ebook img

The puzzling case of the accreting millisecond X-ray pulsar IGR J00291+5934: flaring optical emission during quiescence PDF

0.23 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The puzzling case of the accreting millisecond X-ray pulsar IGR J00291+5934: flaring optical emission during quiescence

Astronomy&Astrophysicsmanuscriptno.IGRJ00291_paper_arXive (cid:13)cESO2017 January11,2017 The puzzling case of the accreting millisecond X–ray pulsar IGR J00291+5934: flaring optical emission during quiescence(cid:63) M.C.Baglio1,2, S.Campana2, P.D’Avanzo2, A.Papitto3, L.Burderi4, T.DiSalvo5, T.MuñozDarias6,7, N. Rea8,9, D.F.Torres8,10 1 Universitàdell’Insubria,DipartimentodiScienzaeAltaTecnologia,ViaValleggio11,I-22100Como,Italy e-mail:[email protected] 2 INAF,OsservatorioAstronomicodiBrera,ViaE.Bianchi46,I-23807Merate,Italy 3 INAF,OsservatorioAstronomicodiRoma,ViadiFrascati33,I-00044MontePorzioCatone,Italy 4 DipartimentodiFisica,UniversitàdegliStudidiCagliari,SPMonserrato-Sestukm0.7,09042Monserrato,Italy 7 5 UniversitàdegliStudidiPalermo,DipartimentodiFisicaeChimica,viaArchirafi36,I-90123Palermo,Italy 1 6 InstitutodeAstrofísicadeCanarias,E-38205LaLaguna,Tenerife,Spain 0 7 DepartamentodeAstrofísica,Univ.deLaLaguna,E-38206LaLaguna,Tenerife,Spain 2 8 InstituteofSpaceSciences(CSIC-IEEC),CampusUAB,CarrerCanMagranss/n,E-08193Barcelona,Spain 9 AntonPannekoekInstituteforAstronomy,UniversityofAmsterdam,Postbus94249,NL-1090GEAmsterdam,TheNetherlands n 10 InstitucióCatalanadeRecercaiEstudisAvançats(ICREA)Barcelona,Spain a J 9 ABSTRACT ] E We present an optical (gri) study during quiescence of the accreting millisecond X-ray pulsar IGR J00291+5934 performed with H the10.4mGranTelescopioCanarias(GTC)inAugust2014.Althoughthesourcewasinquiescenceatthetimeofourobservations, . itshowedastrongopticalflaringactivity,morepronouncedathigherfrequencies(i.e.thegband).Aftersubtractingtheflares,we h tentativelyrecoveredasinusoidalmodulationatthesystemorbitalperiodinallbands,evenwhenasignificantphaseshiftwithrespect p to an irradiated star, typical of accreting millisecond X-ray pulsars, was detected. We conclude that the observed flaring could be - o a manifestation of the presence of an accretion disc in the system. The observed light curve variability could be explained by the r presenceofasuperhump,whichmightbeanotherproofoftheformationofanaccretiondisc.Inparticular,thediscatthetimeofour t observationswasprobablypreparingthenewoutburstofthesource,whichoccurredafewmonthslater,in2015. s a Keywords. [ 1 v 1. Introduction on,systemsalternatingwithinashorttimefromtheAMXPstate 1 to the millisecond radio pulsar state were discovered (named 2AccretingmillisecondX-raypulsars(AMXPs)areasubclassof transitionalpulsars),whichfullyvalidatedthepicture(Archibald 3 transient low-mass X-ray binaries (LMXBs) hosting a weakly 2 etal.2009;Papittoetal.2013;deMartinoetal.2013;Bassaetal. magnetised fast-spinning (a few ms) neutron star (NS) that ac- 0 2014;Royetal.2015). cretes matter from a low-mass companion (M (cid:46) 1M ). Typi- . (cid:12) 1cally, their spin periods span between 1.7 and 5.4 ms, whereas Optical observations of AMXPs during quiescence are the 0theorbitalperiodsrangebetween40minand19hr(seePatruno onlywaytostudythecompanionstar,sinceduringoutburstsits 7 emissionisotherwiseoverwhelmedbythatoftheaccretiondisc. &Watts2012forareview). 1 Theopticallightcurveresultingfromtheseobservationsisusu- Formanyyears,AMXPswerethoughttobetheprogenitors : allymodulatedattheorbitalperiodofthesource.Whenthelight vof millisecond radio pulsars. According to this recycling sce- inario (Alpar et al. 1982), millisecond radio pulsars arise from curve is dominated by the elongated, Roche-lobe deformed ge- X ometry of the companion star, a double-humped light curve is thespin-upoftheneutronstarshostedinLMXBsasaresultof r observedwithtwoequalmaximaatthedescendingandascend- the transfer of angular momentum (and mass) from their com- a ing nodes of the companion star (orbital phases 0.25 and 0.75, panion stars. After a mass accretion phase, during which the respectively) and two unequal minima at superior and inferior systemappearsasabright(possiblytransient)X-raysource,the conjunction (orbital phases 0 ad 0.5, respectively). In systems mass transfer rate declines and allows for the re-activation of a withsmallorbitalseparations,however,thelightcurvecanpos- rotation-poweredpulsarthatemitsfromtheradiotothegamma- sess one single maximum at phase 0.5 when irradiation from rayband.ThefirstAMXPthatconfirmedthisscenariowasSAX the compact object plays a major role and dominates geomet- J1808.4–3658,inwhichacoherentpulsedsignalat2.5msinthe ric effects (see e.g. D’Avanzo et al. 2009). A single-maximum X-rays was discovered (Wijnands & van der Klis 1998). Later lightcurveisoftenobservedintransientLMXBsinquiescence, (cid:63) Based on observations made with the Gran Telescopio Canarias whichtestifiestothestrengthofirradiationeffects.Sincetheob- (GTC),installedintheSpanishObservatoriodelRoquedelosMucha- servedquiescentX-rayluminosityisnotsufficienttoaccountfor chos of the Instituto de Astrofísica de Canarias, in the island of La theobservedopticalmodulation,theenergyreleasedbyarotat- Palma. ingmagneticdipolehasbeensuggestedasthemainresponsible Articlenumber,page1of6 A&Aproofs:manuscriptno.IGRJ00291_paper_arXive factorforirradiationinquiescentLMXBsandAMXPs(Burderi 3. Results etal.2003;Campanaetal.2004). The system IGR J00291+5934 is an AMXP that contains As can be observed in Fig. 1, the light curves of IGR J00291+5934areplaguedbystrongflaringactivitythatispromi- the fastest X–ray pulsar (1.67 ms) as compact object and has nentinalltheobservedbandswithasmallpreferenceforshorter anorbitalperiodof2.46hr(Gallowayetal.2005).Thesystem wavelengths,andwithupto1magvariability.Wetriedtofilter wasfirstdetectedduringanoutburston2004December2inan the flares by determining a magnitude threshold by visual in- INTEGRAL observation (Eckert et al. 2004; Shaw et al. 2005). spectionforeachband.Onthiswedefinetheflaringactivity(i.e. Thecompanionstaristhoughttobeahotbrowndwarf,derived g = 23.25,r = 22.25,andi = 21.40).Unfortunately,adetailed for an isotropic distribution of inclinations and a NS mass of analysis such as reported in Jonker et al. (2008) is not possible 2M (Galloway et al. 2005). The source distance has not been (cid:12) with our dataset because of the poor temporal resolution. Af- firmly determined to date (a lower limit of ∼ 4 kpc has been ter this rough filtering, we tried to recover the possible orbital given by Galloway et al. 2005 by equating the long-term mass modulation, hidden by the flares (see Fig. 1). We fit the three accretionratededucedfromthefluenceobservedinoutburstto folded light curves together, imposing them to have the same theexpectedgravitational-wave-drivenmasstransferrate). orbital phase; the reduced χ2 of the best fit is not compelling IGR J00291+5934 was first observed during quiescence by ( χ2/dof ∼ 187.2/18), however, probably due to a combined Chandra and ROSAT in 2005 at a 0.5-10 keV luminosity level effect of the very small errors and residual flaring activity. The of∼1032ergs−1(Jonkeretal.2005)andwaslaterconfirmedby resultsofthefitsarereportedinTable1. XMM-Newtonobservations(Campanaetal.2008). The source IGR J00291+5934 appears brighter than in TheopticalcounterpartwasidentifiedwithanR∼17.4mag D’Avanzo et al. 2007 and Jonker et al. 2005 (0.6-0.8 mag and star during outburst with weak He II and Hα emission (Fox 0.2-0.3 mag, respectively). This effect is confirmed even when & Kulkarni 2004; Roelofs et al. 2004; Torres et al. 2008; see takingthedifferentfiltersusedbytheseauthorsintoaccount(see also Lewis et al. 2010). The quiescent optical counterpart was Sec.4).Inaddition,thephaseofthemaximumisnotat0.5(su- discovered by D’Avanzo et al. (2007) and Torres et al. (2008) periorconjunctionofthecompanionstar)butat0.21±0.02.A as a faint R = 23.2 ± 0.1 object. Sinusoidal variability at the smallshiftwasalsofoundbyJonkeretal.(2005),whofoundthe knownorbitalperiodwithanRand I semi-amplitudeof∼0.2- maximumatphase0.34±0.03. 0.3 mag suggested strong irradiation (D’Avanzo et al. 2007). The semi-amplitude of the modulations (Table 1) is in line Based on VRIJHK photometry, the required irradiating lumi- with previous results by D’Avanzo et al. (2007), who found a nosityis∼ 5×1033 ergs−1,whichismuchhigherthantheob- modulation of 0.22±0.09 by combining R and I data, but not served X-ray luminosity in quiescence (D’Avanzo et al. 2007). with Jonker et al. (2005), who found a very small amplitude in Jonker et al. (2008) observed IGR J00291+5934 in quiescence theI bandof0.06±0.01.However,weemphasisethatallthese for several orbital periods in the I band. They found evidence resultsarestronglydependentontheflarefiltering. of strong flaring (up to 1 mag). After removal of the strongest Inordertoinvestigatethenatureoftheflaringactivity,weex- opticalflares,aweakorbitalmodulationisstillpresent. tractedthespectralenergydistribution(SED,gri)aroundphase In this paper we investigate the quiescent optical emission 0.2 (where a prominent flare is present) and around phase 0.9 of IGR J00291+5934 in more detail through observations per- (when the system is likely quiescent). Data in the r band were formed with the 10.4m Gran Telescopio Canarias (GTC). We taken as reference, and gi data (mag vs MJD) were linearly in- obtainedg,r,idataovermorethanoneorbitalcycle(seeSect.2). terpolated to estimate the flux at exactly the same phase (Fig. Strongflaringvariabilityisalsoapparentinourdata.Wederive 2).Datawerethencorrectedforintrinsicabsorptionevaluatedin anorbitalmodulationandspectralenergydistributionsclosetoa D’Avanzo et al. (2007) and quoted in the last column of Table flarepeakandduringanintervaloflowflaringactivity(Sect.3). 1. The two SEDs are markedly different. The flare SED can be The discussion is presented and conclusions are drawn in Sect. fitted with a power law with index α = 0.31±0.35 (1σ c.l.), 4. indicatingthattheemissionpeakislikelyathigherfrequencies than the g band. The index is fully consistent with what is pre- dicted for a multi-temperature accretion disc with T > 30,000 2. Observationsanddataanalysis K.The“quiescent”SEDinsteaddecreaseswithfrequency,with ThesourceIGRJ00291+5934wasobservedinquiescencedur- a power-law best fit of α = −1.06 ± 0.35. This is difficult to interpret and could arise at the downturn of an accretion disc ing the night of 2014 August 31, using the Optical System spectrum, immediately after the peak (in this case, a disc tem- for Imaging and low-Intermediate-Resolution Integrated Spec- perature of T ∼ 10,000 K is needed), or it could be the tail of troscopy (OSIRIS; Cepa et al. 2000) camera mounted on the the emission coming from the companion star (a brown dwarf; GTCwiththeg,r,ifilters(PI:A.Papitto).Theseeingwasgood and remained < 1(cid:48)(cid:48). Fifteen images in each g,r,i filters were Gallowayetal.2005). taken,withanexposuretimeof240s,180s,and150s,respec- tively (and cycling among filters), with the aim of covering the 4. Discussion 2.48hrorbitalperiod. Image reduction was carried out using the standard proce- Wereportastudyoftheoptical(gri)lightcurvesoftheLMXB dures, which consist of subtracting an average bias frame and IGRJ00291+5934performedduringquiescence,followingtwo dividing by a normalised flat frame. Aperture photometry was studies in the NIR–optical of the quiescent light curves of the performedonthefieldusingthedaophottask(Stetson1987)for samesystem(D’Avanzoetal.2007;Jonkeretal.2008)thatre- allthesourcesinthefield.Thephotometriccalibrationwasmade porteddifferentresults. against the Stetson standard field star PG1528 (Stetson 2000). D’Avanzoetal.(2007)providedopticalandNIRphotometry Weperformeddifferentialphotometrywithrespecttoaselection ofthesourceduringquiescence,withdataacquiredin2005,less ofisolatedandnon-saturatedfieldstars,inordertominimiseany thanoneyearaftertheendofanoutburstin2004(Eckertetal. possiblesystematiceffect. 2004;Shawetal.2005),andfoundsinusoidalvariabilitymodu- Articlenumber,page2of6 M.C.Baglioetal.:OpticalphotometryofIGRJ00291+5934duringquiescence Fig.1.Leftpanel:Fromtoptobottom,g,r,ilightcurves(magvs.MJD)ofthesystemIGRJ00291+5934(dots)andofacalibrationstar(squares). Circleddotsrepresentthepossibleflaringactivity.Rightpanel:Fromtoptobottom,g,r,ilightcurves(magvs.orbitalphase)ofthesystemIGR J00291+5934.Circleddotsrepresentthepointscorrespondingtotheflaringactivity.Superimposedonthelightcurveswesketchtheconstantplus sinusoidalfitofthedata,carriedoutafterfilteringtheflaresandimposingthesamephaseonallthelightcurvesandwiththeperiodfixedto1.In therband,thepointcorrespondingtophase0.73isconsideredasaflareforcontinuitywiththeotherbands.Phase0correspondstotheinferior conjunctionofthecompanionstar.WeevaluatedthephasesbasedontheX-rayephemeridesofGallowayetal.(2005).Twoperiodsofthesystem aredrawnforclarity. latedatthesource2.46horbitalperiod,withasemi–amplitude tributionofIGRJ00291+5934,consistentwithanirradiatedstar of 0.2–0.3 mag, in both the R and the I band. The light curves only,withnoneedforaresidualaccretiondisc. peakedatphase∼0.5,suggestingastronglyirradiatedcompan- ionstar,asexpectedforAMXPs.Thisconclusionwasalsosup- In light of these results, Jonker et al. (2008) reported puz- portedbythemodellingoftheNIR/opticalspectralenergydis- zlingfindings.In2006thesource,stillinquiescence,showeda strongflickeringactivityintheIband,withflaresupto∼1mag Articlenumber,page3of6 A&Aproofs:manuscriptno.IGRJ00291_paper_arXive Table1.ResultsofthephotometryofIGRJ00291+5934.Themeanmagnitudesarenotcorrectedforreddening.Thereddeningisobtainedstarting fromtheN valuereportedinD’Avanzoetal.(2007)(lastcolumn).Errorsareindicatedatthe90%c.l. H Filter λ TotalExposure Mean Amplitude A c λ (Å) (s) Magnitude g 4770 3600 23.45±0.02 0.15±0.04 2.73±0.07 r 6231 2700 22.47±0.01 0.10±0.02 1.88±0.07 i 7625 2250 21.65±0.02 0.15±0.03 1.38±0.07 over,theorbitalphasecorrespondingtothemaximumbrightness is 0.21±0.02 in all bands, significantly shifted with respect to what is expected for an irradiated object (phase 0.5; D’Avanzo et al. 2007). A similar phase shift was also detected by Jonker etal.(2008). From its discovery in 2004 up to now, IGR J00291+5934 underwentthreedifferentoutbursts,in2004(Eckertetal.2004; Shaw et al. 2005), 2008 (Lewis et al. 2010), and 2015 (Cum- mings et al. 2015; Sanna et al. 2015; Russell & Lewis 2015; Sanna et al. 2016; Ferrigno et al. 2016; Patruno 2016). After eachoutburst,theaccretiondiscthatsurroundsthecompactob- ject in an LMXB is expected to empty out, leaving the com- panion star alone as the only (or main) responsible source for theNIR–opticalemission.Thiscaneasilyexplainwhyafterqui- escence begins, an observer usually sees a sinusoidal (or ellip- soidal)modulatedlightcurveintheNIR/optical.However,dur- Fig. 2. Spectral energy distributions (SED) of the system IGR ingquiescencethereplenishmentoftheaccretiondisccanstart J00291+5934intwodifferentepochs:phase0.2(redsqares)andphase again,thusexplainingwhyinagreatnumberofX–raybinaries 0.9(bluedots).Phase0.2correspondstoastrongflareactivityforthe during quiescence a contribution in the optical that is due to a system.ThefitsofthetwoSEDswithapowerlawareshown(dashed residual accretion disc is indeed observed (see e.g. D’Avanzo anddottedlines,phase0.2and0.9,respectively).Oppositebehaviours canbeobserved(α=0.31±0.35andα=−1.06±0.35,respectively). etal.2009).InthecaseofIGRJ00291+5934,itispossiblethat afterthe2004outburstthecontributionoftheaccretiondisc,at Allthepointsarecorrectedforreddening,theparametersofwhichare reportedinTable1. thattimealmostempty,totheopticalemissionwasminimal,thus leavingthecompanionstartodominatetheoverallemissionand explainingthesinusoidallightcurvesreportedinD’Avanzoetal. (2007).AsshowninD’Avanzoetal.(2007),thecompanionstar anddurationof∼ 10min,thathidasinusoidalmodulationthat wasnotabletoaccountfortheobservedopticalmodulation,thus is mosst likely due to the irradiated companion star. When the rulingoutastrongcontributionfromtheaccretiondisc.Oursug- flaresweresubtracted,Jonkeretal.(2008)wasfinallyabletoob- gestionwasthenthatthecompanionstarwasstronglyirradiated servethesinusoidalmodulationoftheI bandlightcurve,which by an additional energy source, which we tentatively identified waspeakedatphase0.34.Moreover,anoverall(non-significant) intherelativisticwindofaspinningneutronstar. brighteningofthesourceof0.5±0.2magwasobservedwithre- Afterthat,theaccretiondisccontinuedreplenishing,getting specttowhatwasfoundbyD’Avanzoetal.(2007),consistently readyforthenewoutburstin2008.Exactly699daysbeforethe with a somewhat enhanced activity of the source in 2006 with outburstbegan,Jonkeretal.(2008)observedthesystemagainin respecttonormalquiescence(2005). theopticalin2006,andthecontributionoftheaccretiondiscwas Our observations were acquired in 2014, eight years after indeednolongernegligible:thesystemwasbrighterandshowed thosereportedinJonkeretal.(2008).Duringthistime,thesys- flares.Thesamemighthaveoccurredevensomeyearslater:our temunderwentalong-lastingoutburst(∼ 100days;Lewisetal. observationsin2014weremadeonly327daysbeforethe2015 2010) in 2008 and then returned to quiescence, where it re- outbursttookplace,thuspossiblyexplainingwhyastrongflar- mained until the epoch of our observations. Similarly to what ing activity was detected, together with the brightening of the isreportedinJonkeretal.(2008),ourlightcurvesdonotshow sourcewithrespecttothelevelofnormalquiescence(D’Avanzo aclearsinusoidaltrend(Fig.1).Inparticular,astrongflickering etal.2007).AsimilarbehaviourwasalsostatedinWangetal. activityisdetectedinallbands,abovealling,withflaresupto (2013)fortheAMXPSAXJ1808.4-3658,forwhichabrighten- ∼1maganddurationoftheorderoftensofminutes(i.e.compa- ingoftheaccretiondiscemission1.5monthsbeforetheonsetof rabletothoseobservedbyJonkeretal.2008).Afterexcludingall abrightoutburstwasobserved. flares(Fig.1),thelightcurvesshowahintofasinusoidalmod- The observations carried out by Jonker et al. (2008) and ulation at the known orbital period, particularly in the i band, in this work instead show a source with a higher luminosity where the irradiated companion star is expected to contribute and strong flaring. An orbital modulation in the optical band is the most. The fit of the light curves with a constant plus sinu- barely visible in the data, even if it is detected at a level simi- soidmodelresultedinai–bandmeanmagnitudeof21.65±0.02, lartothemodulationobservedbyD’Avanzoetal.(2007).This whichcorrespondstoI =21.18±0.02,accordingtothetransfor- suggests that the companion star contribution remained simi- mationsreportedinJordietal.(2006).Thisshowsthatthesys- lar, but that the disc contribution grew considerably. With the tembrightenedfurtherby0.72±0.09magin2014withrespect growth of the accretion disc, an increase in X-ray luminosity to2006(Jonkeretal.2008),withasignificanceof7.8σ.More- might also be expected. This was not observed, however, as Articlenumber,page4of6 M.C.Baglioetal.:OpticalphotometryofIGRJ00291+5934duringquiescence confirmed by pointed Swift observations on 2014, August 16 mustthenberelatedtothetimescaleofshearingintheaccretion (ID:00031258002). In particular, no source is detected in a 20- disc,andshouldbemoreefficientintheouterregionsofthedisc, pixel radius around the position of the target, with a 3σ upper wheretheamountofshearingishigher(seeZuritaetal.2003). limit on the count rate of 9×10−3 countss−1, which translates Ifweassumethatthedurationofflaresislinkedtotheirlocation intoanupperlimitof6×10−13ergcm−2s−1ontheunabsorbedX- intheaccretiondisc,flareswiththelongestdurationshouldthen rayflux(forN =6×1021cm−2andapowerlawwithindex2.4; bethemostsignificant.Sincetotestthisscenariowearestrongly H Torresetal.2008).Thetwostatements(largerdiscemissionin limitedbythedurationofourobservationsandstatistics,wecan theopticalandlackofX–rayemission)canbereconciledassum- leavethispossibilityopen. ingsomeinefficientaccretionmechanism,suchasthepropeller mechanism(seee.g.Campanaetal.2016). The observation of a strong flaring activity (Fig. 1) shows 5. Conclusions thatthecompanionstarofthesystemisnottheprincipalplayer Wepresentedtheresultsofopticalgriphotometryoftheaccret- intheopticalemissionofthesystem.Theobservationofacon- ing millisecond X–ray pulsar IGR J00291+5934 during quies- sistent phase shift of the optical light curves (after the subtrac- cence. Observations were carried out with the GTC equipped tion of the flares) with respect to what is expected for an irra- withOSIRISon2014,August31. diated AMXP (phase 0.5) is further evidence. In particular, the The system displays a strong flaring activity in all bands, phase shift suggests that at least part of the modulation that is above all in the g band. This flaring activity is comparable to sketched in Fig. 1 may arise in a somewhat different location, the activitiy previously observed by Jonker et al. (2008) in in- likeanasymmetryinanaccretiondisc(hotspotorsuperhump), tensity(∼1mag)andduration.Whentheflaresweresubtracted, with a periodicity that is different from the orbital period. Our weobservedanindicationofasinusoidalmodulationatthesys- lightcurvesseemstosuggestanon–negligiblecontributionofa temorbitalperiod.Asinthecaseoftheobservationsreportedin newlyformedaccretiondisc.Thesameisalsosupportedbythe Jonkeretal.(2008),aphaseshiftofthelightcurveswithrespect spectralenergydistributionbuiltduringaflaringevent(Fig.2), to phase 0.5 is detected. All our optical light curves are con- whichisfullyconsistentwithamulti-temperatureaccretiondisc sistentwithanenhancedactivityofthesource,withasignificant withT > 30,000K(seeSect.3).Asimilarconclusionwasalso ∆Iwithrespecttotheobservationsduringquiescencereportedin reached by Jonker et al. (2008), who proposed a superhump as D’Avanzoetal.(2007)of0.7±0.1mag.Finally,thespectralen- thepossiblecauseforboththeobservedvariabilityandthephase ergydistributionbuiltduringaflare(atphase∼0.2)wasfittedby shift of their light curve. This is doubtful, however: although apowerlawwithindexα=0.31±0.32,whichisconsistentwith someconditionsfortheformationofasuperhumparefullfilled what is predicted for a multi-colour black body of an accretion in the case of IGR J00291+5934 (e.g. the mass ratio between discwithT >30,000K.Alltheseresultscanbeexplainedwhen thecompanionstarandthecompactobjectis(cid:46)0.3;Whitehurst we consider that the principal player in the quiescent emission &King1991),othersarenot.Inparticular,itisknownthatsu- ofIGRJ00291+5934ofourdatasetisnotthecompanionstar,as perhumpstendtodevelopmainlyduringoutbursts,thatis,when expectedforaquiescentLMXB,buttheaccretiondisc.Thedisc, theaccretiondiscextensionisthelargest,andthisisnotthecase afteritwasemptiedoutduringthe2008outburst,startedreplen- for the observations reported in Jonker et al. (2008) and in this ishinginpreparationtothenextoutburst(whichoccurredinJuly work. However, in some rare cases superhumps have been de- 2015). In this way, both the observed brightening of the source tectedevenduringquiescence(Neilsenetal.2008),whichleaves and the phase shift of the light curves can be explained, since thishypothesisstillopen. the main optical emitter in the system might be an asymmetry Mass transfer instabilities, magnetic reconnection events, inthedisc,likeahotspotorasuperhump.Thecontroversialre- andX-rayreprocessingintheaccretiondisc(Hynesetal.2002; sultsreportedinD’Avanzoetal.(2007)andJonkeretal.(2008) Zurita et al. 2003) might in principle also explain a strong flar- couldalsobeaccountedforinthisscenario:inthefirstcase,the ing activity in LMXBs. No enhanced X-ray activity has been systemwasobservedaftertheendofanoutburst,whichproba- detected in IGR J00291+5934 near the epoch of our observa- blylefttheaccretiondiscalmostempty,thusexplainingwhythe tionsin2014.Forthisreason,X-rayreprocessingcanbesafely typical modulation due to the irradiated companion star alone ruled out. It has to be noted that X–ray flares are observed in wasobserved.Inthelatter,instead,thesystemwaspreparingit- some transitional millisecond pulsars (XSS J12270-4859 and selfforthe2008outburst;thustheaccretiondiscwasnolonger PSR J1023+0038; de Martino et al. 2013; Patruno et al. 2014; emptyandprobablystronglycontributedtothequiescentoptical Bogdanov et al. 2015). However, in these cases, the flaring ac- emissionofthesystem(asinthecaseofthe2014dataset). tivityisonlydetectedintheX-raysandhasdifferenttimescales Accordingtothispicture,wethusconcludethattheobserved than in IGR J00291+5934, suggesting that a different mecha- 2014 flaring activity might indicate an accretion disc during nismisatplay. quiescence. Magnetic reconnection events in the disc might be Instabilities in the mass transfer rate from the donor star a likely possibility. Further multi–wavelength optical observa- mightinducevariabilityatthehotspot,forexample.Thisisthe tions during quiescence, possibly over longer timescales, could point where accreting matter impacts the accretion disc. If this shed light on the true origin of the quiescent flares of IGR isthecase,theflaringactivityshouldbehigherwhenthevisibil- J00291+5934. ityofthehotspotisatitsmaximum,thatis,atphase0.8(Zurita etal.2003).Sinceatphase0.8oursystemseemstobequiet(Fig. Acknowledgements. PDAandSCacknowledgetheItalianSpaceAgency(ASI) forfinancialsupportthroughtheASI-INAFcontractI/004/11/.APacknowledges 1),however,wecanexcludethispossibilityaswell. supportviaanEUMarieSklodowska-CurieIndividualFellowshipundercon- Magnetic reconnection events in the disc could also trigger tractNo.660657-239TMSP-H2020-MSCA-IF-2014,aswellasfruitfuldiscus- theflares(Hynesetal.2002;Zuritaetal.2003).Inparticular,dif- sionwiththeinternationalteamon“Thedisk-magnetosphereinteractionaround ferentialmotionsintheaccretiondiscplasmamayproducemag- transitionalmillisecondpulsars”atISSI(InternationalSpaceScienceInstitute), Bern.TMDacknowledgessupportviaaRamónyCajalFellowship(RYC-2015- netic fields, and when the reconnection between vertical field 18148)andbytheSpanishMinisteriodeEconomiaycompetitividadundergrant linesofoppositesignsoccurs,someenergyisdissipated,leading AYA2013-42627.NRandDFTacknowledgesupportbytheSpanishMinisterio to the emission of flares. In this scenario, the duration of flares deEconomiaycompetitividad(MINECO)undergrantAYA2015-71042-Pand Articlenumber,page5of6 A&Aproofs:manuscriptno.IGRJ00291_paper_arXive theGeneralitatdeCatalunyaviagrantSGR2014-1458aswellastheProgramme CERCA.NRissupportedbyanNWOVidiAward. References Alpar,M.A.,Cheng,A.F.,Ruderman,M.A.,&Shaham,J.1982,Nature,300, 728 Archibald,A.M.,Stairs,I.H.,Ransom,S.M.,etal.2009,Science,324,1411 Bassa,C.G.,Patruno,A.,Hessels,J.W.T.,etal.2014,MNRAS,441,1825 Bogdanov,S.,Archibald,A.M.,Bassa,C.,etal.2015,ApJ,806,148 Burderi,L.,DiSalvo,T.,D’Antona,F.,Robba,N.R.,&Testa,V.2003,A&A, 404,L43 Campana,S.,CotiZelati,F.,Papitto,A.,etal.2016,A&A,594,A31 Campana,S.,D’Avanzo,P.,Casares,J.,etal.2004,ApJ,614,L49 Campana,S.,Stella,L.,Israel,G.,&D’Avanzo,P.2008,ApJ,689,L129 Cepa,J.,Aguiar,M.,Escalera,V.G.,etal.2000,inProc.SPIE,Vol.4008,Op- tical and IR Telescope Instrumentation and Detectors, ed. M. Iye & A. F. Moorwood,623–631 Cummings,J.R.,Page,K.L.,Palmer,D.M.,Racusin,J.L.,&Siegel,M.H. 2015,GRBCoordinatesNetwork,18051 D’Avanzo,P.,Campana,S.,Casares,J.,etal.2009,A&A,508,297 D’Avanzo,P.,Campana,S.,Covino,S.,etal.2007,A&A,472,881 deMartino,D.,Belloni,T.,Falanga,M.,etal.2013,A&A,550,A89 Eckert,D.,Walter,R.,Kretschmar,P.,etal.2004,TheAstronomer’sTelegram, 352,1 Ferrigno,C.,Bozzo,E.,Sanna,A.,etal.2016,ArXive-prints Fox,D.B.&Kulkarni,S.R.2004,TheAstronomer’sTelegram,354,1 Galloway, D. K., Markwardt, C. B., Morgan, E. H., Chakrabarty, D., & Strohmayer,T.E.2005,ApJ,622,L45 Hynes,R.I.,Zurita,C.,Haswell,C.A.,etal.2002,MNRAS,330,1009 Jonker,P.G.,Campana,S.,Steeghs,D.,etal.2005,MNRAS,361,511 Jonker,P.G.,Torres,M.A.P.,&Steeghs,D.2008,ApJ,680,615 Jordi,K.,Grebel,E.K.,&Ammon,K.2006,A&A,460,339 Lewis,F.,Russell,D.M.,Jonker,P.G.,etal.2010,A&A,517,A72 Neilsen,J.,Steeghs,D.,&Vrtilek,S.D.2008,MNRAS,384,849 Papitto,A.,Ferrigno,C.,Bozzo,E.,etal.2013,Nature,501,517 Patruno,A.2016,ArXive-prints Patruno,A.,Archibald,A.M.,Hessels,J.W.T.,etal.2014,ApJ,781,L3 Patruno,A.&Watts,A.L.2012,ArXive-prints Roelofs,G.,Jonker,P.G.,Steeghs,D.,Torres,M.,&Nelemans,G.2004,The Astronomer’sTelegram,356,1 Roy,J.,Ray,P.S.,Bhattacharyya,B.,etal.2015,ApJ,800,L12 Russell,D.M.&Lewis,F.2015,TheAstronomer’sTelegram,7837 Sanna,A.,Pintore,F.,Bozzo,E.,etal.2016,ArXive-prints Sanna,A.,Pintore,F.,Riggio,A.,etal.2015,TheAstronomer’sTelegram,7836 Shaw,S.E.,Mowlavi,N.,Rodriguez,J.,etal.2005,A&A,432,L13 Stetson,P.B.1987,PASP,99,191 Stetson,P.B.2000,PASP,112,925 Torres,M.A.P.,Jonker,P.G.,Steeghs,D.,etal.2008,ApJ,672,1079 Wang,Z.,Breton,R.P.,Heinke,C.O.,Deloye,C.J.,&Zhong,J.2013,ApJ, 765,151 Whitehurst,R.&King,A.1991,MNRAS,249,25 Wijnands,R.&vanderKlis,M.1998,ApJ,507,L63 Zurita,C.,Casares,J.,&Shahbaz,T.2003,ApJ,582,369 Articlenumber,page6of6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.