ebook img

The quantumness of correlations revealed in local measurements exceeds entanglement PDF

0.59 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The quantumness of correlations revealed in local measurements exceeds entanglement

Thequantumnessofcorrelationsrevealedinlocalmeasurementsexceedsentanglement Marco Piani1 and Gerardo Adesso2 1InstituteforQuantumComputingandDepartmentofPhysicsandAstronomy,UniversityofWaterloo,WaterlooONN2L3G1,Canada 2SchoolofMathematicalSciences,TheUniversityofNottingham,UniversityPark,NottinghamNG72RD,UnitedKingdom (Dated:December15,2011) Weanalyzeafamilyofmeasuresofgeneralquantumcorrelationsforcompositesystems,definedintermsof thebipartiteentanglementnecessarilycreatedbetweensystemsandapparatusesduringlocalmeasurements.For everyentanglementmonotoneE,thisoperationalcorrespondenceprovidesadifferentmeasureQ ofquantum E correlations. Examplesofsuchmeasuresaretherelativeentropyofquantumness,thequantumdeficit,andthe negativity of quantumness. In general, we prove that any so defined quantum correlation measure is always greater than (or equal to) the corresponding entanglement between the subsystems, Q ≥ E, for arbitrary E statesofcompositequantumsystems. Weanalyzequalitativelyandquantitativelytheflowofcorrelationsin iteratedmeasurements,showingthatgeneralquantumcorrelationsandentanglementcanneverdecreasealong 2 von Neumann chains, and that genuine multipartite entanglement in the initial state of the observed system 1 alwaysgivesrisetogenuinemultipartiteentanglementamongallsubsystemsandallmeasurementapparatuses 0 atanylevelinthechain. Ourresultsprovideacomprehensiveframeworktounderstandandquantifygeneral 2 quantumcorrelationsinmultipartitestates. n a PACSnumbers:03.65.Ta,03.65.Ud,03.67.Mn J 6 1 Introduction.—Thequantumworlddiffersfromourfamiliar S M1 M2 M3 Mn classicalworldinmany,interrelatedways[1]. Quantumlaws ] forbidbasictaskssuchascloning[2]yetenablecertaininfor- h p mationprocessingfeatsotherwiseunfeasiblewithpurelyclas- system apparatus photon retina … consciousness? - sicalresources[3]. Inparticular, quantumcorrelationsdiffer t n from classical ones. Such a difference can assume the strik- FIG.1:(Coloronline)GraphicaldepictionofavonNeumannchain. a ing traits of entanglement [4–6] and non-locality [7], or the u subtlerfeaturesofquantumdiscord[8]. Thelattercapturesa q moregeneralsignatureofnon-classicalityofcorrelations(be- ment” on which the “observer” has little or no control (for a [ ingpresentalsoinalmostallunentangledstates[9])thatstems review on this topic, see [17]). At the same time, it is ex- 2 fromthenon-commutativityofquantumobservables,andcan actly through the establishment of correlations between the v be revealed in local measurements; its characterization and observedquantumsystemandameasurementapparatus—and 0 3 applications have recently attracted much attention [10, 11]. finallytheobserver—thatwecandescribethemeasurementto 5 Discord or, in general, quantum correlations different from takeplace.Inthisrespect,themeasurementproblembecomes 2 entanglementhavebeenlinkedtotheadvantage, overclassi- thatoffindinghowthe“quantuminformation”containedina 0. calscenarios,ofquantumalgorithmsforcommunication[12], quantum system becomes correlated to the “classical infor- 1 informationlocking[13],metrology[14],andespeciallycom- mation”inthemindoftheobserver. Inanalyzingsuchanis- 1 putationinthepresenceofnoise[15]. sue,vonNeumann[18]consideredwhatlaterbecameknown 1 as“vonNeumannchain”: asequenceofinteractingphysical : v Clarifyingtherelationbetween“classical”and“quantum” systems,startingwiththequantumsystemtobemeasuredand i is of paramount importance from the practical point of view endingwiththeobserver(seeFig.1). X of information processing, as a better understanding of all In this paper we provide quantitative constraints regulat- r a genuinelyquantumeffectscanonlyleadtothembeingmore ing the establishment of quantum correlations with appara- efficiently exploited. Nonetheless, another more fundamen- tusesduringameasurementprocess,andtheirflowalongvon tal reason to study the non-classicality of correlations is that Neumann chains. Combining and extending the approaches we do not fully understand the quantum-to-classical transi- recentlyputforwardinRefs.[19,20], wequantifythequan- tion[17];itisnotclearhowandatwhichscalequantumme- tum correlations Q between subsystems S of a composite E k chanics actually leads to an everyday world where (macro- quantumsystemS,intermsoftheminimumentanglementE scopic) objects appear to be “here” or “there”, but not “here generatedbetweenthewholesystemSandagenerallycom- and there” as instead allowed by the superposition principle. posed measurement apparatus M which is probing a subset Thisissueoftheemergenceoftheclassicalfromthequantum of the subsystems of S locally—that is, a local independent isintimatelyrelatedtothe“measurementproblem”whichhas measurementoneachprobedS isperformedthroughanin- k puzzledphysicists,mathematiciansandphilosopherssincethe teraction with a local apparatus M that is part of M. Here k birthofquantummechanicsacenturyago. Apotentialsolu- weshow,foranyentanglementmeasureE,thataccordingto tionofthemeasurementproblemisintermsofdecoherence, such a mapping the key inequality Q (ρ) ≥ E(ρ) holds for E that is in terms of correlations established with an “environ- allquantumstatesρ. Thisprovesthatmeasurementprocesses 2 provide a natural and insightful framework for the study of S the non-classicality of correlations: for every chosen entan- m glement monotone E, one obtains a different, operational e ρS measure QE of general quantum correlations, which incor- syst U US1M1 ρɶS M U I poratesandgenerallyexceedstheentanglement(measuredby U E)betweenthesubsystemsofarbitraryquantumstates.Based a 0 S3M3 at M1 on these results, that definitely elucidate the (so far unclear ar 0 p M [8,21])interplaybetweenentanglementandgeneralquantum p 3 a correlationsincompositesystems,wefurthershowthatquan- tum correlations and entanglement can never decrease along FIG. 2: (Color online) Construction of the pre-measurement state ρ˜ [Eq. (3)], for S ≡ S = {S ,S ,S ,S },I = von Neumann chains, and that all the links of the chain ex- SUMI U 1 2 3 4 {1,3},M ={M ,M },andU oftheform(2). hibitgenuinemultipartiteentanglementifandonlyifthesub- I 1 3 SkMk systems are genuinely (multipartite) entangled—and not just quantumlycorrelated—intheinitialstateofthesystemS. (cid:80) |i(cid:105)(cid:104)i| ρ |i(cid:105)(cid:104)i| , for all states ρ of S . The i Sk Sk Sk Sk k Preliminaries.— We begin by setting our notation and re- state calling a number of definitions. Let S be a quantum sys- ρ˜ =U ρ ⊗|0(cid:105)(cid:104)0| U† , (3) tem partitioned into n (finite-dimensional) subsystems and SkMk SkMk Sk Mk SkMk let U = {1,2,...,n}; we denote by S = {S |k ∈ I}, I k beforetracingouttheapparatus,issometimescalledthepre- with I ⊆ U, a subset of the n subsystems S ,S ,...,S of 1 2 n measurementstate[17]. Thenotionistriviallygeneralizedto S ≡ S . WedenotebyU\I thecomplementofsetI within U the case where local projective measurements are performed U. With respect to the notion of classicality of correlations, on any subset I of U: in such a case we will refer to a pre- weadoptthefollowingdefinition(seealso[22]). measurement state ρ˜ of the whole system plus the set SUMI of apparatuses coupled to subsystems S (see Fig. 2). Such Definition 1 (Classically correlated states). A state ρ is I SU a pre-measurement state depends of course on the choice of “classically correlated (CC) with respect to local measure- local bases in which the local measurements take place. By ments on subsystems S ”, or, in other words, “classical on I consideringtheentanglementpropertiesofρ˜ acrossthe subsystemsSI”,or,inshort-handnotation,ρSU is“I-CC”,if S :M bipartitionwecanformulatethefollSoUwMinIgtheorem, thereexistsachoiceoflocalcompletevonNeumannmeasure- U I straightforwardlygeneralizingRefs.[19,20]: ments on each subsystem S , k ∈ I such that ρ is left in- k SU variantundersuchmeasurements. Equivalently,ρSU isI-CC Theorem1. AstateρSU isI-CCifandonlyifthereexistaset if there exists a choice of a local orthonormal basis {|i(cid:105)Sk} oflocalcompletevonNeumannmeasurementsonsubsystems foreachSk,k ∈I,suchthat SI suchthatthepre-measurementstateρ˜SUMI isunentangled acrossS :M . (cid:88) U I ρ = |i (cid:105)(cid:104)i | ⊗|i (cid:105)(cid:104)i | (1) SU k1 k1 Sk1 k2 k2 Sk2 Theorem1providesaclearoperationalinterpretationofI- ik1,ik2,...,ik|I| CCstatesastheonlystateswhichdonotnecessarilygiverise ⊗ ···⊗|ik|I|(cid:105)(cid:104)ik|I||Sk|I| ⊗ρiS(cid:126)kU\I , tothecreationofentanglementwithasetofapparatusesdur- inglocalpre-measurementsofthesubsystemsS . When,on I withρi(cid:126)k unnormalizedstatesoftheothersubsystemsS . the other hand, such entanglement is necessarily created, its SU\I U\I minimum amount (measured by any chosen monotone E), The above definition provides a finer graining between where the minimization is over the choice of the local mea- the conventional categories of strictly classically correlated surements,canberegardedasameasureofquantumcorrela- (i.e., U-CC)andgenuinelyquantumlycorrelated(i.e., ∅-CC) tionsQ intheoriginalstateρ ofthesystem[19,20]. We E SU states, including all possible intermediate types of so-called can thus formulate the following quantitative definition for a classical-quantumstates[23]. generalfamilyofmeasuresofquantumcorrelations. AcompletevonNeumannmeasurementinabasis{|i(cid:105) } Sk Definition 2 (Quantumness of correlations). The measure canberealizedonasubsystemS bylettingS interactwith k k Q(SI) of quantumness of correlations—or, simply, quantum a measurement apparatus Mk. Assuming Mk is initially in E correlations—among all the subsystems of the system S in somefixedbutotherwisearbitraryinitialpurestate|0(cid:105) ,and U Mk the state ρ , revealed by local measurements on the (sub- that Sk and Mk interact through a unitary USkMk, one finds setof)subsSyUstemsS ,andcorrespondingtotheentanglement thatthelattermustbeofthetype I measureE,isdefinedby U |i(cid:105) |0(cid:105) =|i(cid:105) |i(cid:105) , (2) SkMk Sk Mk Sk Mk Q(SI)(ρ ):= min E (ρ˜ ), (4) up to a local unitary on M , if we impose that E SU {{|i(cid:105)Sk}|k∈I} SU:MI SUMI k the interaction realizes the projective measurement, where the minimum runs over all choices of local bases that is, Tr (U ρ ⊗ |0(cid:105)(cid:104)0| U† ) = (equivalently, local complete von Neumann measurements) Mk SkMk Sk Mk SkMk 3 for subsystems S , and the bipartite entanglement measure us,crucially,thataccordingtotheframeworkofDefinition2, I E is calculated between the systems S and M in the pre- Q and E always obey a precise ordering relation, with the U I E measurementstateρ˜ [Eq.(3)],whichdependsimplicitly latter (however quantified), if present, accounting only for a SUMI onthelocalbaseschoice. fraction of the more general quantum correlations (compat- ibly defined) in arbitrary quantum states. In particular, it is AccordingtoDefinition2,forabipartitesystemS ≡ S AB straightforward to check that, thanks to the Schmidt decom- (n = 2,S ≡ A,S ≡ B), if E is chosen to be, e.g., the 1 2 position,theinequalitiesof(6)aresaturatedforpurestatesof distillable entanglement E [6, 24], then Q(AB) amounts to D ED the system, returning that entanglement and quantum corre- the (two-way) relative entropy of quantumness [20, 25] and lationsingeneralcoalesceintoauniquesignatureinabsence Q(A) amounts to the one-way information deficit [19, 26]. of global mixedness [8]. For generally mixed states, Eq. (5) ED Other instances of measures falling in the category of Defi- puts the present approach to investigating non-classicality of nition2are,e.g.,theso-callednegativityofquantumness[20] correlations on firm physical grounds: quantum correlations (alsoknownasminimumentanglementpotential[27])which trulygobeyondentanglement,inaclearquantitativesense. correspondstopickingE tobethenegativityN [6], andthe TherightmostsidesofEqs.(5)and(6)involvebipartiteen- geometric measure of quantumness [28]. All the mentioned tanglementE,butwecanalsoextendtheorderingwehavees- measures, among all, have been independently proposed in tablishedtothemultipartitecase.Forexample,onecandefine different contexts (ranging fromthermodynamics to geomet- two quite natural measures of (global) multipartite entangle- ricapproaches)andhavewellunderstooddefinitionsthatcap- ment starting from any bipartite entanglement monotone E: turevarious,intertwinedfeaturesofnon-classicalcorrelations E (ρ ) := min(max) E (ρ ), where in composite systems. Our framework, which builds on and thmeinm(minaxi)mizSaUtion(maximizatio{nP)0i,sP1t}akeSnP0o:vSePr1allSnUon-trivial generalizestheideasof[19,20],providesuniversalandphysi- partitions of U, that is, P ∩ P = ∅,P ∪ P = U. The 0 1 0 1 callyjustifiedoperationalinterpretationstothoseandawhole twomultipartitemeasuresinherittheLOCCmonotonicity(7) lot of infinitely-many possible measures QE (one class for fromthebipartitemeasureE,andbothcoincidewiththelat- each valid E [6]) in terms of the minimum entanglement E terinthebipartitecase. Then,from(5)itfollowsforinstance necessarilycreatedduringmeasurementprocesses. thatQ(SU)(ρ )≥E (ρ )≥E (ρ ). E SU max SU min SU Main result.— We are now ready to state the main result of FlowofquantumcorrelationsandthevonNeumannchain.— this paper, namely the ordering between entanglement and Wenowmovetocharacterizingthespreadingofentanglement generalquantumcorrelationsinthestateofanarbitraryquan- amongsystemsandmeasurementapparatuses. Wewillrefer tumsystemSU. tothefollowingnotionofgenuinemultipartiteentanglement. Theorem 2. All measures QE of quantum correlations de- Definition3. Apurestate|ψ(cid:105)SU isgenuinelymultipartiteen- finedbyEq.(4)satisfy tangledif|ψ(cid:105) (cid:54)=|ψ (cid:105) |ψ (cid:105) forallnon-trivialbiparti- SU 0 SP0 1 SP1 tions{P ,P }ofU. Amixedstateρ isgenuinelymultipar- Q(ESI)(ρSU)≥Q(ESJ)(ρSU)≥ESK:SU\K(ρSU), (5) tite enta0ngle1d if for any pure-stateSeUnsemble decomposition (cid:80) {p ,|ψ (cid:105) } (such that ρ = p |ψ (cid:105)(cid:104)ψ | ) there is at for all corresponding entanglement measures E, and all i i SU SU i i i i SU leastonegenuinemultipartiteentangledstateappearingwith choices of K ⊆ J ⊆ I ⊆ U. In particular, in the bipartite non-vanishingprobability. case,onehas Wegetthefollowingresult,whoseproofisinAppendix. Q(AB)(ρ )≥max{Q(A)(ρ ), Q(B)(ρ )} E AB E AB E AB Theorem 3. The state ρ is genuinely multipartite entan- ≥min{Q(A)(ρ ), Q(B)(ρ )} (6) gledifandonlyifanypreS-Umeasurementstateρ˜ ,forany E AB E AB SUMI ≥E (ρ ). I ⊆ U,isgenuinelymultipartiteentangled,withmultipartite A:B AB entanglementsharedamongallsubsystemsofS ∪M . U I A proof of Theorem 2 is provided in the Appendix. The All the above results can be used to analyze qualitatively theorem is valid for all choices of E as it relies only on the andquantitativelyavonNeumannchainwhoselinksaregiven basicmonotonicityproperty byasequenceofmeasurementapparatuses(seeFig.1). That E(ρ)≥E(Λ [ρ]), (7) is, suppose that a measurement apparatus M1, initially in LOCC a pure state, is used to probe a single system S in a state satisfied by any entanglement measure by definition [6], for ρ . The measurement is performed by letting S and M S 1 allstatesρandalltransformationsΛ thatcanberealized interact as in Eq. (2), leading to a pre-measurement state LOCC byLocalOperationsandClassicalCommunication(LOCC). ρ˜ . Using the same tools of [19, 20], it is easy to check SM1 The leftmost inequality in (5) tells us that the more sub- that ρ˜ is S : M entangled if and only if the mea- SM1 1 systemsaremeasured,themorequantumcorrelationsarere- surement is not performed in the eigenbasis of ρ . We S vealedinthestate;thisgeneralizestoarbitrarymeasuresQ can now consider another link in the von Neumann chain, E the few known dominance relations involving, e.g., two-way given by another apparatus M brought in to realize a com- 2 versus one-way discord [29]. The rightmost inequality tells plete projective measurement on M . We thus obtain a 1 4 global pre-measurement state ρ˜(cid:48) . Theorem 2 and Def- is trivially the same as the ABM : M entanglement in inition 2 imply Q(EM2)(ρ˜(cid:48)SM1M2S)M≥1M2ESM1:M2(ρ˜(cid:48)SM1M2) ≥ ρl˜a(cid:48)AttBerMs1tMat2eb=ein(cid:80)goi,bjt|aii(cid:105)n(cid:104)ejd|Aby⊗leρtiBtjin⊗g1M|i(cid:105)(cid:104)ja|nMd21M⊗|iin(cid:105)t(cid:104)ejr|aMct2a,sthine Q(M1)(ρ˜ ) ≥ E(S : M ) . This argument can be 1 2 E SM1 1 ρ˜SM1 Eq.(2). reiterated for the next links in the chain, so that we find Amorerealisticmodelofthemeasurementprocesswould E ≤ E ≤ ... ≤ E , wherebi- S:M1 SM1:M2 SM1M2...Mn:Mn+1 involvethesystemS,anumberofapparatusesM,andalarge partiteentanglementiscalculatedforlargerandlargersystems set of uncontrollable degrees of freedom—the environment (that is, longer and longer chains, last link versus the rest). E—that act by randomly measuring the subsystems and/or Similarly Q(M1) ≤ ... ≤ Q(Mn) for the quantum correla- E E theapparatuses[16]. Whilewecanhaveafinecontrolonthe tionsofthecorrespondingsuccessivepre-measurementstates measurement apparatuses, tuning them to realize minimally- of the chain. We thus conclude that bipartite entanglement disturbing von Neumann measurements on the objects to be andquantumcorrelationsneverdecreasealongvonNeumann observed, the non-tailored action of the environment results chains. Noticethatitfollowsalsothat,whenweconsiderthe in it getting strongly quantumly correlated with the accessi- completechainandbreakitatanylevel,namelyinvestigating ble degrees of freedom through bipartite and genuine multi- thebipartition(SM ...M ) : (M ...M ),theentangle- 1 j j+1 n partite entanglement (subject to stringent “monogamy” con- mentandthecorrespondingquantumcorrelationsacrossthis straints[31]),accordingtothemechanismselucidatedabove. (global)bipartitionarebothnondecreasingfunctionsofj. In- Aftertracingovertheunaccessibleenvironmentaldegreesof deed,successivemeasurementstepscorrespondtoalocalop- freedom,theobservedsystemsandthemeasurementappara- eration (actually, a local isometry) with respect to the fixed tuses are thus typically left in classically correlated “pointer bipartitionatthelevelj. states”. Thisistheessenceofdecoherencebyenvironmental- Theseconsiderationsarereadilygeneralizedtothecaseof inducedselection[17],andourfindingsallowusinprinciple S being a composite system. Let us focus for simplicity on togetaquantitativegriponthenatureandmeasureof(quan- thebipartitecase,withB beingmeasuredbyM ,whichisin 1 tum)correlationsduringtheprocess. Adetailedstudyofthis turnbeingmeasuredbyM andsoon. Wehavethen 2 mechanism requires further investigation, possibly consider- E (ρ ) ≤ Q(B)(ρ )≤E (ρ˜ ) ingalsothecaseof“fuzzymeasurements”inwhichthemea- A:B AB E AB AB:M1 ABM1 surementapparatusesarethemselvesnoisy,i.e.,initializedin ≤ Q(EM1)(ρ˜ABM1)≤EABM1:M2(ρ˜(cid:48)ABM1M2) mixedratherthanpurestates[32]:inthatcase,itwillbeinter- ≤ Q(M2)(ρ˜(cid:48) )≤... . esting to analyze the role of classical correlations as well as E ABM1M2 theirinterplaywithentanglementandgeneralquantumones. The first step of the chain is the most important one, where Conclusions.— The results presented in this Letter provide the nature of correlations in the initial state of ρ of the AB physical justification and demonstrate the insightfulness of system plays a crucial role. If such a state is B-CC (i.e., the operational approach put forward in [19, 20] to address Q(B)(ρ )=E (ρ )=0),thenthereexistsalocalvon E AB A:B AB quantitativelythegeneralquantumcorrelationsinacompos- NeumannmeasurementonB suchthatthepre-measurement ite system in terms of the entanglement necessarily created state ρ˜ contains no entanglement and no quantum cor- ABM1 betweenthesystemandmeasurementapparatusesduringlo- relationsbetweenthesystemandtheinvolvedapparatus[19]. cal measurements. In this Letter, we proved the key result Iftheinitialstateofthesystemisunentangledbutquantumly that,withinsuchaframework,quantumcorrelationsarenever correlated[30](Q(EB)(ρAB)>0,EA:B(ρAB)=0),thendur- smaller than entanglement, going thus beyond it in general. ingthepre-measurementtheinitialintra-systemquantumcor- This holds for any entanglement monotone and any corre- relationsQ(B)(ρ )aretransformed(andpossiblyamplified) spondinglydefinedmeasureofquantumcorrelations.Wepro- E AB intoquantumcorrelationsQ(M1)(ρ ) ≥ Q(B)(ρ )be- videdquantitativeandqualitativeresultsonthepresenceand E ABM1 E AB tween the composite system and the apparatus, and corre- spreading of entanglement and quantum correlations along spondingly an amount of entanglement E (ρ ) ≥ von Neumann chains. We hope that, motivated by our find- AB:M1 ABM1 Q(B)(ρ ) is also created across the AB : M bipartition. ings, coordinated efforts will lead soon to a comprehensive E AB 1 mathematicalresourcetheoryofgeneralquantumcorrelations Finally, according to Theorem 3, iff the initial state of the system is entangled (Q(B)(ρ ) ≥ E (ρ ) > 0), then andtonoveldemonstrationsoftheirpowerfornoise-resilient E AB A:B AB quantumtechnologies[11]. genuinemultipartiteentanglementisestablishedbetweenthe twosubsystemsandtheapparatus,andkeepsbeinggenuinely Acknowledgements.— We thank V. P. Belavkin, D. Bruss, E. shared with all the subsequent apparatuses as well. Notice Chitambar, N. Gisin, T. Nakano, D. Terno and particularly thataftertheinitialstep,theamountofbipartiteentanglement J.Calsamigliafordiscussions. MPacknowledgessupportby betweenthelatestapparatusandtherestofthechaincanactu- NSERC, CIFAR, Ontario Centres of Excellence. GA is sup- allystayconstant(E =...=E )if ported by a Nottingham Early Career Research and Knowl- AB:M1 ABM1M2...Mn:Mn+1 everyapparatusrealizesanoptimal—inthesenseofEq.(4)— edge Transfer Award. We acknowledge joint support by the localmeasurement.ThisisseenbynoticingthattheAB :M EPSRC Research Development Fund (Pump Priming grant 1 entanglement in ρ˜ = (cid:80) |i(cid:105)(cid:104)j| ⊗ ρij ⊗ |i(cid:105)(cid:104)j| 0312/09). ABM1 i,j A B M1 5 Appendix:Proofs ProofofTheorem3 ProofofTheorem2 To prove the theorem we can restrict to measurements on just one subsystem, say S , since we are considering multi- n For the sake of clarity, let us consider the bipartite case, partiteentanglementbetweenallsubsystemsandapparatuses, with a local measurement applied only to A through an ap- and we can analyze the measurement on each Sk separately. paratus M. The initial bipartite state of the system can be Following[33],weobservethatpure-statedecompositionsfor expandedas ρSU andρ˜SUMn areinone-to-onecorrespondence,astheini- tial state of M is pure (for each |ψ(cid:105) we obtain a pure ρAB =(cid:88)|i(cid:105)(cid:104)j|A⊗ρiBj, state|ψ˜(cid:105)SUMn =n USnMn|ψ(cid:105)SU|0(cid:105)Mn,aSnUdforeach|ψ˜(cid:105)SUMn i,j there must be a state |ψ(cid:105) such that U† |ψ˜(cid:105) = SU SnMn SUMn |ψ(cid:105) |0(cid:105) ). Onedirectionisthentrivial: ifρ isnotgen- where {|i(cid:105)} is the basis in which A is measured. The pre- SU Mn SU uine multipartite entangled, ρ˜ is not genuine multipar- measurementstateisthen SUMn titeentangledeither.Indeed,themeasurementinteractionwill (cid:88) ρ˜AMB = |i(cid:105)(cid:104)j|A⊗|i(cid:105)(cid:104)j|M ⊗ρiBj. mapastate|ψ0(cid:105)SP0|ψ1(cid:105)SP1,for{P0,P1}apartitionofU,into i,j astate|ψ0(cid:105)SP0|ψ˜1(cid:105)SP˜1,with{P0,P˜1}anewpartitioninclud- ingM inS ,ifweassume,withoutlossofgenerality,that ThekeyobservationisthatthereisasimpleLOCCtransfor- n P˜1 S ∈ P . We now prove also that if ρ˜ is not genuine mationΛLOCC (withrespecttothetheAB : M bipartitecut) n 1 SUMn multipartiteentangled,thenρ wasnoteither. suchthatΛLOCC[ρ˜AMB]=ρMB,whereρMBisthesamestate LetusconsiderapurestateS|Uψ˜(cid:105) =|ψ˜ (cid:105) |ψ˜ (cid:105) in asρABbutnowsharedbetweenM andB.Dueto(7)wehave SUMn 0 SP˜0 1 SP˜1 the decomposition of ρ˜ . If both S and M are in P˜ , E(AB :M) ≥E (ρ )=E (ρ ). SUMn n n 1 ρ˜AMB M:B MB A:B AB then undoing the measurement interaction we obtain a state |ψ (cid:105) |ψ (cid:105) . Suppose instead S ∈ P˜ , M ∈ P˜ . Im- It remains to exhibit the operation ΛLOCC on ρ˜AMB, which po0sinSgP0 1 SP1 n 0 n 1 can be constructed as follows. A Fourier transform |i(cid:105) (cid:55)→ √ 1/ d(cid:80) e2πiik/d|k(cid:105),withdthedimensionofA(andofM) |ψ˜(cid:105) =|ψ˜ (cid:105) |ψ˜ (cid:105) =U |ψ(cid:105) |0(cid:105) , is first apkplied to A, transforming the pre-measurement state SUMn 0 SP˜0 1 SP˜1 SnMn SU Mn into namely imposing in particular that Tr (|ψ˜(cid:105)(cid:104)ψ˜| ) is SP˜1 SUMn d1(cid:88)(cid:88)e2πi(ik−jl)/d|k(cid:105)(cid:104)l|A⊗|i(cid:105)(cid:104)j|M ⊗ρiBj. pouthreer,swuebsfiynsdtemthsatanSdnamctuusatllbyeininaintiaelilgyenusnteantetaonfgtlheedmfreoamsutrhee- k,l i,j mentperformedbyU . (cid:3) SnMn ThensubsystemAismeasuredinthe{|k(cid:105)}basis,anddepend- ingontheresultaunitaryU =(cid:80) e−2πiik/d|i(cid:105)(cid:104)i|isapplied k i toM,obtaining (cid:88) [1] J.OppenheimandS.Wehner,Science330,1072(2010). ρ˜ = |i(cid:105)(cid:104)j| ⊗ρij. MB M B [2] W.K.WoottersandW.H.Zurek,Nature299,802(1982). i,j [3] M. A. Nielsen and I. L. Chuang, Quantum Computation andQuantumInformation(CambridgeUniversityPress,Cam- Theproofcanbestraightforwardlygeneralizedtothemul- bridge,2000). tipartitecase. Givenapre-measurementstateρ˜ thereare SUMI [4] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 Sk :MkLOCCtransformationsthat“undo”themeasurement (1935). interaction between Sk and Mk, forany k ∈ I. Indeed, it is [5] E.Schro¨dinger,Naturwissenschaften23,812(1935). possibletoactviaLOCCtochoosebetweenthefollowingtwo [6] M. B. Plenio and S. Virmani, Quant. Inf. Comp. 7, 1 (2007); options:(i)toreallyjustundothemeasurementinteractionon R.Horodecki,P.Horodecki,M.Horodecki,andK.Horodecki, Rev.Mod.Phys.81,865(2009). S (asifnoapparatusM hadbeenintroducedatall)or(ii)to k k [7] J.S.Bell,Physics1,195(1964). transfer coherently the quantum information contained orig- [8] H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901 inally in S into M . Option (i) justifies the first inequality k k (2001);L.HendersonandV.Vedral,J.Phys.A34,6899(2001). inEq.(5);option(ii)justifiesthesecondone,asforanysys- [9] A.Ferraro, L.Aolita, D.Cavalcanti, F.M.Cucchietti, andA. tem Sk interacting with its measuring apparatus (i.e., k ∈ I, Acin,Phys.Rev.A81,052318(2010). or k ∈ J in Eq. (5)) we can choose to have its information [10] R. Dillenschneider, Phys. Rev. B 78, 224413 (2008); A. Sha- content transferred to M , on the other side of the S : M bani and D. A. Lidar, Phys. Rev. Lett. 102, 100402 (2009); k U I L.Mazzola,J.Piilo,andS.Maniscalco,Phys.Rev.Lett.104, splitting. The latter possibility means that we can go from 200401(2010);A.BrodutchandD.R.Terno,Phys.Rev.A81, the the pre-measurement state ρ˜ to ρ , for all SU:MI SU\K:MK 062103(2010);M.D.LangandC.M.Caves,Phys.Rev.Lett. K ⊆ I. Thelatterstateisthesameastheoriginalρ ,only SU 105, 150501(2010); T.Werlang, C.Trippe, G.A.P.Ribeiro, withtheinformationcontainedinthesystemsSK transferred andG.Rigolin,Phys.Rev.Lett.105,095702(2010);G.Adesso totheapparatusesMK. (cid:3) andA.Datta, Phys.Rev.Lett.105, 030501(2010); P.Giorda 6 andM.G.A.Paris,Phys.Rev.Lett.105,020503(2010);M.F. [20] M. Piani, S. Gharibian, G. Adesso, J. Calsamiglia, P. Cornelio,M.C.deOliveira,andF.F.Fanchini,Phys.Rev.Lett. Horodecki,andA.Winter,Phys.Rev.Lett.106,220403(2011). 107020502(2011);G.L.Giorgi,B.Bellomo,F.Galve,andR. [21] F. F. Fanchini, M. F. Cornelio, M. C. de Oliveira, and A. O. Zambrini,Phys.Rev.Lett.107,190501(2011) Caldeira, Phys.Rev.A84, 012313(2011); A.Al-Qasimiand [11] K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, D.F.V.James,Phys.Rev.A83,032101(2011). arXiv:1112.6238.(2011)SeealsotheNewsFeaturebyZ.Mer- [22] L.Chen,E.Chitambar,K.Modi,G.Vacanti,Phys.Rev.A83, ali,Nature474,24(2011). 020101(R)(2011) [12] D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, M. Piani, and [23] M.Piani,P.Horodecki,andR.Horodecki,Phys.Rev.Lett.100, A. Winter, Phys. Rev. A 83, 032324 (2011); V. Madhok and 090502(2008). A.Datta,Phys.Rev.A83,032323(2011);V.MadhokandA. [24] C.H.Bennett,D.P.DiVincenzo,J.A.Smolin,andW.K.Woot- Datta,arXiv:1107.0994(2011). ters,Phys.Rev.A54,3824(1996). [13] B. M. Terhal, M. Horodecki, D. W. Leung, and D. [25] S.Bravyi,Phys.Rev.A67,012313(2003);K.Modi,T.Paterek, P.DiVincenzo, J. Math. Phys. 43, 4286 (2002); D. P. DiVin- W. Son, V. Vedral, and M. Williamson, Phys. Rev. Lett. 104, cenzo,M.Horodecki,D.Leung,J.Smolin,andB.M.Terhal, 080501(2010). Phys. Rev. Lett. 92, 067902 (2004); S. Boixo, L. Aolita, D. [26] J.Oppenheim,M.Horodecki,P.Horodecki,andR.Horodecki, Cavalcanti,K.Modi,andA.Winter,Int.J.Quant.Inf.9,1643 Phys.Rev.Lett.89,180402(2002). (2011). [27] R.ChavesandF.deMelo,Phys.Rev.A84,022324(2011) [14] K.Modi,M.Williamson,H.Cable,andV.Vedral,Phys.Rev. [28] A. Streltsov, H. Kampermann, and D. Bruss, Phys. Rev. Lett. X1,021022(2011), 107,170502(2011). [15] A. Datta, A. Shaji, and C. M. Caves, Phys. Rev. Lett 100, [29] M. D. Lang, C. M. Caves, and A. Shaji, Int. J. Quant. Inf. 9, 050502(2008);B.P.Lanyon,M.Barbieri,M.P.Almeida,and 1553(2011). A.G.White,Phys.Rev.Lett.101,200501(2008);A.Brodutch [30] For the sake of the discussion we consider here a faithful en- and D. R. Terno, Phys. Rev. A 83, 010301 (2011); B. Eastin, tanglementmeasureE suchthatE(ρ ) = 0iffρ isnot AB AB arXiv:1006.4402(2010); G.Passante,O.Moussa,D.A.Trot- entangled. tier,andR.Laflamme,Phys.Rev.A84,044302(2011);R.Auc- [31] V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A caise,J.Maziero,L.Celeri,D.Soares-Pinto,E.deAzevedo,T. 61, 052306 (2000); B. M. Terhal, IBM J. Res. & Dev. 48, Bonagamba,R.Sarthour,I.Oliveira,andR.Serra,Phys.Rev. 71 (2004); A. Streltsov, G. Adesso, M. Piani, and D. Bruss, Lett.107,070501(2011). arXiv:1112.3967(2011). [16] W.H.Zurek,PhysicsToday44,36(1991). [32] V.Vedral,Phys.Rev.Lett.90,050401(2003). [17] W.H.Zurek,Rev.Mod.Phys.75,715(2003). [33] J.K.Asbo´th,J.Calsamiglia,andH.Ritsch,Phys.Rev.Lett.94, [18] J. Von Neumann, Mathematical Foundation of Quantum Me- 173602(2005). chanics(PrincetonUniversityPress,Princeton,NJ,1955). [34] S. Gharibian, M. Piani, G. Adesso, J. Calsamiglia, and P. [19] A. Streltsov, H. Kampermann, and D. Bruss, Phys. Rev. Lett. Horodecki,Int.J.Quant.Inf.9,1701(2011). 106,160401(2011).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.