ebook img

The quest for artificial intelligence : a history of ideas and achievements PDF

707 Pages·2009·8.185 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The quest for artificial intelligence : a history of ideas and achievements

0.0 THE QUEST FOR ARTIFICIAL INTELLIGENCE A HISTORY OF IDEAS AND ACHIEVEMENTS Web Version Print version published by Cambridge University Press http://www.cambridge.org/us/0521122937 1 Nils J. Nilsson Stanford University 0 For Grace McConnell Abbott, my wife and best friend 2 0.0 Contents I Beginnings 17 1 Dreams and Dreamers 19 2 Clues 27 2.1 From Philosophy and Logic . . . . . . . . . . . . . . . . . . . . . 27 2.2 From Life Itself . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.1 Neurons and the Brain . . . . . . . . . . . . . . . . . . . . 34 2.2.2 Psychology and Cognitive Science . . . . . . . . . . . . . 37 2.2.3 Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.2.4 Development and Maturation . . . . . . . . . . . . . . . . 45 2.2.5 Bionics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.3 From Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.3.1 Automata, Sensing, and Feedback . . . . . . . . . . . . . 46 2.3.2 Statistics and Probability . . . . . . . . . . . . . . . . . . 52 2.3.3 The Computer . . . . . . . . . . . . . . . . . . . . . . . . 53 II Early Explorations: 1950s and 1960s 71 3 Gatherings 73 3.1 Session on Learning Machines . . . . . . . . . . . . . . . . . . . . 73 3.2 The Dartmouth Summer Project . . . . . . . . . . . . . . . . . . 77 3 3.3 Mechanization of Thought Processes . . . . . . . . . . . . . . . . 81 4 Pattern Recognition 89 0 CONTENTS 4.1 Character Recognition . . . . . . . . . . . . . . . . . . . . . . . . 90 4.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.2.1 Perceptrons . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.2.2 ADALINES and MADALINES . . . . . . . . . . . . . . . 98 4.2.3 The MINOS Systems at SRI . . . . . . . . . . . . . . . . 98 4.3 Statistical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.4 Applications of Pattern Recognition to Aerial Reconnaissance . . 105 5 Early Heuristic Programs 113 5.1 The Logic Theorist and Heuristic Search . . . . . . . . . . . . . . 113 5.2 Proving Theorems in Geometry . . . . . . . . . . . . . . . . . . . 118 5.3 The General Problem Solver . . . . . . . . . . . . . . . . . . . . . 121 5.4 Game-Playing Programs . . . . . . . . . . . . . . . . . . . . . . . 123 6 Semantic Representations 131 6.1 Solving Geometric Analogy Problems. . . . . . . . . . . . . . . . 131 6.2 Storing Information and Answering Questions . . . . . . . . . . . 134 6.3 Semantic Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 136 7 Natural Language Processing 141 7.1 Linguistic Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 7.2 Machine Translation . . . . . . . . . . . . . . . . . . . . . . . . . 146 7.3 Question Answering . . . . . . . . . . . . . . . . . . . . . . . . . 150 8 1960s’ Infrastructure 155 8.1 Programming Languages . . . . . . . . . . . . . . . . . . . . . . . 155 8.2 Early AI Laboratories . . . . . . . . . . . . . . . . . . . . . . . . 157 8.3 Research Support . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 8.4 All Dressed Up and Places to Go . . . . . . . . . . . . . . . . . . 163 III Efflorescence: Mid-1960s to Mid-1970s 167 9 Computer Vision 169 9.1 Hints from Biology . . . . . . . . . . . . . . . . . . . . . . . . . . 171 4 0.0 CONTENTS 9.2 Recognizing Faces . . . . . . . . . . . . . . . . . . . . . . . . . . 172 9.3 Computer Vision of Three-Dimensional Solid Objects . . . . . . 173 9.3.1 An Early Vision System . . . . . . . . . . . . . . . . . . . 173 9.3.2 The “Summer Vision Project” . . . . . . . . . . . . . . . 175 9.3.3 Image Filtering . . . . . . . . . . . . . . . . . . . . . . . . 176 9.3.4 Processing Line Drawings . . . . . . . . . . . . . . . . . . 181 10 “Hand–Eye” Research 189 10.1 At MIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 10.2 At Stanford . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 10.3 In Japan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 10.4 Edinburgh’s “FREDDY” . . . . . . . . . . . . . . . . . . . . . . . 193 11 Knowledge Representation and Reasoning 199 11.1 Deductions in Symbolic Logic . . . . . . . . . . . . . . . . . . . . 200 11.2 The Situation Calculus . . . . . . . . . . . . . . . . . . . . . . . . 202 11.3 Logic Programming . . . . . . . . . . . . . . . . . . . . . . . . . 203 11.4 Semantic Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 205 11.5 Scripts and Frames . . . . . . . . . . . . . . . . . . . . . . . . . . 207 12 Mobile Robots 213 12.1 Shakey, the SRI Robot . . . . . . . . . . . . . . . . . . . . . . . . 213 12.1.1 A∗: A New Heuristic Search Method . . . . . . . . . . . . 216 12.1.2 Robust Action Execution . . . . . . . . . . . . . . . . . . 221 12.1.3 STRIPS: A New Planning Method . . . . . . . . . . . . . 222 12.1.4 Learning and Executing Plans . . . . . . . . . . . . . . . 224 12.1.5 Shakey’s Vision Routines . . . . . . . . . . . . . . . . . . 224 12.1.6 Some Experiments with Shakey . . . . . . . . . . . . . . . 228 12.1.7 Shakey Runs into Funding Troubles . . . . . . . . . . . . 229 12.2 The Stanford Cart . . . . . . . . . . . . . . . . . . . . . . . . . . 231 5 13 Progress in Natural Language Processing 237 13.1 Machine Translation . . . . . . . . . . . . . . . . . . . . . . . . . 237 13.2 Understanding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 0 CONTENTS 13.2.1 SHRDLU . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 13.2.2 LUNAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 13.2.3 Augmented Transition Networks . . . . . . . . . . . . . . 244 13.2.4 GUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 14 Game Playing 251 15 The Dendral Project 255 16 Conferences, Books, and Funding 261 IV Applications and Specializations: 1970s to Early 1980s 265 17 Speech Recognition and Understanding Systems 267 17.1 Speech Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 267 17.2 The Speech Understanding Study Group . . . . . . . . . . . . . . 270 17.3 The DARPA Speech Understanding Research Program . . . . . . 271 17.3.1 Work at BBN . . . . . . . . . . . . . . . . . . . . . . . . . 271 17.3.2 Work at CMU . . . . . . . . . . . . . . . . . . . . . . . . 272 17.3.3 Summary and Impact of the SUR Program . . . . . . . . 280 17.4 Subsequent Work in Speech Recognition . . . . . . . . . . . . . . 281 18 Consulting Systems 285 18.1 The SRI Computer-Based Consultant . . . . . . . . . . . . . . . 285 18.2 Expert Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 18.2.1 MYCIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 18.2.2 PROSPECTOR . . . . . . . . . . . . . . . . . . . . . . . . . 295 18.2.3 Other Expert Systems . . . . . . . . . . . . . . . . . . . . 300 18.2.4 Expert Companies . . . . . . . . . . . . . . . . . . . . . . 303 19 Understanding Queries and Signals 309 19.1 The Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 19.2 Natural Language Access to Computer Systems . . . . . . . . . . 313 19.2.1 LIFER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 6 0.0 CONTENTS 19.2.2 CHAT-80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 19.2.3 Transportable Natural Language Query Systems . . . . . 318 19.3 HASP/SIAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 20 Progress in Computer Vision 327 20.1 Beyond Line-Finding . . . . . . . . . . . . . . . . . . . . . . . . . 327 20.1.1 Shape from Shading . . . . . . . . . . . . . . . . . . . . . 327 20.1.2 The 21-D Sketch . . . . . . . . . . . . . . . . . . . . . . . 329 2 20.1.3 Intrinsic Images. . . . . . . . . . . . . . . . . . . . . . . . 329 20.2 Finding Objects in Scenes . . . . . . . . . . . . . . . . . . . . . . 333 20.2.1 Reasoning about Scenes . . . . . . . . . . . . . . . . . . . 333 20.2.2 Using Templates and Models . . . . . . . . . . . . . . . . 335 20.3 DARPA’s Image Understanding Program . . . . . . . . . . . . . 338 21 Boomtimes 343 V “New-Generation” Projects 347 22 The Japanese Create a Stir 349 22.1 The Fifth-Generation Computer Systems Project . . . . . . . . . 349 22.2 Some Impacts of the Japanese Project . . . . . . . . . . . . . . . 354 22.2.1 The Microelectronics and Computer Technology Corpo- ration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 22.2.2 The Alvey Program . . . . . . . . . . . . . . . . . . . . . 355 22.2.3 ESPRIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 23 DARPA’s Strategic Computing Program 359 23.1 The Strategic Computing Plan . . . . . . . . . . . . . . . . . . . 359 23.2 Major Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362 23.2.1 The Pilot’s Associate. . . . . . . . . . . . . . . . . . . . . 363 23.2.2 Battle Management Systems . . . . . . . . . . . . . . . . 364 7 23.2.3 Autonomous Vehicles . . . . . . . . . . . . . . . . . . . . 366 23.3 AI Technology Base . . . . . . . . . . . . . . . . . . . . . . . . . 369 23.3.1 Computer Vision . . . . . . . . . . . . . . . . . . . . . . . 370 0 CONTENTS 23.3.2 Speech Recognition and Natural Language Processing . . 370 23.3.3 Expert Systems . . . . . . . . . . . . . . . . . . . . . . . . 372 23.4 Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 VI Entr’acte 379 24 Speed Bumps 381 24.1 Opinions from Various Onlookers . . . . . . . . . . . . . . . . . . 381 24.1.1 The Mind Is Not a Machine . . . . . . . . . . . . . . . . . 381 24.1.2 The Mind Is Not a Computer . . . . . . . . . . . . . . . . 383 24.1.3 Differences between Brains and Computers . . . . . . . . 392 24.1.4 But Should We? . . . . . . . . . . . . . . . . . . . . . . . 393 24.1.5 Other Opinions . . . . . . . . . . . . . . . . . . . . . . . . 398 24.2 Problems of Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . 399 24.2.1 The Combinatorial Explosion . . . . . . . . . . . . . . . . 399 24.2.2 Complexity Theory . . . . . . . . . . . . . . . . . . . . . . 401 24.2.3 A Sober Assessment . . . . . . . . . . . . . . . . . . . . . 402 24.3 Acknowledged Shortcomings . . . . . . . . . . . . . . . . . . . . . 406 24.4 The “AI Winter” . . . . . . . . . . . . . . . . . . . . . . . . . . . 408 25 Controversies and Alternative Paradigms 413 25.1 About Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413 25.2 Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 25.3 “Kludginess” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416 25.4 About Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417 25.4.1 Behavior-Based Robots . . . . . . . . . . . . . . . . . . . 417 25.4.2 Teleo-Reactive Programs . . . . . . . . . . . . . . . . . . 419 25.5 Brain-Style Computation . . . . . . . . . . . . . . . . . . . . . . 423 25.5.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 423 25.5.2 Dynamical Processes . . . . . . . . . . . . . . . . . . . . . 424 25.6 Simulating Evolution . . . . . . . . . . . . . . . . . . . . . . . . . 425 25.7 Scaling Back AI’s Goals . . . . . . . . . . . . . . . . . . . . . . . 429 8 0.0 CONTENTS VII The Growing Armamentarium: From the 1980s Onward 433 26 Reasoning and Representation 435 26.1 Nonmonotonic or Defeasible Reasoning . . . . . . . . . . . . . . . 435 26.2 Qualitative Reasoning . . . . . . . . . . . . . . . . . . . . . . . . 439 26.3 Semantic Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 441 26.3.1 Description Logics . . . . . . . . . . . . . . . . . . . . . . 441 26.3.2 WordNet . . . . . . . . . . . . . . . . . . . . . . . . . . . 444 26.3.3 Cyc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446 27 Other Approaches to Reasoning and Representation 455 27.1 Solving Constraint Satisfaction Problems . . . . . . . . . . . . . 455 27.2 Solving Problems Using Propositional Logic . . . . . . . . . . . . 460 27.2.1 Systematic Methods . . . . . . . . . . . . . . . . . . . . . 461 27.2.2 Local Search Methods . . . . . . . . . . . . . . . . . . . . 463 27.2.3 Applications of SAT Solvers . . . . . . . . . . . . . . . . . 466 27.3 Representing Text as Vectors . . . . . . . . . . . . . . . . . . . . 466 27.4 Latent Semantic Analysis . . . . . . . . . . . . . . . . . . . . . . 469 28 Bayesian Networks 475 28.1 Representing Probabilities in Networks . . . . . . . . . . . . . . . 475 28.2 Automatic Construction of Bayesian Networks . . . . . . . . . . 482 28.3 Probabilistic Relational Models . . . . . . . . . . . . . . . . . . . 486 28.4 Temporal Bayesian Networks . . . . . . . . . . . . . . . . . . . . 488 29 Machine Learning 495 29.1 Memory-Based Learning . . . . . . . . . . . . . . . . . . . . . . . 496 29.2 Case-Based Reasoning . . . . . . . . . . . . . . . . . . . . . . . . 498 29.3 Decision Trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 29.3.1 Data Mining and Decision Trees . . . . . . . . . . . . . . 500 9 29.3.2 Constructing Decision Trees . . . . . . . . . . . . . . . . . 502 29.4 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 507 29.4.1 The Backprop Algorithm . . . . . . . . . . . . . . . . . . 508 0 CONTENTS 29.4.2 NETtalk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509 29.4.3 ALVINN. . . . . . . . . . . . . . . . . . . . . . . . . . . . 510 29.5 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . 513 29.6 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . 515 29.6.1 Learning Optimal Policies . . . . . . . . . . . . . . . . . . 515 29.6.2 TD-GAMMON . . . . . . . . . . . . . . . . . . . . . . . . . 522 29.6.3 Other Applications . . . . . . . . . . . . . . . . . . . . . . 523 29.7 Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524 30 Natural Languages and Natural Scenes 533 30.1 Natural Language Processing . . . . . . . . . . . . . . . . . . . . 533 30.1.1 Grammars and Parsing Algorithms . . . . . . . . . . . . . 534 30.1.2 Statistical NLP . . . . . . . . . . . . . . . . . . . . . . . . 535 30.2 Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . 539 30.2.1 Recovering Surface and Depth Information . . . . . . . . 541 30.2.2 Tracking Moving Objects . . . . . . . . . . . . . . . . . . 544 30.2.3 Hierarchical Models . . . . . . . . . . . . . . . . . . . . . 548 30.2.4 Image Grammars . . . . . . . . . . . . . . . . . . . . . . . 555 31 Intelligent System Architectures 561 31.1 Computational Architectures . . . . . . . . . . . . . . . . . . . . 563 31.1.1 Three-Layer Architectures . . . . . . . . . . . . . . . . . . 563 31.1.2 Multilayered Architectures . . . . . . . . . . . . . . . . . 563 31.1.3 The BDI Architecture . . . . . . . . . . . . . . . . . . . . 569 31.1.4 Architectures for Groups of Agents . . . . . . . . . . . . . 572 31.2 Cognitive Architectures . . . . . . . . . . . . . . . . . . . . . . . 576 31.2.1 Production Systems . . . . . . . . . . . . . . . . . . . . . 576 31.2.2 ACT-R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578 31.2.3 SOAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581 VIII Modern AI: Today and Tomorrow 589 32 Extraordinary Achievements 591 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.