ebook img

The Radial Distribution of Star Formation in Galaxies at z~1 from the 3D-HST Survey PDF

0.57 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Radial Distribution of Star Formation in Galaxies at z~1 from the 3D-HST Survey

TOAPPEARINAPJLETTERS PreprinttypesetusingLATEXstyleemulateapjv.5/2/11 . THERADIALDISTRIBUTIONOFSTARFORMATIONINGALAXIESATZ∼1FROMTHE3D-HSTSURVEY ERICAJUNENELSON1,PIETERG.VANDOKKUM1,IVELINAMOMCHEVA1,GABRIELBRAMMER2,BRITTLUNDGREN3,ROSALINDE. SKELTON1,KATHERINEE.WHITAKER4,ELISABETEDACUNHA5,NATASCHAFÖRSTERSCHREIBER6,MARIJNFRANX7,MATTIA FUMAGALLI7,MARISKAKRIEK8,IVOLABBE7,JOELLEJA1,SHANNONPATEL7,HANS-WALTERRIX5,KASPERB.SCHMIDT9,ARJEN VANDERWEL5,STIJNWUYTS6 ToappearinApJLetters ABSTRACT 3 1 Theassemblyofgalaxiescanbedescribedbythedistributionoftheirstarformationasafunctionofcosmic 0 time.ThankstotheWFC3grismonHSTitisnowpossibletomeasurethisbeyondthelocalUniverse.Herewe 2 presentthespatialdistributionofHαemissionforasampleof54stronglystar-forminggalaxiesatz∼1inthe 3D-HSTTreasurysurvey. BystackingtheHαemissionwefindthatstarformationoccurredinapproximately n a exponentialdistributionsat z∼1, with median Sérsic indexof n=1.0±0.2. The stacks are elongatedwith J median axis ratios of b/a=0.58±0.09 in Hα consistent with (possibly thick) disks at random orientation angles. Keck spectra obtained for a subset of eight of the galaxies show clear evidence for rotation, with 2 inclinationcorrectedvelocitiesof90to330km/s. Themoststraightforwardinterpretationofourresultsisthat ] star formationin stronglystar-forminggalaxiesatz∼1 generallyoccurredin disks. The disks appearto be O "scaled-up"versionsofnearbyspiralgalaxies: theyhaveEW(Hα)∼100Å outtothesolarorbitandtheyhave C starformationsurfacedensitiesabovethethresholdfordrivinggalacticscalewinds. . Subjectheadings:galaxies: evolution—galaxies: formation—galaxies: high-redshift—galaxies: structure h —galaxies:kinematicsanddynamics—galaxies:starformation p - o 1. INTRODUCTION pact dispersion-dominatedobjects (e.g., Genzel et al. 2008; r t Shapiro et al. 2008; Cresci et al. 2009; Förster Schreiber s Galaxy formation is a complex process, involving star- a bursts, mergers, and strong gas flows (e.g., Hopkins et al. etal. 2009;Lawetal. 2009;Jonesetal. 2010;Mancinietal. [ 2006; Brookset al. 2009; Dekel et al. 2009). Furthermore, 2011). stellarmigrationandsecularprocessescanchangethestruc- Some studies claim that there are trends in the structural 1 properties of Hα as a function of redshift implying that the v tureofgalaxiesatlatetimes(e.g.,Roškaretal. 2008;Grand, way galaxies assemble their stars varies fundamentally as a 0 Kawata, & Cropper2012). Therefore,evenif we couldper- functionofcosmictime.Inparticular,Epinatetal.(2009)and 2 fectly locate and age date every star in the Milky Way, we Kassinetal. (2012)suggestthatgalaxiesbecomecoolerand 3 still couldn’t say where and with what structural and kine- morerotation-dominatedwithtime,z∼1- 0beingtheepoch 0 matic propertiesthose stars formed. The only way to estab- of“disksettling”.Thisisinterestingbecausemostofthestars . lishwhereagalaxy’sstarsformed,andhencehowitwasas- 1 inthedisksofgalaxiesliketheMilkyWaywereformedinthis sembled, is to mapthe star formationwhile those stars were 0 epoch. forming. 3 Itisnowpossibletoobtainhighspatialresolution(.1kpc) ObtainingHα andstellarcontinuummapsofz≥1galax- 1 ies, with the ∼1kpc resolution necessary to put constraints informationonHα emissionatz∼1withahighStrehlratio, : v on the spatial distribution of star formation, is challenging owing to the near-IR slitless spectroscopic capabilities pro- i and has so far only been possible using a combination of vided by the WFC3 camera on the Hubble Space Telescope X (HST).InNelsonetal. (2012)we useddatatakenaspartof adaptiveopticsandintegralfieldunits(IFUs)on8–10mclass r the3D-HSTsurveytobuildonpreviousground-basedstudies telescopes. These studies painta complexpicture: they find a that star forming galaxies at z ∼ 2 are a mix of “puffy” bymappingthe Hα and stellar continuumwith highresolu- tionforasampleof57galaxiesatz∼1andshowedthatstar and often clumpy rotating disks, mergers, and more com- formationbroadlyfollowsthe rest-frameopticallight, butis slightlymoreextended. HerewestacktheHαmapsofthese 1AstronomyDepartment,YaleUniversity,NewHaven,CT06511,USA galaxies to construct high signal-to-noise ratio (S/N) radial 2European Southern Observatory, Alonson deCórdova 3107, Casilla profiles and measure structural parameters of stellar contin- 19001,Vitacura,Santiago,Chile uumemissionandstarformation. Theseunique,highspatial 3DepartmentofAstronomy,UniversityofWisconsin-Madison, Madi- resolutiondata from 3D-HST are combinedwith kinematics son,WI53706,USA 4AstrophysicsScienceDivision,GoddardSpaceFlightCenter,Green- from the Near Infrared Spectrometer (NIRSPEC) on the W. belt,MD20771,USA M.Kecktelescope(McLeanetal. 1998)WeassumeH0=70 He5idMelabxerPg,laGncekrmIannsytituteforAstronomy(MPIA),Königstuhl17,69117, kms- 1Mpc- 1,ΩM=0.3,andΩΛ=0.7. 6Max-Planck-InstitutfürextraterrestrischePhysik,Giessenbachstrasse, D-85748Garching,Germany 2. 3D-HSTANDSAMPLESELECTION 7LeidenObservatory,LeidenUniversity,Leiden,TheNetherlands The 3D-HSTsurvey, a 248-orbitTreasuryprogramon the 8Department of Astronomy, University of California, Berkeley, CA HubbleSpaceTelescope,suppliesthe2Demissionlinemaps 94720,USA 9DepartmentofPhysics,UniversityofCalifornia, SantaBarbara, CA needed to measure the spatial distribution of star formation. 93106,USA TheWFC3G141grismprovidesspatiallyresolvedspectraof 2 Nelsonetal. etal. 2007;Daddietal. 2007;Whitakeretal. 2012). These galaxieswereselectedinHα notIR;whilethisselectionmay biasthesample,itmaypossiblyalsohavetheadvantagethat itaddslessuncertaintytointerpretingthespatialdistribution ofstarformationduetodustextinction. 3. THESPATIALDISTRIBUTIONOFSTAR FORMATION 3.1. StackedHαandStellarContinuumEmission We stack the high spatial resolution Hα maps from 3D- HST to create average Hα maps – increasing the S/N and providingfor a reliable measurementof the structural prop- erties of Hα to large radii for this sample at z∼1. We di- vide the sample in three bins based on their Hα size10 in order to homogenize the sample and investigate trends with size.11 Themedianstellarmassesofthestacksarelog(M )= ∗ 10.0,10.2,10.2.ThegalaxiesarenormalizedbytheirF140W flux and centered according to their luminosity-weighted F140Wimagecenters. Wemaskedthe[S II]λλ6716,6731Å emissioninthefit. Atourspectralresolution,theFWHMofa lineis∼100Å,meaningthatHαλ6563Å and[N II]λ6583Å areunresolvedbutHα and[S II]areseparatedby∼3resolu- tionelements.WerotatedtheimagesbasedontheirGALFIT- FIG.1.— LocationofselectedgalaxiesintheSFR-Massplane.Sixsources derivedF140Wpositionanglestoalignthemalongtheirma- withoutIRphotometryarenotshowninthefigure.Thehistogramshowsthe joraxes,summedthem,anddividedtheresultingstackbythe positionoftheselectedgalaxiesrelativetotherestofthegalaxiesbydividing summedmasks. Finally,inordertocorrectfortheeffectsof apowerlawfitoutofthedistribution.Thepurplelineshowsthefit,thelight purpleregiondelineates±1σ. Theselectedgalaxiesappeartolielargelyon thePSF,thestacksweredeconvolvedbyaddingtheGALFIT- theupperhalfofthe‘mainsequence’inSFR(IR+UV). derivedPSF-deconvolvedmodel to the residualsof the fit, a methoddevelopedinSzomoruetal. (2010). all sources in the field. The wavelength range of the G141 Figs.2 and 3 show the stacked, PSF-corrected Hα emis- grism, 1.15µm<λ<1.65µm, covers the Hα emission line sion. The S/N in the stacks is high, and the emission is for galaxiesin the redshiftrange 0.7<z<1.5. The survey clearly spatially extended. Furthermore, both the rest-frame alsoprovidesbroad-bandnear-infraredimagingintheF140W R-band and Hα maps are clearly elongated. We quan- filter, whichsamplesthe rest-frameR bandforz∼1. Using tified the structural properties of the stacks with GALFIT the same camera underthe same conditionsto map the both (Peng et al. 2002) using empirical PSFs. For the contin- Hα andcontinuumemissionallowsustocomparetheirdis- uumand Hα we find weightedmean axis ratiosof b/a(R)= tributions directly, a crucial advantage of this strategy. The 0.55±0.07andb/a(Hα)=0.58±0.09respectively,consistent mapshaveaspatialsamplingof∼0.5kpcatz∼1(0.′′06pix- withexpectationsforrandomlyorienteddiskswiththickness els). The data presentedin this paperare basedon the ∼70 c/a=0.26,0.33. Thisthicknesscouldbeattributedtodisksbe- pointings,roughlyhalfofthefulldataset,thatwereobtained ingintrinsicallythickatz∼1,heterogeneouspropertiesofthe priortoJune2011seeNelsonetal. (2012). Thesurvey,data galaxiesbeingstacked,theeffectofbulges,aselectionbiased reduction, and determinationof derivedquantities(e.g. red- towardface-ongalaxies,ornoise. shiftsandmasses)aredescribedinBrammeretal. (2012)and 3.2. RadialProfilesareNearlyExponential vanDokkumetal. (2011). Fig.3showstheradialprofilesderivedfromthestacks. Ra- The 3D-HST grism spectra have high spatial resolution and low spectral resolution (R ∼ 130) meaning that emis- dialprofilesofthePSF-correctedstackswerecreatedbysum- mingthefluxinellipticalradii.A30%correctionwasapplied sionlinestructurereflectsalmostexclusivelyspatialstructure (morphology) in contrast to data with high spectral resolu- toaccountfor[N II](see§4). Alluncertaintieswerederived bybootstrapresamplingthestacks. tionwherestructurereflectsvelocity(rotationordispersion). The Hα emission ranges from exponential to much less Emission line maps of galaxies are made by subtracting the centrally concentrated than exponential. The stellar contin- continuumemissionfromthetwo-dimensionalspectrum.The uumemissioninallthestacksisnearlyexponential. detailsoftheprocedurearedescribedin(Nelsonetal. 2012; Theradialequivalentwidthprofiles(rightpanelsofFig.3) Lundgrenetal. 2012;Schmidtetal. 2012submitted) We selected galaxies with redshifts 0.8 < z < 1.3, total are flat to within a factor of two and EW(Hα)>100Å for F140W AB magnitude < 21.9, and rest-frame EW(Hα)> all stacks within 1.5re. This suggests that the high global EW(Hα)sseen in these galaxiesare notdrivenprimarilyby 100Å.Wealsolimitedthesampletogalaxieswitheffectively centralstarburstsbutbystrongstarformationatallradii. no contaminating flux from the spectra of other nearby ob- The derived Sérsic indices (Fig.2) of the Hα and stellar jects. Thepositionofthesampleinthe0.8<z<1.3starfor- continuumprofilesaren(Hα)=1.2±0.6,0.9±0.1,n(Hα)<1 mationrate(SFR)–stellarmassplaneisshowninFig.1. Star formationrateswere derivedfromthe IR+ UV luminosities 10ThesizesaremeasuredusinggrowthcurvesasdescribedinNelsonetal. asdescribedinWhitakeretal. (2012). Theselectedgalaxies (2012) liepredominantlyontheupperhalfofthe‘star-formingmain 11 The results are similar when the bins are defined according to the sequence’(asshowninthehistogramofFig1)(e.g. Noeske F140Wsizes. RadialDistributionofStarFormationatz∼1 3 Ha Line Emission N =10 N =35 N = 9 s stack stack stack ck r(Ha )=1.2– 0.1 r(Ha )=3.7– 0.2 r(Ha )=6.3– 1.8 a e e e t S d e v ol s e R - y all ti a Sp b/a=0.50– 0.05 n(Ha )=1.2– 0.6 b/a=0.60– 0.06 n(Ha )=0.9– 0.1 b/a=0.61– 0.13 n(Ha ) < 1.0 ] 2 c p k1.00 / r y / ⊙ M [0.10 ) R F S ( Σ 0.01 −10 −5 0 5 10 −10 −5 0 5 10 −10 −5 0 5 10 r [kpc] r [kpc] r [kpc] FIG.2.—Stacksofthehighspatialresolution, PSF-corrected mapsofHα emission(top). StackingwasdonebasedonHα size; thenumberofgalaxies includedineachsizebinislisted(Nstack)asisthemajoraxiseffectiveradius(inkpc)ofeachstackmeasuredbygalfit(re). Thestackshaveaweightedmean Sérsicindexn(Hα)∼1andaxisratioofb/a(Hα)=0.58±0.09,consistentwithdisksatrandomorientationangles. Bottompanelsshowcorrespondingradial profileswithdarkpurple–small,mediumpurple–mid-sized,lightpurple–large(Fig.3,§3.2).ThestackedHαemissionalwayshasSérsicindexn.1. andn(F140W)=1.8±0.4,1.4±0.1,1.1±0.2withweighted Thecolorprofileisdeterminedfromthecombinationofthe means of n(Hα)=1.0±0.4 and n(F140W)=1.4±0.2. As F140W stacks with ACS F814W stacks, which can be con- shown in van Dokkum et al. (2010), structural parameters vertedinto rest-frameU- V color profiles. As shown in the measured from stacks are close to the mean values for the leftpanelofFig.4,formostoftheradialextentofthestacks individual galaxies going into the stacks. The upper limit thecolorisfairlyconstant,butitbecomesredderinsideara- of n(Hα)<1 for the largest Hα stack reflects the fact that dius of 2kpc (see also Szomoru et al. 2012). To estimate thederivedn(Hα)dependssomewhatonthedetailsofthefit roughly how color translates into missed star formation, we (treatmentofsky,fittingregion)butalwaysn(Hα)<1. assumethatthestarformationthatisnotcapturedbyHα will We find that the stacked spatial distribution of Hα for becapturedbytheIR(Kennicuttetal.2009).Usingphotome- galaxiesinthissampleisexponentialorshallower. Allstacks tryfromSkeltonetal.(2013)inprep,inadditiontorest-frame have n<2, implyinga bulgefractionof less than 20%(van U-VcolorsandIR-basedSFRsfromtheNEWFIRMMedium Dokkum et al. 1998). The radial Hα profiles (Fig.3, left), BandSurvey(NMBS, Whitakeretal. 2012),empiricalrela- seem to show a trend toward lower n(Hα) with increasing tionswerederivedforthetranslationofrest-frameU-Vcolors size. However,thistrendisnotstatistically significantgiven intostarformationcorrections: theerrorsinthederivedSérsicindices.Additionally,notethat log(SFR(IR+Hα))- log(SFR(Hα))∼0.3×(U- V) (1) themediangalaxywithEW(Hα)>100Åhasahighenough star formation surface density to drive winds out to ∼ 1re The dust-corrected radial profiles are shown in the right (Heckman2002). panel of Fig 4. The smallest galaxies appear to have star formationwhichismarginallysteeperthanexponential. The 3.3. EffectsofDust large galaxies have the largest radial gradients but their im- A major uncertainty in the interpretationof the radial Hα plied star formation is still less steep than exponential. Al- profile is the effect of differential dust extinction: if some thoughthisanalysisassignstheentireobservedcolorgradient partsof the galaxiesare moreobscuredthan others(see e.g. toextinction,thecentersoftheradialcolorprofilescouldbe Wuytsetal.2012),thederivedradialprofileofHα wouldnot redbecauseofdustorage. Importantly,theSérsicindicesof reflect the radial profile of star formation. To assess the im- the star formation in these stacks based on the implied dust portanceofthiseffect,weestimatetheextinctionasafunction correctionremain close to one – n=1.4,1.1,0.6for each of of radius. We determinethe extinctionfromthe radialcolor thestacks, weightedmean=1.0±0.4So, evenwhenaccount- profile. ingfordust,theaveragedstarformationinthesegalaxieshas 4 Nelsonetal. FIG.3.— Thestacks ofHα (left) andrest-frame R-band(middle) emissionhave nearly exponential (orshallower) radial profiles. TheEW(Hα)profile (discussedin§3.2)isshownintherightpanel. Thebottompanelsshowtheprofilesnormalizedbytheireffectiveradius. ThehorizontallineistheSFRsurface densitycriterionfordrivinglarge-scaleoutflows(Heckman2002)AsinFig.2,thedark,medium,andlightcolorscorrespondtothesmall,medium,andlarge stacksrespectivelyasshownatthetop.ThespatialdistributionofHαemissionisexponentialorshallower. anearlyexponentialspatialdistribution. be the velocity differencebetween the geometricalcenter of thegalaxyandthemaximumvelocity.Wecorrecttherotation 4. KINEMATICS velocitiesforinclinationangleusingthe3D-HSTaxisratios. TheflatteningofthestacksandtheexponentialHαprofiles Wecalculateonedimensionalvelocitydispersionsbyfittinga suggest that the star formation occurs in rotating disks. To gaussiantotheHαemissioninthecentralrowofeachspec- test this, we measured kinematics for a subset of this sam- trum. Wecalculatetheinstrumentalσ tobe∼80km/sbyfit- ple using NIRSPEC on the Keck II telescope on April9-10, tingagaussiantotheskylines. Theintrinsicvelocitydisper- 2012. The samplecompriseseightgalaxieschosenfromthe sion is calculated by subtracting the instrumental dispersion small (1), middle (5), and large (2) stack, which have sizes, fromthemeasureddispersioninquadrature. masses, Sérsic indices, star formation rates, and axis ratios We find that all galaxies show velocity shear in their two representativeofthesampleasawhole. dimensional spectra, with derived rotation velocities of 90– We used the low dispersion mode of NIRSPEC with 0.5" 235km/suncorrectedand110–330km/s correctedfor incli- seeing and a slit width of 0.7", giving a spectral resolution nation.12 Fig.5 shows the rotation curves for one example ofσ∼80km/sintheJ band(comparedto∼500km/sinthe galaxy for each stack. These spectra are of the best quality grism spectra). The slit was aligned alongthe major axis of butappeartoberepresentativeoftheeight. Thevelocitypro- each galaxy and observations were conducted in a series of fileofthesmallestgalaxyinFig.3doesnotshowevidencefor four900sexposures,ditheringalongtheslit. Thedatareduc- aturnover,whichmeansthemeasuredmaximumvelocityisa tion followed standard proceduresfor long slit spectroscopy lowerlimitontherotationvelocityatlargeradii.Weconclude (see, e.g., van Dokkum et al. 2004). We extracted kine- thatthekinematicsareconsistentwiththediskinterpretation matic information from the two dimensional spectra by fit- of the structural properties of the Hα emission. Although tingagaussiantotheHα and[NII]emissionsimultaneously different classification methods make it difficult to perform ateachspatialpositionalongthe slit. The median[NII]/Hα is 0.3. Assuming the velocity shear in the two dimensional 12Measuredvelocitydispersionsarealsorelativelyhigh,butaredifficult spectra is due to rotation, we take the rotational velocity to tointerpretgiventhelowspatialresolutionoftheKeckspectra. RadialDistributionofStarFormationatz∼1 5 2.5 2] 10.00 c p 2.0 /k r y r / o ⊙ Col1.5 [M 1.00 V y U- sit n d e e1.0 D v eri ce 0.10 D a f r u 0.5 S R F S 0.01 0.0 0 2 4 6 8 10 12 0 2 4 6 8 10 12 r [kpc] r [kpc] FIG.4.—Theleftpanelshowstheradialcolorprofilesforeachofthestackswithblackforthesmallstack,darkgrayforthemediumstack,andlightgrayfor thelargestack.TherightpanelshowstheimplieddustcorrectedradialprofilesofstarformationsurfacedensitywiththecolorsasinFig.2and3.Errorbaron therightpaneldenotesatypicaluncertainty.Dust-correctedradialprofilesofstarformationremainnearlyexponential. a quantitative comparison, our results are qualitatively con- sion.(e.g.,vandenBosch2001;DeBuhr,Ma,&White2012; sistent with the finding that a large fraction of star-forming Forbes,Krumholz,&Burkert2012) galaxiesatz∼1appeartoberotating. (e.g.,Wisnioskietal. Wealsonotethesomewhatsurprisingpresenceofapopula- 2011;Epinatetal. 2012;Swinbanketal. 2012). tionoflarge,rapidly-rotatingdiskswithrelativelylowstellar masses at z∼1. These galaxieshave mean r (Hα)=7.3kpc, e 5. DISCUSSION v=240km/s, σ = 89km/s, and M∗ = 2.2×1010M⊙, mean- ing they are disks 8Gyr ago, larger in size than the Milky The central result of this paper is that the radial distribu- Way(Drimmel&Spergel2001)andthicker(Freeman1987), tionofstackedHα emissioninz∼1galaxiesisclosetoex- with ∼1/3 of the stellar mass (McMillan2011)and similar ponential out to ∼ 10 kpc. Combined with the axis ratios or higher maximum rotation velocities (Bovy, Hogg, & Rix of the stacks and the kinematics of a subset of the sample, 2009). Both what these galaxies become in the local uni- the most straightforwardinterpretationis that star formation verse and how such extended star forming disks were made seemstypicallytooccurindisksatz∼1atleastforgalaxies inan epochofhighdisk turbulenceareopenquestions. The with high EW(Hα). The factor of ∼10 increase in the star smalldisksontheotherendofthesizedistributionarealsoof formation rates of galaxies from z=0 to z=1 (e.g., Damen interest. With median re(Hα)=1.9kpc, re(R)=2.1kpc, M∗ = et al. 2009; Fumagalli et al. 2012) is apparently driven by 8.9×109M⊙,andstackedn(Hα)=1.2,theymorecloselyre- increasedstar formationactivity in disks rather than a much semble compactversionsof disky star formersthan merger- greaterprevalenceof merger-drivencentralstarbursts– con- drivenstarformationinspheroids(seealsovanderWeletal. sistentwithotherstudies(e.g.,Rodighieroetal. 2011;Wuyts (2011).) etal. 2011,2012). There are several caveats. First, our sample is not com- Thisresultraisesanumberofquestions.First,itisnotclear pleteinmassorinSFR(UV+IR).Infuturepapers(usingthe howthesegalaxiesarerelatedtoz∼0galaxies. Anaverage full3D-HSTsurvey)wewillstudythedistributionofstarfor- galaxy in this sample has a distribution of stars with a Sér- mationasa functionoftheseparameters. Second,thedistri- sic index of n=1.4. If this average galaxy formsstars with butionofstarformationinthestacksisnotnecessarilyrepre- n=1.0,itwillhavealowerSérsicindexatlatertimes. Either sentativeofindividualgalaxies.Inindividualgalaxiesthestar we arewitnessing thebuildupof onlythe latestof late-type formationis clumpy(e.g. Genzel et al. 2008, 2011; Förster galaxies;thesegalaxiessubstantiallychangewheretheirstar Schreiber et al. 2009; Nelson et al. 2012, Fig.1) and it is formationisoccurringbetweenz∼1andz∼0;ortheirstars, difficulttoquantifythestructure. Stackingtheseclumpyob- onceformed, mustmigrateinto a differentconfiguration. In jectscouldbehazardous,butitmayalsoprovidemoreinsight otherwords, if theseare theancestorsoftypicalz∼0 spiral thancan begleanedfromindividualgalaxies: assumingthat galaxies,theirbulgesneedtobebuiltinsomewaybesidesthe theclumpsaretransientand“lightup”apartoftheunderly- starformationweareseeing. Thiscouldbeaccomplishedby ing gas disk for a short time (as in e.g. Wuyts et al. 2012), mergersor secular evolution (e.g., Bournaud, Elmegreen, & our stacking technique effectively produces a time-averaged Martig2009;Ellison etal. 2011). Theseobservationscould mapofthestarformationinthegalaxies. Finally,dustatten- beunderstoodinthecontextofthefollowingpicture:atz>1, uationremainsakeyuncertainty,bothintheselectionandin disks are gas-rich and turbulent. As redshift decreases, the theinterpretationoftheprofiles. Thiscanbeaddressedwith gasfractiondecreases,andabarinstabilitygrows,increasing mapsof the IR emission at the fullALMA resolution, or by thecentralconcentrationandcentralverticalvelocitydisper- 6 Nelsonetal. FIG.5.—Shownherearetherotationcurves(middlerow)derivedfromtheNIRSPECspectra(insetsincorners),oneexamplefromeachstackwiththeimplied rotationvelocities(vcorr–correctedandvuncorr–uncorrectedforinclination)andvelocitydispersion(σ)listedinkm/s.Thetoprowshowsthecorresponding rest-frameR-bandimagesandthebottomrowshowsafalsecolorimagewiththeHα emissioninredandstellarcontinuuminblue.Intheserows,ellipsesmark theR-bandandHα effectiveradii(re(R),re(Hα))respectivelyandgrayarrowshaveascaledlengthcorrespondingtotheprojectedspecificangularmomentum. measuring(spatially-resolved)Balmerdecrements. acknowledged. Wethanktherefereeforathoroughreportwhichimproved . the paper. Support from grant HST GO-12177 is gratefully REFERENCES Bournaud,F.,Elmegreen,B.G.,&Martig,M.2009,ApJ,707,1 Ellison,S.L.,Patton,D.R.,Nair,P.,Simard,L.,Mendel,J.T.,McConnachie, Bovy,J.,Hogg,D.W.,&Rix,H.-W.2009,ApJ,704,1704 A. W., & Scudder, J. M. 2011, in IAU Symposium, Vol. 277, IAU Brammer,G.B.,etal.2012,eprintarXiv:1206.1867,200,13 Symposium,ed.C.Carignan,F.Combes,&K.C.Freeman,178–181 Brooks,A.M.,Governato,F.,Quinn,T.,Brook,C.B.,&Wadsley,J.2009, Epinat,B.,etal.2009,AstronomyandAstrophysics,504,789 TheAstrophysicalJournal,694,396 Epinat,B.,etal.2012,AstronomyandAstrophysics,539,A92 Forbes,J.,Krumholz,M.,&Burkert,A.2012,ApJ,754,48 Cresci,G.,etal.2009,TheAstrophysicalJournal,697,115 FörsterSchreiber,N.M.,etal.2009,ApJ,706,1364 Daddi,E.,etal.2007,ApJ,670,156 Förster Schreiber, N. M., Shapley, A. E., Erb, D. K., Genzel, R., Steidel, Damen, M., Labbé, I., Franx, M., van Dokkum, P. G., Taylor, E. N., & C.C.,Bouché,N.,Cresci,G.,&Davies,R.2011,ApJ,731,65 Gawiser,E.J.2009,ApJ,690,937 Freeman,K.C.1987,ARA&A,25,603 DeBuhr,J.,Ma,C.-P.,&White,S.D.M.2012,MNRAS,426,938 Fumagalli,M.,etal.2012,eprintarXiv:1206.1867,757,L22 Dekel,A.,Sari,R.,&Ceverino,D.2009,ApJ,703,785 Genzel,R.,etal.2008,ApJ,687,59 Drimmel,R.,&Spergel,D.N.2001,TheAstrophysicalJournal,556,181 Genzel,R.,etal.2011,ApJ,733,101 RadialDistributionofStarFormationatz∼1 7 Grand,R.J.J.,Kawata, D.,&Cropper, M.2012,eprint arXiv:1206.1867, Rodighiero,G.,etal.2011,ApJ,739,L40 421,1529 Roškar,R.,Debattista,V.P.,Quinn,T.R.,Stinson,G.S.,&Wadsley,J.2008, Heckman,T.M.2002,ExtragalacticGasatLowRedshift,254,292 TheAstrophysicalJournal,684,L79 Hopkins, P. F., Hernquist, L.,Cox, T. J., Di Matteo, T., Robertson, B., & Shapiro,K.L.,etal.2008,ApJ,682,231 Springel,V.2006,ApJS,163,1 Swinbank,M.,Smail,I.,Sobral,D.,Theuns,T.,Best,P.,&Geach,J.2012, Jones,T.A.,Swinbank,A.M.,Ellis,R.S.,Richard,J.,&Stark,D.P.2010, arXiv:1209:1395 MNRAS,404,1247 Szomoru,D.,etal.2010,eprintarXiv:1206.1867,714,L244 Kassin,S.A.,Weiner,B.,Faber,S.M.,etal.2012,ApJ,758,106 Szomoru,D.,Franx,M.,vanDokkum,P.G.,Trenti,M.,Illingworth,G.D., Labbe,I.,&Oesch,P.2012,arXiv:1208:4363 Kennicutt,R.C.,etal.2009,TheAstrophysicalJournal,703,1672 van den Bosch, F. C. 2001, Monthly Notices of the Royal Astronomical Law,D.R.,Steidel, C.C.,Erb,D.K.,Larkin, J.E.,Pettini, M.,Shapley, Society,327,1334 A.E.,&Wright,S.A.2009,ApJ,697,2057 vanderWel,A.,etal.2011,TheAstrophysicalJournal,742,111 Lundgren,B.F.,etal.2012,ApJ,760,49 vanDokkum,P.G.,Franx,M.,Kelson,D.D.,Illingworth,G.D.,Fisher,D., Mancini,C.,etal.2011,TheAstrophysicalJournal,743,86 &Fabricant,D.1998,TheAstrophysicalJournal,500,714 McLean, I. S., et al. 1998, in Society of Photo-Optical Instrumentation vanDokkum,P.G.,etal.2004,TheAstrophysicalJournal,611,703 Engineers(SPIE)ConferenceSeries,Vol.3354,SocietyofPhoto-Optical vanDokkum,P.G.,etal.2010,ApJ,709,1018 Instrumentation Engineers(SPIE)Conference Series,ed.A.M.Fowler, vanDokkum,P.G.,etal.2011,ApJ,743,L15 566–578 Whitaker,K.E.,vanDokkum,P.G.,Brammer,G.,&Franx,M.2012,ApJ, McMillan,P.J.2011,MNRAS,414,2446 754,L29 Nelson,E.J.,etal.2012,ApJ,747,L28 Wisnioski, E., et al. 2011, Monthly Notices of the Royal Astronomical Noeske,K.G.,etal.2007,ApJ,660,L43 Society,417,2601 Peng,C.Y.,Ho,L.C.,Impey,C.D.,&Rix,H.-W.2002,TheAstronomical Wuyts,S.,etal.2012,ApJ,753,114 Journal,124,266 Wuyts,S.,etal.2011,ApJ,742,96

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.