The QCD Equation of State 5 1 Tanmoy Bhattacharya∗† 0 2 LosAlamosNationalLaboratory n E-mail: [email protected] a J 0 Resultsfortheequationofstatein2+1flavorQCDatzeronetbaryondensityusingtheHighly 3 Improved Staggered Quark (HISQ) action by the HotQCD collaboration are presented. The ] strange quark mass was tuned to its physical value and the light (up/down) quark masses fixed t a tom =0.05m correspondingtoapionmassof160MeVinthecontinuumlimit. Latticeswith l s l - temporalextentN =6,8,10and12wereused. SincethecutoffeffectsforN >6wereobserved p t t e tobesmall, reliablecontinuumextrapolationsofthelatticedataforthephenomenologicallyin- h terestingtemperaturesrange130MeV<T <400MeVcouldbeperformed. Wediscussstatistical [ andsystematicerrorsandcompareourresultswithotherpublishedworks. 1 v 2 5 6 7 0 . 1 0 5 1 : v i X r a The32ndInternationalSymposiumonLatticeFieldTheory 23-28June,2014 ColumbiaUniversityNewYork,NY ∗Speaker. †for the HotQCD collaboration: A. Bazavov, T. Bhattacharya, C. DeTar, H.-T. Ding, S. Gottlieb, R. Gupta, P. Hegde,U.M.Heller,F.Karsch,E.Laermann,L.Levkova,S.Mukherjee,P.Petreczky,C.Schmidt,C.Schroeder,R.A. Soltz,W.Soeldner,R.Sugar,M.Wagner,P.Vranas.ThespeakerwassupportedbyDOEgrantNo.DE-KA-1401020 (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ TheQCDEquationofState TanmoyBhattacharya 1. Introduction Hadronicmatterdeconfinesattemperaturesabove155MeV, wherequarkandgluonsconsti- tute the relevant degrees of freedon. Nevertheless, the theory remains non-perturbative because of the strongly interacting infrared sector, and the equation of state (EOS) of this quark-gluon plasmarequiresnon-perturbativeanalysisusingmethodssuchaslatticeQCD.TheEOSisneeded inmodelingthehydrodynamicevolutionofthequark-gluonplasmaprobedinrelativisticheavy-ion collisions and in understanding the cooling of the early universe. Phenomenologically, the most interesting region for lattice QCD analysis is between T sim140 MeV and 400 MeV, i.e., above the validity of hadron-resonance gas models and spanning the temperatures probed in relativistic heavy-ioncollisionsincludingthe‘transition’regionaround154(9)MeV[1]. 2. LatticeDetailsandtheTraceAnomaly We summarize the calculation of EOS [4] by the HotQCD collaboration using 2+1 flavors of fermions with the HISQ/tree action. In this calculation, we varied β =10/g2 in the interval 5.9–7.825 along a line of constant physics (LoCP) defined by the ss meson mass tuned to M ≈ ss 695MeVandthelightquarkmassfixedatm =m /20(M ≈160MeV),asusedinourprevious l s π calculation [1]. To control discretization effects, the calculation was done at four values of the temporalsizeN =6,8,10,and12. Thespatialsizewasfixedat4timesN ,i.e.,N /N =4. The τ τ σ τ 0.212 0.184 r1 fη r1 fK 0.21 0.182 0.18 0.208 0.178 0.206 corrected corrected 0.176 0.204 0.174 0.202 0.172 0.2 0.17 0.198 (a/r1)2 0.168 (a/r1)2 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 (a) (b) 1.69 0.58 1.68 r1 mφ 0.57 w0/r1 MILCB,W 2+, 21++11 1.67 1.66 0.56 1.65 0.55 1.64 0.54 1.63 corrected 1.62 0.53 1.61 0.52 1.6 0.51 11..5589 (a/r1)2 0.5 (a/r1)2 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 (c) (d) Figure 1: The continuum estrapolation of (a) r f , (b) r f , (c) r M and (d) w /r , along with their 1 η 1 K 1 φ 0 1 continuumvalues[2,3]. Thedatahavebeencorrectedforthemassmistuningdescribedlaterinthetext. 2 TheQCDEquationofState TanmoyBhattacharya 1.3 56 datfait Rβ spline sm=0.f7it spline, sm=0.7 1.25 2-loop 54 52 1.2 50 a/r1/f(β) 1.15 48 1.1 46 1.05 44 β β 42 1 6 6.5 7 7.5 6 6.5 7 7.5 (a) (b) Figure 2: (a) The scale, a/r , normalized by the two-loop beta function, f(β), showing a fit and a spline 1 interpolationtothedataand(b)thenon-perturbativeβ-function,R ,comparedtothetwo-loopvalue. β lattice update was done with the RHMC algorithm with mass preconditioning [5]. All the results are reported with the lattice scale set by r =0.3106(14)(8)(4) fm [6]. We checked that in our 1 calculation this corresponded to r =0.4688(41) fm and w =0.1749(14) fm consistent with the 0 0 previousdeterminations0.48(1)(1)fm[7]and0.1755(18)(4)fm[8]respectively. Thisestimateis also consistent, in the continuum limit, with the scale obtained from various fermionic quantities asshowninFig.1. Afterintegratingoutthefermiondegreesoffreedom,theQCDpartitionfunctiononanN3N σ τ hypercubiclatticecanbewrittenas (cid:90) Z(β,N ,N )= ∏dU e−(βSG(U)−SF(U)), (2.1) σ τ x,µ x,µ where s (U) and s (U) are the gauge and fermionic actions in terms of the SU(3) link variables G F U. From this we can calculate the energy density, ε, and pressure, p, in terms of the temperature, T,startingwiththetraceanomaly,Θµµ andusingtherelations d (cid:16) p (cid:17) ε−3p Θµµ(T) Θµµ(T) T = = G + F , (2.2) dT T4 T4 T4 T4 Θµµ(T) G = R [(cid:104)s (cid:105) −(cid:104)s (cid:105) ]N4, (2.3) T4 β G 0 G τ τ Θµµ(T) F = −R R [2m ((cid:104)ψ¯ψ(cid:105) −(cid:104)ψ¯ψ(cid:105) )+m ((cid:104)ψ¯ψ(cid:105) −(cid:104)ψ¯ψ(cid:105) )]N4, (2.4) T4 β m l l,0 l,τ s s,0 s,τ τ wherethesubscriptsτ and0refertoexpectationvaluesatfiniteandzerotemperaturerespectively, and l and s refer to the light and strange quark condensates, respectively. The function R is the β non-perturbativeβ function, r (cid:18)d(r /a)(cid:19)−1 1 1 R (β)= (2.5) β a dβ showninFig.2andR isthemassrenormalizationfunction, m 1 dm (β) s R (β)= . (2.6) m m (β) dβ s 3 TheQCDEquationofState TanmoyBhattacharya 1.05 0.38 Mηss/MLηCssP r1 ms (β/20 b0)4/9 LCP correincpteudt 1.04 0.36 1.03 0.34 1.02 0.32 0.3 1.01 0.28 1 β 0.26 β 0.99 5.8 6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8 5.5 6 6.5 7 7.5 8 8.5 9 (a) (b) Figure3:(a)ThemeasuredvalueofMssnormalizedby695MeVshowingafewpercentmistuningathigher η β. (b)Theone-looprenormalization-group-invariantstrange-quarkmassinunitsofr−1,andthesameafter 1 correctingforthemistuning,alongwithasplineinterpolationandtheasymptoticvalueatinfiniteβ. Since the measured value of M has small deviations from LoCP, as shown in Fig. 3(a), we cor- ss¯ rected it using lowest order chiral perturbation theory. The corrected mass parameter used in the analysisandtoobtainR isshowninFig.3(b). m All our data for the trace anomaly are shown in Fig. 4(a) and compared to our previous cal- culations using the p4 and asqtad lattice actions. The noticeable difference is that the peak in the HISQ/tree data is lower and shifted to the left. In Fig. 4(b), we show that the results for T (cid:46)145 MeV at different N are consistent and agree with those obtained using the hadron reso- τ nancegas(HRG)model. 3. ContinuumExtrapolation Thequalityofthelatticedataissufficientlygoodthatvariousstrategiesforextrapolatingthem to the continuum limit agree within errors. The one with least free parameters is a simultaneous 4.5 (ε-3p)/T4 7 (ε-3p)/T4 NNττ==68 4 Nτ=10 6 Nτ=12 3.5 Nτ=6 5 asqtpa4d 3 NNτ=τ=180 2.5 Nτ=12 4 2 3 1.5 2 1 1 T [MeV] T [MeV] 0.5 200 300 400 500 600 110 120 130 140 150 160 170 180 190 (a) (b) Figure 4: (a) The trace anomaly calculated at four different N compared to our previous calculations [9, τ 10,11]. (b)AmagnificationofthelowtemperatureregionwiththeresultsfromaHRGmodelincludingall hadronsintheParticleDataBook[3]withmasseslessthan2.5GeVshownasasolidline. 4 TheQCDEquationofState TanmoyBhattacharya 1.0 5 0.8 S2 S5 4 S1 0.6 3 Splines S3 S4 -E3p 0.4 2 0.2 1 0.0 0 200 300 400 500 600 150 200 250 300 350 400 T T (a) (b) Figure 5: (a) A B-spline basis with two internal knots that are constrained to go to zero at 130 MeV. (b) TheextrapolationofthelatticedataatN =8,10and12tothecontinuumisshownasablackband. Thefit τ resultsatthevariousN areshownascoloredbands. τ fit that interpolates the data in T and extrapolates in 1/N2 →0. This is implemented by choosing τ a basis of cubic splines that enforces the continuity of the function along with its first and second derivativesinT. AnexampleofaB-splinebasiswithtwoknotsisshowninFig.5(a). Weexplorefitswithcoefficientsofthebasisfunctionschosenaslinearorquadraticfunctions of 1/N2, thus enforcing the same continuity requirements on the extrapolation. To stabilize our τ fits, we match the value and the first temperature-derivative of the continuum extrapolated value on to the HRG results at T =130 MeV. Since with n internal knots, the B-spline basis has n+4 basis elements, the HRG condition at 130 MeV reduces the number of continuum coefficients to n+2. Fortheextrapolationlinearin1/N2,wehaveanadditionaln+4coefficientsandthechoice τ of n knot positions, for a total of 3n+6 degrees of freedom (d.o.f). The fit was performed by minimizing the uncorrelated χ2 and n was chosen according to the Akaike Information Criterion (AIC) of minimizing χ2+2×d.o.f. All the calculations were done using the statistical program R[12]anditsHmiscpackage[13]. To estimate the errors in the fit parameters, we generated 20,001 synthetic data sets drawn assuming a normal distribution with variance given by the estimated error on each measurement. We assigned an independent conservative 10% error on both the value and slope of the HRG at T =130MeV. Tothebootstraperrorwelinearlyaddeda2%errortoaccountforscaleuncertainty indeterminingT. Anextrapolationansatzjustlinearin1/N2 doesnotfittheN =6datawell. Ourbestestimate τ τ isobtainedusingafitwith2knotsandlinearin1/N2totheN =8,10and12dataatT (cid:46)400MeV. τ τ To stabilize the fit at the upper end, we included the N =8 data up to T =610 MeV. This final τ extrapolationisshowninFig.5(b). 5 TheQCDEquationofState TanmoyBhattacharya 4 .45 (ε-3p)/T4 HRG 1146 3/34 psε///TTT444 SB 3.5 12 3 10 2.5 8 2 6 1.5 4 1 T [MeV] 2 T [MeV] 0.5 150 200 250 300 350 400 150 200 250 300 350 400 (a) (b) Figure6: (a)Thecontinuumextrapolatedintegrationmeasure(band)comparedtotheHRGestimate(solid line). (b)Thecontinuumextrapolatedpressure, p,energydensity,ε,andentropydensity,s,(coloredbands) comparedtotheHRGestimate(coloredsolidlines)andtheStephan-Boltzmanvalue(solidblackline)for anidealgas. 4. ResultsandConclusions As shown in Fig. 6, our extrapolated continuum results for the integration measure, pressure, energy density and the entropy density agree in value with the HRG estimates for T (cid:46)150 MeV. Thespeedofsoundandthespecificheatshownin7(b,c),whichdependonhigherderivativesofthe partitionfunction,are,however,notwellpredictedbythismodel. Figs.6(b)and7(c)alsoshowthat thequark-gluonplasmaisstillsignificantlyfarfromanon-interactinggasevenatT ≈400MeV. In Fig. 7(a) and (b) we comapre our results with those by the Wuppertal-Budapest collabo- ration using a stout dicretization of the fermion action [14] and find good agreement. There may be a small discrepancy for T > 350 MeV which is probably unimportant for current heavy ion phenomenology,butneedsfurtherinvestigationtostudytheapproachtothehightemperatureper- turbativeregime. Lastly,thedisagreementswithourpreviousresultsfortheEOSusingthep4and asqtadactionswereduetolargecutoffeffectsinthosecalculations. References [1] A.Bazavov,T.Bhattacharya,M.Cheng,C.DeTar,H.T.Ding,etal. Phys.Rev.,D85:054503,2012, doi:10.1103/PhysRevD.85.054503,arXiv:1111.1710. [2] C.T.H.Davies,E.Follana,I.D.Kendall,G.PeterLepage,andC.McNeile,HPQCDCollaboration. Phys.Rev.,D81:034506,2010,doi:10.1103/PhysRevD.81.034506,arXiv:0910.1229. [3] J.Beringeretal.,ParticleDataGroup. Phys.Rev.,D86:010001,2012, doi:10.1103/PhysRevD.86.010001. [4] A.Bazavovetal.,HotQCDCollaboration. Phys.Rev.,D90(9):094503,2014, doi:10.1103/PhysRevD.90.094503,arXiv:1407.6387. [5] M.A.Clark,Ph.deForcrand,andA.D.Kennedy. PoS,LAT2005:115,2006,arXiv:hep-lat/0510004. [6] A.Bazavovetal.,MILCCollaboration. PoS,LATTICE2010:074,2010,arXiv:1012.0868. [7] Y.Aoki,SzabolcsBorsanyi,StephanDurr,ZoltanFodor,SandorD.Katz,etal. JHEP,0906:088, 2009,doi:10.1088/1126-6708/2009/06/088,arXiv:0903.4155. 6 TheQCDEquationofState TanmoyBhattacharya 4.5 4 3.5 3 2.5 2 (ε-3p)/T4 1.5 p/T4 s/(4 T3) 1 0.5 T [MeV] 150 200 250 300 350 400 (a) 0.34 0.32 c2s 60 CV/T3 free 0.3 0.28 50 0.26 0.24 40 cont.exp. HISQ/tree combined fit to p, ε 0.22 stout 30 HRG 0.2 HRG 0.18 20 0.16 0.14 T [MeV] 10 T [MeV] 0.12 150 200 250 300 350 400 100 150 200 250 300 350 400 450 500 (b) (c) Figure7: (a)Comparisonofourresultsforpressure, p,energydensity,ε,andentropydensity,s,(colored bands)withtheresultsfromtheWuppertal-Budapestcollaborationusingthestoutdiscretization[14](grey bands). (b)Ourresultsforthespeedofsound,c (coloredband)comparedtothestoutresults(datapoints) s andtheHRGestimate(blacksolidline). (c)Ourresultsforthespecificheat,C ,(coloredband)compared V totheHRGresults(coloredline)andthevalueforanon-interactinggas(horizontalblackline). Alsoshown istheresultfromaparameterizationdesignedtothefitthepressureandenergydensity(blackcurve). [8] SzabolcsBorsanyi,StephanDurr,ZoltanFodor,ChristianHoelbling,SandorD.Katz,etal. JHEP, 1209:010,2012,doi:10.1007/JHEP09(2012)010,arXiv:1203.4469. [9] M.Cheng,N.H.Christ,S.Datta,J.vanderHeide,C.Jung,etal. Phys.Rev.,D77:014511,2008, doi:10.1103/PhysRevD.77.014511,arXiv:0710.0354. [10] A.Bazavov,T.Bhattacharya,M.Cheng,N.H.Christ,C.DeTar,etal. Phys.Rev.,D80:014504,2009, doi:10.1103/PhysRevD.80.014504,arXiv:0903.4379. [11] P.Petreczky. Nucl.Phys.,A830:11C–18C,2009,doi:10.1016/j.nuclphysa.2009.10.086, arXiv:0908.1917. [12] RCoreTeam. RFoundationforStatisticalComputing,Vienna,Austria,2014, url:http://www.R-project.org/. [13] FrankEHarrellJr,withcontributionsfromCharlesDupont,andmanyothers. 2014, url:http://CRAN.R-project.org/package=Hmisc. Rpackageversion3.14-4. [14] SzaboclsBorsanyi,ZoltanFodor,ChristianHoelbling,SandorD.Katz,StefanKrieg,etal. Phys.Lett., B730:99–104,2014,doi:10.1016/j.physletb.2014.01.007,arXiv:1309.5258. 7