylefilev2.2) + The radio afterglow of Swift J1644 57 reveals a powerful jet with fast core and slow sheath 5 1 P. Mimica1⋆, D. Giannios2, B. D. Metzger3 and M. A. Aloy1 0 2 1DepartamentodeAstronom´ıayAstrof´ısica,UniversidaddeValencia,46100,Burjassot,Spain 2DepartmentofPhysicsandAstronomy,PurdueUniversity,525NorthwesternAvenue,WestLafayette,IN47907,USA r p 3ColumbiaAstrophysicsLaboratory,ColumbiaUniversity,NewYork,NY,10027,USA A 0 13April2015 1 ] E ABSTRACT H We model the non-thermaltransient Swift J1644+57as resulting from a relativistic jet . h poweredbytheaccretionofatidally-disruptedstarontoasuper-massiveblackhole.Accom- p panyingsynchrotronradioemissionisproducedbytheshockinteractionbetweenthejetand - thedensecircumnuclearmedium,similartoagamma-rayburstafterglow.Anopenmystery, o however,istheoriginofthelate-timeradiore-brightening,whichoccurredwellafterthepeak r t ofthejettedX-rayemission.Here,we systematicallyexploreseveralproposedexplanations s forthisbehaviourbymeansofmulti-dimensionalhydrodynamicsimulationscoupledtoaself- a [ consistentradiativetransfercalculationofthesynchrotronemission.Ourmainconclusionis that the radio afterglow of Swift J1644+57 is not naturally explained by a jet with a one- 2 dimensionaltop-hatangularstructure.However,amorecomplexangularstructurecomprised v ofanultra-relativisticcore(LorentzfactorΓ∼10)surroundedbyaslower(Γ∼2)sheathpro- 1 videsareasonablefittothedata.Suchageometrycouldresultfromtheradialstructureofthe 6 3 super-Eddingtonaccretionfloworastheresultofjetprecession.Thetotalkineticenergyof 0 theejectathatweinferof∼few1053ergrequiresahighlyefficientjetlaunchingmechanism. 0 Ourjetmodelprovidingthebestfittothelightcurveoftheon-axiseventSwift J1644+57is . usedtopredicttheradiolightcurvesforoff-axisviewingangles.Implicationsforthepresence 1 ofrelativisticjetsfromTDEsdetectedviatheirthermaldiskemission,aswellastheprospects 0 5 fordetectingorphanTDE afterglowswith upcomingwide-fieldradiosurveysandresolving 1 thejetstructurewithlongbaselineinterferometry,arediscussed. : v Keywords: radiationmechanisms:non-thermal– galaxies:active galaxies:jets galaxies: i nuclei–hydrodynamics–radiativetransfer X r a 1 INTRODUCTION timescalesareexpectedtoresultfromcoherent processessuchas ‘giant pulses’ from Galactic pulsars (e.g. Jessneretal. 2005) and Radioastronomyisundergoing arevolutioninthestudyof time- cyclotronmaseremissionfrombrowndwarfsandplanets(Berger domain phenomena due to the advent of sensitive wide-field ar- 2002;Hallinanetal.2008).Brighterextra-galacticanalogsofsuch rays. At meter wavelengths these include LOw Frequency AR- events have not yet been detected (although see Thorntonetal. ray (LOFAR; vanHaarlemetal. 2013), the Murchison Widefield 2013;Spitleretal.2014),butmayaccompanyrareviolentevents, Array (MWA; Lonsdaleetal. 2009) and the Long Wavelength suchasgiantmagnetarflares(Lyubarsky2014)andthemergerof Array (LWA; Ellingsonetal. 2009). At centimetre wavelengths binaryneutronstars(Hansen&Lyutikov2001). (GHz frequencies) a new generation of wide-field facilities is alsobeingdeveloped,suchasApertif/WesterborkSynthesisRadio At centimeter wavelengths and on longer timescales, in- Telescope(WSRT;Oosterlooetal.2009),MeerKAT (Boothetal. coherent synchrotron sources may instead dominate the tran- 2009), and the Australian Square Kilometer Array Pathfinder sient sky. These generally result from the shock interaction be- (ASKAP;Johnstonetal.2008).However, despitetheoverallma- tween rapidly expanding matter from an energetic explosion and turityof radio astronomy, surprisingly littleisknown about what dense ambient gas. Known examples include radio supernovae astrophysicalsourceswilldominatethetransientsky. (Weileretal. 2002), off-axis (‘orphan’) afterglows of gamma- The brightest sources at meter-wavelengths on short ray bursts (Totani&Panaitescu 2002), and other relativistic out- flows from the core collapse of massive stars (e.g., SN 2009bb; Soderbergetal. 2010). The transient Swift J164449.3+573451 ⋆ E-mail:[email protected] (hereafterSwiftJ1644+57)istheprototypeforanewtypeofrel- 2 P.Mimica, D.Giannios,B. D. Metzgerand M.A. Aloy ativistictransientthatwillalsocontributesignificantlytothevari- ableradiosky(Giannios&Metzger2011). SwiftJ1644+57 was characterised by powerful non- 10-9 thermal X-ray emission (Bloometal. 2011; Levanetal. 2011; 101 -1s] BSwurirfotwJ1s6e4t4a+l.5720a1n1d; Zaapuodseirtieornetcaoli.nc2i0d1e1n)t.wTihthe ltohnegnudculreautisonofoaf mJy] -2cm previouslyquiescentgalaxyleadtotheconclusionthatitwaspow- f [ν 10-10 erg e(SreMdBbHy)rfaoplildowacincgretthioentiodnaltoditshreupcteionntraolfsausptearrm(aas‘stiivdealbdliascrkuphtioolne 100 114...489 GGGHHHzzz F [X 15.4 GHz event’,orTDE;Carter&Luminet1982;Rees1988),althoughal- 2443..46 GGHHzz 10-11 ternativeexplanationshavebeenproposed(e.g.Quataert&Kasen 0.3-10 keV 2012).TherapidX-rayvariabilitysuggested anorigininternalto 10-1100 101 102 a jet that was relativistically beaming its radiation along our line time [days] of sight, similar to the blazar geometry of normal active galactic nuclei(Bloometal.2011).SwiftJ1644+57wasalsocharacterised Figure 1. Radio light curves of SwiftJ1644+57 at observing frequen- byluminoussynchrotronradioemission,thatbrightenedgradually cies1.4,1.8,4.9,15.4,24.4and43.6GHzfromBergeretal.(2012)and over the course of several months (Zaudereretal. 2011). Unlike Zaudereretal.(2013).AlsoshownaretheSwiftXRTobservations inthe 0.3−3 keV band (brown crosses, right axis). Note the broad secondary the rapidly varying X-ray emission, the radio emission resulted maximumintheradio occurring ∼ 6months after trigger, wellafter the from the shock interaction between the TDE jet and the dense X-raymaximum. external gas surrounding the SMBH (Giannios&Metzger 2011; Bloometal. 2011), similar to GRB afterglows. A second jetted TDE,SwiftJ2058+05, withsimilarX-rayandradiopropertiesto risetoSwiftJ1644+57, inorder toidentify which(if any) of the SwiftJ1644+57wasreportedbyCenkoetal.(2012). proposedmodelsbestreproducetheradiodata. JettedTDEsinprincipleofferauniqueopportunitytowitness This paper is organised as follows. In §2 we review the ob- thebirthof anAGN,thusproviding anatural laboratorytostudy servationsofSwiftJ1644+57andsummarisepreviousworkonits the physics of jet production across a wide range of mass feed- interpretation.§3describesourmodelforthejetandthetechnical ingrates.ObtainingabetterunderstandingofSwiftJ1644+57and detailsofscenariosthatweconsider.In§4wedescribeourresults. J2058+05 would thus have far-reaching consequences for topics §5describesapplicationsandimplicationsofourresults,includ- such as the physics of relativistic jet formation and super Ed- ingtheinferredphysicalstructureofTDEjetspoweredbysuper- dington accretion,theconditions (e.g.distributionof accretingor Eddingtonaccretionandtheprospectsfordetectingorphanjetted outflowing gas) in nominally quiescent galactic nuclei, and pos- TDEswithfutureradiosurveys.In§6wesummariseourresults. sibly even the astrophysical origin of ultra-high energy cosmic rays (Farrar&Gruzinov 2009; Farrar&Piran2014). Despitethis promise, theory has yet to fully exploit the wealth of data avail- 2 AJETTEDTIDALDISRUPTIONEVENT ableforSwiftJ1644+57.Accurate,multi-dimensionalmodelsfor 2.1 ObservationsofSwiftJ1644+57 TDEjetsareneededtoquantifyhowsimilareventswouldappear toobserversoffthejetaxis.Suchinformationisnecessarytocon- The two distinct components in the SED of SwiftJ1644+57 in- strainthepresenceofoff-axisjetsinTDEsdetectedviatheirquasi- dicated different origins for the X-ray and radio emission isotropic thermal emission (Boweretal. 2013; vanVelzenetal. (Bloometal. 2011, Burrowsetal. 2011). Rapid variability of the 2013)ortoassesshowjettedTDEswillcontributetofutureradio X-raysplacedtheiroriginatsmallradiiclosetotheSMBH,likely transientsurveys(Giannios&Metzger2011;Frailetal.2012). fromasourceinternaltothejetitself.Constraintsonthebrightness Perhaps the greatest mystery associated with temperatureandvariabilityoftheradioemissioninsteadplaceits SwiftJ1644+57 is the unexpected flattening or rebrightening originatlargerradii,wheretherelativisticoutflowbegantointer- of the high frequency radio light curves on a timescale of a actwiththeCNMsurroundingtheblackhole(Giannios&Metzger few months after its initial rise (Bergeretal. 2012; Fig. 1). This 2011).Figure1showstheobservedradioandX-raylightcurvesof behavior contradicts expectations of one-dimensional blast wave SwiftJ1644+57. models that assume energy input proportional to the observed Afterseveral days ofpeak activity,theX-rayluminosityde- X-rayemission,andwhichinsteadpredictthatthehighfrequency creasedasapowerlawLx ∝ t−α intimewithα ∼ 5/3,consistent emissionshoulddecayrapidlyoncethejetenergyistransferedto withthepredicteddeclineinthefall-backrate M˙ ofthedisrupted theblast (Metzgeretal. 2012). Thisbehavior suggests that either star(Rees1988).Unlesscoincidental,theapparentfactthatLx∝M˙ thetemporal or angular structureof thejetismorecomplex than impliesthatboththejetpowerLj trackedtheinstantaneousaccre- assumed in the basic models usually applied to GRB jets (e.g., tionrateandthattheradiativeefficiencyandthebulkLorentzfactor Bergeretal. 2012; Wangetal. 2014), or that some key physical oftheoutflowremainedrelativelyconstantthroughouttheevent1. processhasbeenneglected(e.g.,Kumaretal.2013). AmodelfortheradioemissionofSwiftJ1644+57usingthe first three weeks of data was developed by Metzgeretal. (2012, In this paper we model the hydrodynamical interaction be- hereafterMGM12),undertheassumptionthattheX-rayluminos- tween a TDE jet and the circumnuclear medium (CNM) using itytrackedtheinstantaneouskineticpowerofthejet.Thissudden oneandtwo-dimensionalrelativistichydrodynamical simulations. Assumingthat non-thermal electronsareacceleratedattheshock fronts,weexploitthesimulationresultstoperformaradiativetrans- 1 Substantial temporal variation of the bulk Lorentz factor would cause fer calculation for thesynchrotron radio emission. Our goal isto equally greatchanges inthebeamingdegree ofthejetemission,making provideacomprehensivestudyofthestructureofthejetthatgave hardtounderstandwhyLx∝M˙ for∼1yearaftertheTDE. SwiftJ1644+57:powerfuljetwith fastcoreandslowsheath 3 injectionofenergyintotheCNMproducesaforward-reverseshock environment.Thelatterwasassumedtoincludeboththeextended structure,whichactstodeceleratetheejecta.Theevolutionischar- hydrostaticatmospherewhichisproducedbyreturningstellarde- acterisedbytwostages:(1)anearlyphaseduringwhichthereverse bris(Loeb&Ulmer1997;Guillochonetal.2014)onsmallradial shockcrossesbackthroughtherelativisticallyexpandingejectathat scales (. 10−3 pc) and the CNM of the nuclear cluster on larger wasreleasedovertheinitialfew-dayperiodofpeakactivity;(2)a scales. The cocoon created by shocked CNM plays an important laterphaseduringwhichtherelativisticblastwaveundergoesself- role in the model of DeColleetal. (2012) in collimating the jet similarexpansion(Blandford&McKee1976). and,potentially,impactingthelate-timeradioemission.Thejetis Astrikingfeatureoftheearly-timeradiolightcurvewasthe onlyself-collimatedbyitsenvironment,however,ifitskineticlu- presenceofanachromaticbreakatt ∼ 10days(Fig.1).MGM12 minosityislessthanacriticalvaluewhichweestimatetobe∼1044 showed that this break could result from the transition between ergs−1usingtheformalismofBrombergetal.(2011),i.e.wellbe- stage (1) and (2), and that the temporal slopes of the pre- and low the peak (beaming-corrected) luminosity of SwiftJ1644+57, post-break light curve requires that the CNM density n scale &1045−46ergs−1. cnm with radius as ∝ r−β with β ∼ 2. MGM12 also constrained the Radiorebrighteningcouldinprinciplealsoresultfromthejet initial (unshocked) Lorentz factor Γ ∼ 10 and opening angle encounteringanabruptchangeintheradialslopeoftheCNMden- j θ ∼ 1/Γ ∼ 0.1 to values remarkably similar to those of blazar sityprofile.Suchabreakmightbeexpectedbecauseonsmallradial j j jets(e.g.Pushkarevetal.2009).TheestimatedvalueoftheCNM scalesthedensityprofileisexpectedtoapproachthatofaBondiac- density∼fewcm−3atradii∼1018cmfromtheSMBHwassome- cretionflowontotheSMBH(n ∼ r−3/2),whileonlargerscales cnm whatlowerthanthatmeasuredonasimilarradialscalefromSgA* outside the SMBH sphere of influence the density profile should inourowngalaxy(Bergeretal.2012).Thereverseshockindirectly flatten.However,paststudiesofGRBafterglowsshowthatchanges shapedtheearlylightcurvesofSwiftJ1644+57throughitseffect intheexternal density profileproduce onlyminor changes inthe onthehydrodynamics,buttheobservedsynchrotronemissionwas synchrotron light curve behavior (e.g. Mimica&Giannios 2011; probablydominatedbyelectronsacceleratedattheforwardshock Gatetal.2013,andreferencestherein)andrarelyrebrightening. (MGM12)2. Kumaretal. (2013) emphasise that electrons accelerated at Bergeretal. (2012) presented updated radio light curves of the forward shock are subject to Compton cooling by the X-rays SwiftJ1644+57, which showed the surprising radio rebrighten- fromthejet.Accordingtotheirmodel,theapparent excessinthe ing mentioned earlier (Fig. 1). This behavior deviated signifi- late radio emission is in fact a deficit in the early-time emission, cantly from that predicted by MGM12 for a blast-wave evolv- resulting from the synchrotron flux being suppressed due to the ing with constant energy, thus demanding that an additional lower effective cooling frequency of X-ray cooled electrons. Al- source of energy contribute to the forward shock at late times thoughX-raycoolingwillcertainlyplayaroleinshapingtheearly (e.g.BarniolDuran&Piran2013).Althoughatemporaryrebright- radio emission, it becomes less efficient as the jet spreads later- ening can be created by the self-absorption frequency passing ally, since a smaller fraction of the freshly accelerated electrons throughtheobserversfrequencyband(MGM12),suchatransition (onlythosewithintheopeningangleoftheoriginaljet)arecooled. cannotexplaintheobservedlightcurves. Kumaretal.(2013)alsoconsidertheeffectofX-raycoolingonop- ticallythinemission.Asweshow here,itseffectisnegligiblefor theradiobandsatwhichtheobservedemissionisselfabsorbed. 2.2 Proposedexplanationsfortheradiorebrightening A final possibility, which we advocate in this work, is that Aftertheone-zonejetmodelfailedtoreproducethelateradioex- the late radio brightening indicates that the jet responsible for cessobservedforSwiftJ1644+57,severalauthorsproposedexpla- SwiftJ1644+57possessedamorecomplexangularstructurethan the top hat structure adopted in most previous models. A natural nationsforthisapparentincreaseintheenergyoftheforwardshock (BarniolDuran&Piran2013).Webrieflyreviewthesepossibilities alternative is that the jet possesses an ultra-relativistic (Γj ∼ 10) here. coreresponsibleforthehardX-rayemission,whichissurrounded by a wider-angle, mildly relativistic (Γ ∼ 2) sheath. Core emis- Bergeretal.(2012)proposedthattheradiorebrighteningcan j be explained as the result of slower material catching up and in- siondominatestheearly-timeemission, whilethemoreenergetic sheathdominatesthelateradioemission(e.g.Tchekhovskoyetal. jectingenergytothedeceleratingforwardshockatlatetimes(e.g., 2014; Wangetal. 2014; see, however, Liuetal. 2015). This sce- Granot&Kumar2006).Inthismodeltheslowermaterialisejected aftertheinitialultrarelativisticjetstageanditcontains∼20times nario allows both components of the jet to be ejected simultane- more energy than the Γ ∼ 10 ejecta. The decline of the X-ray ouslyduringthefirstweeksfollowingtheTDE,buttheemissionis j initiallydominatedbythatproducedattheexternalshocksdriven lightcurvewasbelievedtoreflectthedecreaseinthejetpowercor- bythefastcore.Suchajetstructureisphysicallymotivatedifthe responding tothepredictedevolutionoftherateofmassfallback slow ejecta results from an initial phase of precession of the fast totheSMBH,indicatingthatthebeamingofthejetemission(and jet (Stone&Loeb 2012; Tchekhovskoyetal. 2014) or simply as thereforethejetLorentzfactor)didnotvarysubstantiallyoverthat the result of the separate fast and slow outflow components ex- period.Itisthusnotclearinthisscenariowhatprocessrevivedthe source,resultingintherequiredslowerandmorepowerfulsecond pected toaccompany super-Eddington accretion (Mineshigeetal. 2005; Coughlin&Begelman 2014; Jiangetal. 2014). A similar ejectionevent.Ontheotherhand,theenergetic,slowerejectamay fastcore/slowsheathconfigurationismotivatedbyblazarobserva- havebeenejectedsimultaneouslywiththerelativisticcomponent, e.g.,encasingit(seebelow). tions(Ghisellinietal.2005),indicating that such astructure may beagenericfeatureofrelativisticjets. DeColleetal. (2012) performed 2D hydrodynamic simula- tions of the interaction between the TDE jet and its surrounding TherichdatasetavailableforSwiftJ1644+57,nowspanning over threeyears, makes it possible to construct amuch more de- tailedmodelfortheafterglow,whichexplorestheeffectsoflateen- 2 With thepossible exception oftheradio emission during thefirst∼10 ergyinjection,complexangularstructure,andX-raycoolingofthe daysaftertrigger;seebelow. radiatingelectronsdescribedabove.However,mostmodelstodate 4 P.Mimica, D.Giannios,B. D. Metzgerand M.A. Aloy include only one dimensional hydrodynamics. Multi-dimensional wherev isthejetvelocity.TheexternalCNMisalsoinitialisedtoa j effects,suchasangularstructureandjetspreadingorpressurecon- coldtemperature,withapower-lawradialdensityprofilen ∝r−k cnm finementbytheshockedexternalmedium,becomeimportantasthe withk∼1−2.Finally,thejettoexternalmediumeffectiveinertia jetdeceleratestomildlyrelativisticspeeds.Indeed, sincebynow, densityratioη =ρ hΓ2/(ρ h Γ2 )issettobeconstantinall R j j j cnm cnm cnm ∼ 4yearsafterthetrigger,eventhefastestcomponents ofthejet oursimulationsandroughlyequalto1000. have decelerated to Γ . 2, modeling the jet as part of a spheri- cal flow is clearly inadequate. Multidimensional models are also necessary to properly address the emission observed by off-axis 3.1 1DSimulationDetails viewers,whichpeaksoonafterthejetbecomesmildlyrelativistic. A numerical grid with radial resolution ∆r = 1.1×1013 cm ex- Belowwedescribeaseriesofoneandtwo-dimensional hydrody- tendsfromtheinnerboundaryR=r =1016cm.Thelattervalue namic simulations that explore systematically the above physical j,0 istakentobesufficientlysmallsothatoursimulationsadequately effects in order to more accurately model the radio afterglow of followtheinitialjet-CNMinteractionsincludingthereverseshock SwiftJ1644+57. crossingofthejet.Thejetevolutionisfollowedforatotalduration of∼6.7×108s.Atotalof1600snapshotsofthejetstatearesaved atregularintervals(every8.3×104s)duringthefirst1.3×108s,af- 3 MODELDESCRIPTIONANDNUMERICAL terwardthetimeintervalbetweenthesnapshotsisprogressivelyin- PROCEDURE creased,resultinginanadditional785snapshotsbeingstoredover theremaining∼ 5.4×108s.Thecollectionofsavedsnapshotsis The numerical code MRGENESIS (Mimicaetal. 2007, 2009) is usedasaninputfortheSPEVcode(Mimicaetal.2009)inorderto usedtoperform1Dand2Drelativistichydrodynamicsimulations computethesynchrotronradiolightcurves.AppendixAprovides in spherical symmetry. MRGENESIS is a high-resolution, shock- additionaltechnicaldetailsonthelightcurvecalculationinSPEV. capturingschemewhichusesMPI/OpenMPforhybridparalleliza- tionandHDF5librariesforparallelinputandoutput. TheTDEjetresponsibleforSwiftJ1644+57ismodeledasa 3.2 2Dsimulationdetails relativisticoutflowwithatemporallyconstantLorentzfactorΓ and j akineticluminosityL thatvariesintimewithaformmotivatedby 2Dmodelsaresimulatedusingthesameinitialandboundarycon- j theobserved(isotropic)X-raylightcurve, ditionsasintheequivalent 1Dcase. Theradialandangular reso- lution are ∆r = 4×1014 cm and ∆θ = π/600 rad, respectively. L if t6t j,0 j We output the snapshots at exactly the same evolutionary times wLjh(te)re=t= 5L×j,01 0tt5j!s−5∼/31wifeekt>isttjh,eapproximateduration oft(h1e) catsrohsilboviusneeton1arDt’to3oc+mtah1sae’e-kdce(io§mmth3epe.n1usS)ti.aoPtInEitoaVnlshacrloaayulcc-loudtmrlaabpcteilioenrxngeismtpyfraeoorabkfsleitebdhmliest,h,wias.etoin.r∆ckthreiesaSmnSPdPEaEVi∆nVθm,conaunrose-tt j MRGENESIS. epochofpeakX-rayactivity(e.g.,Burrowsetal.2011).Thepeak luminosityL isrelatedtothetotalisotropicenergyofthejetac- j,0 ∞ cordingtoE = L (t)dt≈5L t/2.Motivatedbytheisotropic iso 0 j j,0 j 3.3 Non-thermalparticlesandemission energyradiatedinRthesoftX-rayband∼ 3×1053erg(Levanetal. 2011;Burrowsetal.2011),werequirethatE &3×1053erg.The Energeticelectronsareinjectedbehindtheforwardshockwithan iso true (beaming-corrected) energy of the jet is E = E f−1, where energyspectrum f(γ) ∝ γ−p,asmeanttomimictheeffectsofe.g. f = (1−cosθ) is the beaming fraction. In our moisodebl for fast, diffusive shock acceleration. The forward shock is identified us- fb j narrowjetsweassumeaninitialjetLorentzfactorΓ = 10andjet ing the algorithm described in Sec. 3.1. of Cuesta-Mart´ınezetal. j half-openingangleθ =1/Γ =0.1.Wealsoconsiderlowervalues (2015).ParticleaccelerationattheRSisignored,motivatedbythe j j ofΓ =2forθ <θ =1/Γ =0.5inthecaseofawider,slower lackofevidenceforasubstantialRSemissioncomponentfromthe j,s j,s j,s jet,ortwo-zonemodelswithbothfastandslowcomponents. observedradiolightcurvesofSwiftJ1644+57(MGM12;although Theinnerradiusofthenumericalgrid,R = r ,corresponds theRSmaybecontributingtothelow-frequencyemissionduring j,0 tothelocationwherethejetisinjected.Theinitialsizeofthera- the first week post trigger–see below). Fractions ǫe and ǫB of the dial grid for 1D simulations is r = 3.2×1017cm, but this is post-shockthermalenergyareplacedintorelativisticelectronsand out,0 periodicallyenlargedasthejetpropagatestolargerradii.Thisen- the magnetic field, respectively. Optionally, we allow that only a largementoccursinsuchawayastokeepthenumericalresolution fractionζeofavailableelectronsisacceleratedatshocks(weadopt per unit length constant in the radial direction, i.e. new uniform ζe = 1exceptwhereindicatedinSection4.2andinAppendixB). zonesareaddedtothegrideachtimeitisextended. For2Dsim- Weadopt p=2.2,ǫe =0.1andǫB =10−3 asfiducialvaluesofthe ulationstheangularcoordinateθhasafixedrange[0,π/2],while microphysical parameters, similar tothose used tofit GRB after- thejetisinjectedatR = r acrosstheangularrangeθ 6 θ.The glows(e.g.,Mimicaetal.2010). j,0 j ratioofthejetpressuretorestmassdensityisP(t)/ρ(t)c2 =0.01, Injectedparticlesloseenergytosynchrotroncoolingandadi- j j sothatitissufficientlysmallfortheinitialthermalpressureofthe abaticlosses,andinsomecaseswealsoincludeinverseCompton jet material to be negligible and, hence, the specific jet enthalpy, (IC)coolingbyX-rayphotons(ICcoolingoccursintheThomson h = 1+ε/c2 +P(t)/ρ(t)c2 ≃ 1(where ε is thespecific inter- regimeforparametersofinterest).TheelectronLorentzfactorsγ j j j j j naljetenergy).Thejetdensityρ(t)attheinner boundary isthen evolveaccordingto j relatedtothejetluminosityandLorentzfactoraccordingto dγ 1dlnρ 4 cσ = γ− T u′ +u′ γ2 (3) ρ (t)= Lj(t) , (2) dt′ 3 dt′ 3mec2 (cid:0) B rad(cid:1) j 4πr2 hΓ2vc2 wheret′,ρ,u′ and u′ arethetime,fluiddensity, magneticfield j,0 j j j B rad SwiftJ1644+57:powerfuljetwith fastcoreandslowsheath 5 andexternalradiationenergydensity,respectively,inthecomoving frame of the fluid. The value of u′ is only nonzero for models 10 rad includingICcooling(§4.1.2). ] 3 -m n c P 2 102 Γv c 4 RESULTS p m c [ v/ Exploring each of the proposed scenarios for the afterglow of P 5Γ SwiftJ1644+57(§2.2)acrosstheirfullparameterspacewouldre- ], quire at least tens of numerical simulations, resulting in a non- -3m 101 thermalemissioncomputationaltimethatiscurrentlynotfeasible c fortwodimensional(axisymmetric)simulations.Wethusadoptthe n [ T = 9.6 x 106 s strategyoffirstperformingalargenumberofexploratoryrunsun- dertheassumptionofsphericalsymmetryfortheblastwaveevo- lution(§4.1,§4.2).Resulting1Dlightcurvesarethencomparedto 10 20 0 theobservations,allowingustoidentifythemostpromisingmod- r [1016 cm] els,alongwiththejet/CNMparametersthatbestreproducetheob- servations. These most promising scenarios are then explored in 2 greatdetailbyrepeatingthemusingafulltwodimensionalcalcu- ] lation(§4.3). -3m n c P 2 101 Γv c 4.1 One-component1Dmodels p m c Webeginbyconsideringlightcurvesproducedbyone-component, [ v/ P 1Γ sθpj.hNeroitcealtlhyatsaylmthmouegtrhicthjeetsinwitiiathljaentoapsesnuimngedan(figxleedθj)doopeesnninogtfaancgtoler -3m], intothehydrodynamicevolutionintheonedimensionalmodel,its vreagluioenmduosetssftialcltboersinpteocitfiheedebmeicsasuiosnetchaelcaunlgautiloanr3s.izeoftheemitting n [c 100 T = 4.29 x 107 s 0 110 120 4.1.1 Fast,narrowjet 16 r [10 cm] Wefirstconsiderafast,narrowjetwithanisotropicenergyE = iso 1053ergexpandingintoastratifiedexternalmediumwiththeradial Figure2.Upper panel:Numberdensityn(fullline), thermalpressure P densityprofilen = n (r/1018cm)−k,wheren = 1.5cm−3 and (dashedline) andfour-velocity Γv/c(greyline) ofthefast, narrow jetat cnm 18 18 kisvariedbetween1,3/2,and2.ThejetLorentzfactorandhalf- thetimeT ∼ 9.6×106 s.Thereverseandforwardshocksarevisibleas openingangleareassumedtobeΓ =10andθ =0.1,respectively. discontinuities on the right half of the plot. The density peak marks the j j location of the contact discontinuity in both the top and bottom panels. Figure2showstwosnapshotsofthe1Djetevolution,corre- Lowerpanel:Sameasupperpanel,butforalaterstageinthejetevolution sponding to an early time in the jet evolution, shortly before the (T ∼4.3×107s).Bythistimethereverseshockhascrossedtheportionof RScrossestheejectainjectedatconstantluminosity(t∼107s;top thejetshown,whiletheregionnearthefrontofthejetisgraduallyentering panel), and alater time(t ∼ 4.3×107s; bottom panel). At early aself-similarevolution. timesboththeforwardandreverseshocksarestillclosetothehead ofthejet.Behindthedensejethead,whichisproducedduringthe normalizationoftheCMNdensityn forafixedvalueofη .Be- initialphaseof constant jetluminosity, thedensitydecreases toa 18 R minimumat∼1.5×1017cm.Atyetsmallerradii,thedensitythen causechangingEiso/n18doesmakeadifferenceinthecalculatedra- againincreases∝ r−2 (eq.[2])approaching thepointof jetinjec- dioemission,weexploitthisscalingfreedomtoperformalimited scanoftheparameter spacewithouthavingtoperformadditional tion.Inthemorephysical2Dcasethislow-densitytailleadstothe simulations. collapseofthejetchannelbythecocoon(§4.3.1). Figure3showsourresultsforthesyntheticradiolightcurves Therelativistichydrodynamical equationsareinvarianttoan incomparisontotheobservationsofSwiftJ1644+57(Fig.1).We overallchangeinthenormalizationofthedensityandlengthscale setn =5cm−3,whichsetsE =3.33×1053erg.Eachpanelcor- (Schecketal.2002).Equation(2)showsthatanincreaseinthejet 18 ISO respondstoadifferentradiofrequency,withdifferentvaluesofthe luminosity L (and hence E ) is equivalent to an increase in the j iso assumedCNMdensityindexkshownwithdifferentcolours.Thick andthinlinesshowlightcurveswithandwithoutsynchrotronself- absorption taken intoaccount. Asexpected, theearly-timeobser- 3 ContrastthiswithGRBafterglows,inwhichtheshockedjetmaterialhas vationscanbefitreasonablywellusingther−3/2profile(MGM12), Γdsuoshpeθpsjrneo>sstian1ffgeptcrhtieotrhoebtosoebtrhsveeerdvjeefltdubflxruebxay.kH,aiof.awec.,etovtrehreo,fffio∼nri(TtΓeDsohEθpjej)en2tisnw,gΓitshahnθrgejls<∼epe1oc,ftthtthoeertehbjaeytt ebmutistshieonlaistes-ttriomnegleymaibsssoiorbnedisactl<∼ea2r0lyGuHnzdderuprrinogdutcheedfi.rTsth1e0r−ad1i5o fromanotherwiseequivalentsphericaloutflow(Bloometal.2011).Models days,andthepeakateachfrequencycorrespondstothetransition forSwiftJ1644+57thatassumeasphericallysymmetricflowmaystrongly fromopticallythicktoopticallythinregime.Furthermore,ateach overestimatetheafterglowemissionoftheactualbeamedevent. frequency we can see the achromatic break in the optically thin 6 P.Mimica, D.Giannios,B. D. Metzgerand M.A. Aloy 3 10 obs. mJy] 110001 orrr---b132/2s. mJy] 110021 nn1188 == 51 0c0m c-m3-3 [ν [ν 100 f -1 f 10 -1 1.4 GHz 1.8 GHz 10 1.4 GHz 1.8 GHz 3 10 1 y] 10 y] 102 J J m 100 m 101 [ν [ν 100 f -1 f 10 -1 4.9 GHz 15.4 GHz 10 4.9 GHz 15.4 GHz 3 10 1 y] 10 y] 102 J J m 100 m 101 [ν [ν 100 f -1 f 10 24.4 GHz 43.6 GHz 10-1 24.4 GHz 43.6 GHz 101 102 101 102 101 102 101 102 time [days] time [days] time [days] time [days] Figure3.Radiolightcurvescalculated forourfiducial“fast,narrow”jet Figure4.SameasFigure3,comparingradiolightcurvesfromajetwith model (§4.1.1), with Eiso = 3.33×1053erg, n18 = 5 cm−3, ǫe = 0.2, higherdensityandenergy(Eiso =6.67×1054erg;dashedline)thatbetter ǫB=2×10−3.Thickandthinlinesshowthelightcurveswithandwithout fitsthelate-timeradiodatatotheEiso=3.33×1053ergmodelfromFigure3 synchrotronself-absorptionrespectively.Differentpanelsshowingdifferent (fullline)thatbetterfitstheearlydata.Inbothcasesweassumeanexternal observingfrequencies,withlinestylesshowingdifferentassumptionsabout densityprofilencnm∝r−3/2. thepower-lawslopeoftheradialdensityprofileoftheCNM,ncnm(r)∝r−k, wherek=1(fulllines),3/2(dashed),1(grey).Shownforcomparisonwith circlesaretheradioobservationsofSwiftJ1644+57(Fig.1). overall normalization, L = 0, 5×1047ergs−1, and 1048ergs−1. x,0 The observer time t is related to the simulation time t used in obs equation(1)accordingto lightcurves(thinlines).Asdiscussedin§2,thisbreakmarksthe jetdecelerationtime. rcosθ t =t− , (6) Figure4showsthelightcurvesforacaseinwhichn18 isin- obs c creasedto100cm−3 (andhenceE to6.67×1054 erg).Although iso whererandθaretheradiusandtheanglewithrespecttotheline the late radio emission is now reasonably well fit, the early-time ofsightoftheemittingparticleattimet. emission is somewhat overproduced. However, such narrow jets Figure 5 shows the radio light curves including IC cooling, sufferfromlatteraljetspeadingeffectsatratherearlystagesintheir calculatedassumingapowerfuljet(E =6.67×1054erg)andpa- iso evolutionthatarenotprobedby1Dmodels.InSect.4.3,weexplore rameters (k = 1.5, ǫ = 0.1, ǫ = 0.002) as necessary to match e B asimilar,fast/narrowjetmodelwith2Dsimulationsdemonstrating the late radio peak. IC cooling does noticeably influence the op- that,asaresultoflatteralspreading,thejetemissionisgreatlyun- tically thin synchrotron emission. However, the effect on the ob- derpredictsobservationsontimescaleslongerthan∼ 1month.We served, optically-thickemissionisalmost negligible, evenfor the havenotbeenabletofindany1-component jetmodel capableof highest assumed valueof L .Whentheemissionisstronglyab- x,0 explainingthelateradiorebrightening. sorbedtheobserveronlyseesthenewlyinjectedparticlescloseto theexternalshock,whiletheparticlesthathavecooledarealready 4.1.2 X-raycoolinginthefastjet locatedfurtherbehindandtheirsynchrotronemissiondoesnotes- cape.WethusconcludethatICcooling,withinanarrow-jetmodel, Kumaretal. (2013) propose that the flat radio light curve in cannotexplainthelateradiorebrightening. SwiftJ1644+57 results from an early-time deficit of the syn- chrotronemissioncausedbyICcoolingbyX-rayphotonsfromthe jet.Wetestthisideabyrunningjetsimulationsincludingradiative 4.1.3 Slow,widejet lossesinequation(3)accordingto To contrast with the fast, narrow jet model (Sec. 4.1.1) we also L (t )Γ u′rad = 4xπorb2sc , (4) consideraslow,widejetwithΓj =2andθj =0.5(Sec.4.1.1).Fig- ure6showsourresultsfortheslowjetlightcurves(dashedlines), whereΓisthebulkLorentzfactoroftheemittingparticlesandLx calculated for an external density n18 = 50 cm−3 and jet energy istheX-rayluminosity,whichscalesinthesamewayasthethejet E =3.33×1054erg,incomparisontotheequivalentfastjetcase iso power(eq.[1]),i.e.accordingto (fulllines).Theslowjetcanexplainthelatetimepeak,butitunder- t −5/3 predicts the early-time emission observed from SwiftJ1644+57. L (t )=L max 1, obs , (5) This is because a slow jet coasts for a long time before appre- x obs x,0 t ! j ciably slowing down, since it must first sweep up ∼ 1/Γ of its j whereagaint = 5×105sandweconsider severalvaluesforthe ownrest mass. Duringthisextended coastingphase, theemitting j SwiftJ1644+57:powerfuljetwith fastcoreandslowsheath 7 3 3 10 10 obs. obs. L = 0 fast mJy] 110021 LLXxX == 51x01480 4e7r ge rsg- 1s-1 mJy] 110021 slow [ν 100 [ν 100 f f -1 -1 10 1.4 GHz 1.8 GHz 10 1.4 GHz 1.8 GHz 3 3 10 10 y] 102 y] 102 J J m 101 m 101 [ν 100 [ν 100 f f -1 -1 10 4.9 GHz 15.4 GHz 10 4.9 GHz 15.4 GHz 3 3 10 10 y] 102 y] 102 J J m 101 m 101 [ν 100 [ν 100 f f 10-1 24.4 GHz 43.6 GHz 10-1 24.4 GHz 43.6 GHz 101 102 101 102 101 102 101 102 time [days] time [days] time [days] time [days] Figure5.RadiolightcurvesincludingtheeffectsofX-raycooling(§4.1.2), Figure6.Comparingradiolightcurvesfromaslow-widejet(Γj=2, θj= calculated forajetwithEiso = 6.67×1054ergexpandingintoak = 1.5 0.5;dashed lines) tothe fast-narrow jet (Γj = 10, θj = 0.1;full lines). mediumfordifferentvaluesoftheX-rayluminosity Lx,0 (eq.[5]).While Thickandthinlinesshowmodelsincludingandneglectingself-absorption, X-raycoolingcansuppressthesynchrotronemissionforanopticallythin respectively. Bothjets have Eiso = 3.33×1054 ergandpropagate intoa medium(thinlines),itseffectontheactualemissionisnegligiblebecause ncnm ∼ r−3/2externalmediumwithn18 = 50cm−3.Weassumeǫe = 0.1 thelatterisselfabsorbed(thicklines). andǫB=0.001. 3 area increases and so does the luminosity of the source at bands 10 wfahsterbeeftohreeermeaiscshiionngiistsseplefa-akb,swoirtbhedth.eTpheearkestiumlteindgeltiegrhmtcinuerdvebryiseeis- Jy] 1021 oεεBBb ==s. 00..000012 m 10 ther the thick-thin transition or the onset of the jet deceleration, by itself inconsistent with the relatively flat light curve observed f [ν 100 forSwiftJ1644+57.Thecomparisonbetweenthelightcurvespro- 10-1 1.4 GHz 1.8 GHz ducedbyafast-narrowjetandaslow-widejet(Fig.6)issuggestive 3 10 ofthefactthatdifferentpartsofauniquejet,movingatdifferentan- glesandwithdifferentLorentzfactors,couldaccountforboththe y] 102 J earlyandthelatetimelightcurveofSwiftJ1644+57. m 101 [ν 100 f -1 4.2 Two-component1Dmodels 10 4.9 GHz 15.4 GHz 3 10 Theone-component jetmodelsconsideredthusfarcanreproduce either the early or late time light curves well (Fig. 6), but none y] 102 J acceptably reproduce the entire emission. We are thus motivated m 101 to consider a two-component jet, comprised of a fast core (Γj = [ν 100 10) with a narrow half-opening angle of θ = 0.1 rad, which is f j 10-1 24.4 GHz 43.6 GHz surrounded byaslower sheath(Γ = 2) from0.1to0.5rad. Both components of the jet are assumed to possess an equal isotropic 101 102 101 102 energy E = 4×1054 erg.Weemployanexternal mediumwith time [days] time [days] iso an ∝ r−1.5 profileandn = 60cm−3.Asinpreviouscaseswe cnm 18 assumeǫ = 0.1,however weallowǫ tovarymodestlyaboutits Figure7.Lightcurvesofatwo-component1Djetmodel(§4.2)including fiducialvealue10−3soastoquantitativeBlyminimizethedifferences afast core(Γj = 10;θj = 0.1)surrounded byaslower sheath (Γj = 2; amongobservationaldataandoursyntheticmodels. θj=0.5,eachwiththesameisotropicenergyEiso=4×1054erg.Different linestylesshowdifferentchoicesoftheassumedpost-shockmagneticfield modeFliwguitrhe7ǫsh=ow1s0−th3eprreosvuidltessoaforeuars2o-ncaobmleporenpernets1eDntamtioodneol.fTthhee strengthǫB=10−3(fullline)and2×10−3(dashedline). B well-sampledν>∼15GHzlightcurve,butitunderpredictstheflux at low frequencies ν . 5GHzand early timest . 10 days. This excess at early times in the observational data appears to require either asignificant reduction of theoptical depth at timest . 10 days,oranadditionalemittingregionnotincludedinthecalcula- 8 P.Mimica, D.Giannios,B. D. Metzgerand M.A. Aloy tions,andquitelikely,acombinationofbothfactors.Mimicaetal. T=0.96×107s[111days] 30.00 (2009) showed that during theearly stages of the jet-CNMinter- 101 action the reverse shock that decelerates the jet material can be 103 particularlypowerful.Indeed,fortheadoptedparameters,therate m] 20.00 100 ocofmdipsasripabatlieotnootfheenoebrsgeyrvaetdthjeetrdevuerarstieonsh(o∼ck1p0edaakyssoinnathteimceassceaolef nth102 16y[c10 10.00 10−1Γβ SwiftJ1644+57).However,forthefiducialparametersadoptedin 101 10−2 thepresentpaper(includingthoseoftheCNM),theemissionofthe 0.00 −25.00 0.00 25.00 reverseshockisstronglyabsorbedbelow∼10GHzand,hence,the x[1016cm] reverseshockcontributionalonecannotaccountforthefluxdeficit T=4.3×107s[497days] ofourmodelsatearlytimes4.Thelackofadominantreverseshock 120.00 101 componentatearlytimesispotentiallysupportedbytheupperlim- 102 iwetvseeoerk,fs.thaa2ftt−eirf1t0wh%eeBocAnoTnthstierdi4egr.g8eaGrs(HmWzailleilrnesreeamvraapluoeeltaarolif.za2tht0ieo1n2ζ)eo.nWpatiermanmeosetcetae,lrhe,ostwhoef- nth 110001 16y[cm]10 6900..0000 11000−1Γβ synchrotronself-absorptionatboththeforwardandreverseshocks 10−1 30.00 issubstantiallyreduced,andevencountingonlytheforwardshock 10−2 0.00 emission,thefluxdeficitatearlytimescanbeameliorated(seeAp- −100.00 −50.00 0.00 50.00 100.00 x[1016cm] pendixBfordetails). T=11×107s[1276days] Themodelwithǫ =0.002,thoughslightlyoverpredictingthe B 101 300.00 101 observed emission, nevertheless provides a good candidate to set theinputforourfull2Dsimulationsdescribednext.Itisdesirable 100 m] 200.00 100 tfoulsll2igDhtclyasoevtehreprjeedtiwctiltlheexepmeriisesniocenlwatiethratlhsep1reDadminogd.eTlshiinscleeaindsthtoe nth10−1 16y[c10 10−1Γβ 100.00 earlier deceleration of the jet in comparison to spherical models, 10−2 resultinginlowerfluxatbandswheretheemissionisopticallythin 10−2 (seenextSection). 0.00 −250.00 0.00 250.00 x[1016cm] T=63×107s[7263days] 100 100 1200.00 10−1 m] 900.00 nth10−2 16[c10 600.00 10−1Γβ y 10−3 300.00 10−2 0.00 −750.00 0.00 750.00 x[1016cm] Figure8.Snapshotsofthehydrodynamicevolutionofthetwo-component 4.3 2Dsimulations jet.Thetimeintheuppertwopanelscorrespondstothetimesofthesnap- shotsinFig.2andFig.9.Ineachpanelthelefthalfshowsthe(comoving) Motivatedbytheimprovementsinaccommodatingthelightcurves numberdensitynthofthethermalfluid,whiletherighthalfshowsthefluid whenconsideringone-dimensionaltwocomponentmodels(Fig.7), four-velocity Γβ := Γv/c. Since bothfast(Γf = 10)andslow (Γs = 2) we perform 2D simulations of two component jet models with jetsareinjectedwiththesameluminositypersolidangle,nthinthe(more E = 4×1054 erg. The jet is injected at the inner grid bound- relativistic) fastjetisinitially ∼ Γ2/Γ2 lowerthanintheslowerjet.This iso s f ary(r =2×1016cm)intheangularrange[0,0.5]rad.Afastcore canbeseenintheuppertwopanels,wherethefastjetisseenasadark- j,0 (Γ =10)isinjectedbetween0and0.1rad,whileaslowersheath colouredchannel closetothesymmetryaxis.Notethatthedensitycolor f (Γ =2)isinjectedbetween0.1and0.5rad.Theexternalmedium scalechangesfrompaneltopanel.Thesphericalboundariesontheleftside s intowhichthejetispropagating hasar−3/2 profileand n = 60 ofsomepanels denotetheedgeofaradialgridwhichisperiodically ex- 18 tended,see§3. cm−3.ThejetluminositychangesintimeaccordingtoEq.1. Theradialresolutionofthesimulationsis∆r = 4×1014 cm (Sec.3.2),buttheradialgridisregularlyextendedasthejetprop- 4.3.1 Hydrodynamicevolution agatesintotheexternalmedium.Thisisachievedbystoppingthe Oursimulationstartsfromsufficientlyshortdistancefromthecen- simulationoncethejetheadnearstheouterradialedgeofthecur- tralenginesothatwecanfollowallthestagesofthejetdeceleration rentgrid,extendingtheradialgridandinitialisingwiththeexternal asthejetsweepsthroughtheCNM.Initiallyboththeslowandfast medium.Theangularresolutionis∆θ =π/600radandwealways jetsareoverdensewithrespecttoexternalmediumandpropagate simulatethefullrange[0,π/2]using300points. almost ballisticallyalongtheir initial opening angle (toppanel in Inordertocomputethelightcurvesthesnapshotsofthegrid stateneedtobesavedperiodically(Sec.3.1).Thetimeatwhichthe snapshotsarewrittenisexactlythesameasin1Dsimulations,thus 4 Besidesthefactthatitistechnicallyverychallengingtoaccuratelyde- enablingustodirectlycompare1Dand2Dmodelsbothinterms tectthereverseshockinthehydrodynamicsimulations,thereverseshock oftheirhydrodynamical evolution(Sec.4.3.1),aswellasintheir emissionisstronglysuppressedfortheparametersathand,whichjustifies observationalsignatures(Sec.4.3.2). ourchoiceofnotincludingitinthecurrentmodels. SwiftJ1644+57:powerfuljetwith fastcoreandslowsheath 9 slower shock it decreases almost to the slow jet value (Γ = 2). s 10 In order to estimate the shock front velocities, it is important to n (1D) 3] P (1D) considerthatthefastjetislaunchedtoexpandradiallyatanangle -m Γv (1D) θj =0.1and,thus,withavelocitycomponentperpendiculartothe 2c c 102 nP ((22DD)) rjeatmaxpirsesvs⊥ur∼eθpje(r1pe−nΓdi−fc2u)1la/2r=to0th.1ec.axBiaslawnecicnogncthluedfeastthaatndthseloswhojcekt m p Γnv ( 2(2DD-s)) c propagation speed towards the axis is very slow, while the effect P [ P (2D-s) 5Γv/ of theinitial(thermal) pressure imbalance between both jetsgets -3m], 101 Γv (2D-s) rneadrurocwedretodlaayreelrastiuvrerolyunthdiinnglatyheerbaeraomunodftthheeffaassttjjeett-w(sheeit,ees.hga.,dtehse- intherightsideofthesecondpanelofFig.9). c n [ T = 9.6 x 106 s Having explained the differences with previous jet stability studies caused by the pressure imbalance, we now use the re- sults of those works to analyze fast/slow jet interface properties. 0 Hardee&Hughes(2003)showedthatpressurematched,cylindri- 10 20 16 caljetswithafast-spineandaslow-sheatharemorestablethanjets r [10 cm] withoutslow sheaths. Inour 2Dmodel theroleof thesheath can beplayedbytheslowjet.Hardee&Hughes(2003)showthatthe 10 decreaseinthegrowthrateofKelvin-Helmholtzinstabilitiesispro- -3m] 101 T = 4.29 x 107 s portionaltothevelocityshear∆v.Inourcase,∆v=vfj−vsj ≃0.13c (v andv arethespeedsofinjectionofthefastandoftheslowjets, c fj sj 2 respectively).Theyalsofindthatthepresenceofanexternalmov- c p ingsheardampensasymmetricmodesandraisesthegrowthrateof m c thefundamentalpinchmode.Inthisregard,wenotethat,initially P [ 5Γv/ (T . 100days)thefastjetdoesnotdevelopanyrecollimationin- ], 100 duced by the pinching of the slow jet. Later (T & 100days), the -3m bowshockandthereverseshockproducedbytheslowjetpinchthe c beamofthefastjetonlyveryclosetothejethead(y∼2.8×1017cm; n [ toppanelofFig.8).Thispinchingspeedsupthebeamofthefast jetwhich,asaresult,propagatesabitfasterthanapure1D“jet” withthesameproperties.Thiseffectisvisibleinthetoppanelof 110 120 0 Fig.9,whereprofilesalongtheaxisofthe2Djetmodelarecom- r [1016 cm] paredwithanequivalent1Djetmodel.Thereweobservethatthe forwardshock of the1D jetmodel lagsbehind that of the2D jet Figure9.SameasFig.2,butinadditionshowingthevaluesattheaxisof (locatedatr ≃2.9×1017cm).AlsoinFig.9,wedisplaytheaxial thetwo-component2Djetsimulation(thinlines),anda2Dsimulationofa profilesofa2Djetwiththesamepropertiesasthefastandnarrow single-componentfastjet(brownlines).Forbettercomparison,resultsofa jet, but without a broader slow jet flanking it (“top-hat” 2D jet). 1Dsimulationwiththesame∆rasthe2Doneareshown(seeSec.3.2). Without the stabilisinginfluence on thedynamics of thebroader, slowerjet,thetop-hat2Djetclearlylagsbehind1Djetmodel.At latertimes(bottompanelof Fig.9),thesituationisreversed,and Fig.8).Atthisstage,bothfastandslowjetsmoveradiallyandare the2Deffects(transferoftransversalmomentum)makesthetwo- slowed down at the reverse shock (located at distance ∼ 1018cm componentjetbowshocktopropagateatsmallerspeed. at the second panel in Fig. 8). The reverse shock strongly com- Atthispointtherampressureofthefastjetis∼3timeslarger pressesand heatsthe jetmaterial.Theshock front can beclearly thanthatoftheslowjetandtheformer“breaks-out”ofthelatter’s seen in the right panels of Fig. 8 where the unshocked CNM is bowshock,ascanbeobservedfromthethirdpanelofFig.8.Inthe at rest (black area). Throughout this work, we assume that parti- subsequentevolution,theinitiallyoblatestructureoftheoutermost cleacceleratedat theexternal shock areresponsible for theradio bowshockofthefastjetbecomesincreasinglyprolate.AfterT ∼ emissionofSwiftJ1644+57. 20yr(bottompanelofFig.8),thelongitudinalsizesofthecavity Thereisafundamentalfeatureofthestructuredjetdynamics blownbythefastjetandtheslowjetcavitybecomecomparable. thatdeservesspecialattention:thejetisremarkablystablethrough- Another important difference we find between a top-hat 2D outmostofthesimulatedevolution.Ananalyticalstudyofthesta- jetmodelandourtwo-component jetmodelistheradialwidthof bilityofourconfigurationisrathercomplex(andbeyondthescope thebow-shock-to-reverseshockregion.Astimeevolvesthisradial of thispaper), thereasonbeing thatthefast jetisunderpressured widthbecomesshorterinthetop-hatjet,sincethereisnodynam- withrespect totheslow one. Thisbreaksoutacommonassump- icalcollimationexertedbythebroadcomponent. Forinstance, at tioninthestudyofrelativisticjets,namelythatthejetispressure- T ∼500days(bottompanelofFig.9andsecondpanelofFig.8), matchedwiththesurroundingmatter.Asaresultofthis,theslow/ theradialwidthoftheformerregionisof∼5×1016cmforthetop- fastjetinterfacedevelopsaRiemannstructureconsistingonapair hat2Djetmodel,whileitisabouttwiceaslargeinourreference ofshocksseparatedbyacontactdiscontinuity. Fortheconditions sheared2Djet.Thisdifferenceincreaseswithtime,particularlyaf- we study, both shocks move towards the jet axis, though the one tertheconstantinjectionphasesfinishes. shocking the fast jet isfaster (and weaker) than the one crossing Atlatertimestheinjectionluminosityinbothjetsdecreases. thebeam of theslow jet.Acrossthe faster shock, the jetLorentz Thetenuousjetfindsitselfsurroundedbyahotcocoonofshocked factorslightlydecreasesfromΓ = 10toΓ ∼ 9,whileacrossthe material. The pressure of the surrounding cocoon causes the jet f 10 P.Mimica,D. Giannios,B. D. MetzgerandM. A. Aloy 103 Atlowfrequenciestheemissionisabsorbedand1Dand2D y] 102 jceotnsichaalvley.vIenrythseim2Dilatrwloig-chotmcuprovneesnatssilmonuglaatisonthsethjeeteimsiesxspioanndfliantg- mJ 101 o1Dbs heirgvha trieosn.s tensearlierasaresultofthejetdecelerationandexpansionalong [ν 100 212DDD tloownwoe rcceoosmm.pp.. the azimuthal direction. In the 1D simulations such expansion is f -1 notallowedandthejetdecelerationtakesplacemoreslowly. 10 1.4 GHz 1.8 GHz At higher frequencies the 2D two-component jet emission 3 10 peaksearlierandatlowerluminosity.The1Dmodeloverpredicts y] 102 theopticallythinemissionbyfactorof∼3−5,takingintoaccount mJ 101 thatour 1Dtreatment alreadytakesintoaccount thattheopening [ν 100 angle of the jet is finite when calculating the emission. Models f thatassume1D,sphericallyemittingblastoverpredicttheresulting -1 10 4.9 GHz 15.4 GHz emission by alargefactor (∼ 100) for timescales∼ months after 3 theTDE. 10 Atearlytimes,whenallmodelsradiateinanopticallythick Jy] 102 regime, the differences among 1D and 2D models are negligible, m 101 andallofthemfallatroughlythesamedistancetotheobservations. [ν 100 However,theone-component 2Djetfailsbadlytoaccountforthe f 10-1 24.4 GHz 43.6 GHz observed flux after its light curve peak, when the flux decreases muchfaster thaneitherthetwocomponent 2Dmodel or thanthe 101 102 101 102 1Dsingle-component jetmodelsshowninFig.3.Forbrevity,we time [days] time [days] donotshowherethelightcurvesobtainedwithasinglecomponent 2Dslow-widejet,buttheeffectsonthelightcurveareverysimilar Figure10.SameasFig.7,butshowingthelightcurvesproducedby1D to the ones shown in Fig. 6 and discussed in Sect. 4.1.3 for 1D simulations(fulllines,correspondingtodashedlinesinFig.7)and2Dsim- ulationsofatwo-componentjet(redlines)forǫe=0.1,ǫB=0.002,aswell models.Consideringthata2Dhydrodynamical modelingismore asa2Dsimulationofone-componentfastandnarrowjet(greylines).Both realisticthanany1Dmodeling,wefindthattheordersofmagnitude 1Dand2DsimulationsassumeEiso = 4×1054 erg,anexternalmedium fluxdeficitinsinglecomponent 2Dfast-narrowjetmodelsatlate withr−3/2 profileandn18 = 60cm−3.Thefastandnarrowjet(Γf = 10) times,togetherwiththefluxdeficitofsinglecomponent2Dslow- spanstheangle from0to0.1rad, whiletheslowandwidejet(Γs = 2) widejetmodesatearlytimesisanunequivocalproofthatasingle extendsfrom0.1to0.5rad. componentjetcannotsimultaneouslyexplainbothearly-andlate- timeemission,andarguesinfavorofatwo-layerjetmodel. channel tocollapse(thirdpanelinFig.8).Atlatertimesverylit- tlenewinjectionofenergyandmomentumtakesplace.Theblast wavethatboundsthestructureofthecomplexcavitywillrelaxinto 4.3.3 Originofnon-thermalemission a spherical Sedov solution. While we do not follow its evolution As remarked in § 3.3, SPEV models non-thermal particle evolu- untilthislatestage,theresultingemission(ofinteresthere)isprac- tion by injecting them behind relativistic shock fronts. Figure 11 ticallysphericallysymmetricbytheendofthesimulation(seenext shows the particle distribution and density for the four hydrody- Section). namicsnapshotsdiscussedinFig.8. Even though there is substantial dissipation at the reverse shocks that can contribute to the emission the first ∼10days, we 4.3.2 Lightcurves only model particles accelerated at forward/external shocks. The Figure10showsacomparisonbetweenlightcurvescomputedfrom reason is threefold: (1) the emission from the reverse shock is 1Dand2Dsimulationswiththesameinitialconditions,aswellas stronglydimmedduetothestrongsynchrotronself-absorptionre- alightcurvecomputedfroma2Dsimulationofanone-component sultingfromtheadoptedmicrophysicalanddynamicalparameters jet (fast and narrow component only). Since the 2D simulations ofourmodels;(2)wefocusonthemonthtoyeartimescaleevolu- areperformedwithlowerresolutionintheradialdirectionincom- tionwherethereverseshockemissionisexpectedtobelesspromi- parison to the 1D ones, we have also performed 1D simulations nent; and (3) computing the reverse shock particle evolution and withreducedresolution(tomatchthe2Dradialgrid,dottedline). emissionisnumericallyverydemanding. Though,fromadynamicalpointofviewthedifferencesinchang- At early times (top panel in Fig. 11) the particles are con- ingresolutionarenegligible,theinitialspeedofpropagationofthe finedtoarelativelysmallvolumebehindtheshockfrontsandcon- forward (bow) shock of the jet isslightly different (∼ 10−3c; see tributetotheobservedemission.Atlatertimes(bottomtwopanels Mimicaetal. 2009), which slightly affects the flux arrival times inFig.11)asignificantfractionofparticlesstreamawayfromthe and the optical thickness of the overall ejecta. One can see that shockfrontsincethedistancebetweentheforwardshockandthe thereducedresolutionaffectsthepredictedopticallythinemission contactdiscontinuityseparatingtheshocked jetmaterialfromthe atearlytimes(dottedandfullthincurvesinFig.10).However,the shocked CNMalsogrows.Itshouldremarkedthatwestopinjec- emission at these stages is optically thick and the low resolution tion when γ of the electrons becomes less than ∼ 2. We have min has negligible effect on the emission (see thicklines). We, there- checked that our results do not depend on the exact value of the fore,expect thattheresolutionof the2D simulationsissufficient cutoff.Fort>∼10yearstheblastwaveentersthe“deepNewtonian” to capture the hydrodynamic evolution of the jet well enough to regime,whereγ ∼1forallfreshlyinjectelectronsandtheparti- min computetheresultingemission(seeAppendixAformoredetails cleaccelerationspectrumismodified(seeSironi&Giannios2013 onothernumericalparametersinfluencingtheemission.) fordetails).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.