ebook img

The Protective Effect of Antioxidants Consumption on Diabetes and Vascular Complications PDF

51 Pages·2016·3.37 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Protective Effect of Antioxidants Consumption on Diabetes and Vascular Complications

diseases Review The Protective Effect of Antioxidants Consumption on Diabetes and Vascular Complications StéphanieDalandSéverineSigrist* DIATHECEA7294UMRCentreEuropéend’EtudeduDiabète(CeeD),UniversitédeStrasbourg(UdS), boulevardRenéLeriche,Strasbourg67200,France;[email protected] * Correspondence:[email protected];Tel.:+33-390-201-212 AcademicEditor:MaurizioBattino Received:30March2016;Accepted:23June2016;Published:11July2016 Abstract: Obesity and diabetes is generally accompanied by a chronic state of oxidative stress, disequilibriumintheredoxbalance,implicatedinthedevelopmentandprogressionofcomplications such as micro- and macro-angiopathies. Disorders in the inner layer of blood vessels, the endothelium, play an early and critical role in the development of these complications. Blunted endothelium-dependentrelaxationand/orcontractionsarequietlyassociatedtooxidativestress. Thus,preservingendothelialfunctionandoxidativestressseemstobeanoptimizationstrategyin thepreventionofvascularcomplicationsassociatedwithdiabetes. Dietisamajorlifestylefactor thatcangreatlyinfluencetheincidenceandtheprogressionoftype2diabetesandcardiovascular complications. Thenotionthatfoodsnotonlyprovidebasicnutritionbutcanalsopreventdiseases andensuregoodhealthandlongevityisnowattainedgreaterprominence. Somedietaryandlifestyle modificationsassociatedtoantioxidativesupplycouldbeaneffectiveprophylacticmeanstofight against oxidative stress in diabesity and complications. A significant benefit of phytochemicals (polyphenolsinwine,grape,teas),vitamins(ascorbate,tocopherol),minerals(selenium,magnesium), andfruitsandvegetablesinfoodsisthoughttobecapableofscavengingfreeradicals,loweringthe incidenceofchronicdiseases. Inthisreview,wediscusstheroleofoxidativestressindiabetesand complications,highlighttheendothelialdysfunction,andexaminetheimpactofantioxidantfoods, plants,fruits,andvegetables,currentlyusedmedicationwithantioxidantproperties,inrelationto thedevelopmentandprogressionofdiabetesandcardiovascularcomplications. Keywords: diabetes;complications;oxidativestress;antioxidants;plants;prevention 1. Introduction Today,WHOandIDF(InternationalDiabetesFederation)drawsattentiontothesimilarityoftrends inobesityanddiabetesintheWorld. Theterm“diabesity”iscommonlyusedtodaytodescribethis epidemicorpandemicwithexponentialdramaticgrowthobservedinallcountries[1]. Ourchangeof lifestyletoasedentaryattitudeandmassiveindustrializationwithaccessfromanearlyagetofood andbeveragesrichinenergy, fat, sugar, oracombinationthereofispartlythecauseofmillionsof obeseanddiabeticpeople[2]. Despitetechnicalandtechnologicalprogressaccompanyingtherapeutic arsenalavailableandpublichealthplans, wefailtodaytostoptheprogressionofdiabetesandits complications. Infact,diabetesisasilentandsneakydisease. Therefore,itisassociatedwithmany complications. Cardiovasculardiseasesarethemajorcauseofdeathanddisabilityamongdiabetic people[3],particularlyforwomanwhohavelostcardiovascularprotectionaffordedbytheclassically femalesex. Diabeticvascularcomplicationsareanimportantpathologicalissueindiabetesthatleads tothefurtherfunctionaldeteriorationofseveralorgansandcausedmicro-andmacro-angiopathy[4]. Endothelialdysfunction,thelossofabalancebetweenvasodilatorsandvasoconstrictorsfactorsinthe bloodvessels,haslargelybeenassociatedinseveralregionsofthevasculatureinT2D[5]. Diseases2016,4,24;doi:10.3390/diseases4030024 www.mdpi.com/journal/diseases Diseases2016,4,24 2of51 A common point of all these cardio-metabolic disorders is the appearance of oxidative stress. Oxidativestressisduetoanimbalancebetweenantioxidants(enzymes,vitamins,proteins,etc.) and pro-oxidants(UVradiations,alcohol,smoking,etc.)[6]. Oxidativestressalongwithchroniclow-grade inflammation may initiate changes in cardiovascular structure and function such as endothelial dysfunction, cardiac hypertrophy, cardiac fibrosis, and ventricular contractile dysfunction [7]. Manystudieshaveshownthatdiabeticpatientsundergochronicoxidativestress,particularlydueto hyperglycemia[8,9]. Thus,astrategyfocusonbothoxidativestressandendothelialfunctioncould helptopreventordelaytheonsetofvascular-relatedtype2diabetescomplications. Muchevidenceshowsthatconsumptionofnaturalsourcesubstancesconferschemopreventive and cytoprotectant activities. In fact, epidemiological studies suggest that consumption of fruits, vegetables[10–14],andplants[15]maybeassociatedwithareducedriskofdiabetesoraprotective effect [16]. Some observations have also revealed an inverse relationship between the risk of cardiovascularmortalityormorbidityandtheconsumptionofpolyphenol-richproducts(redwine, cocoa and tea) [17–20]. Their consumption brings several exogenous antioxidants and vitamins, increasingtheantioxidantstatusoftheorganism,inadditiontotheirdirecteffectonbloodvesselsand inparticularontheendothelium[21]. Many plants are also used for their benefits in traditional medicines. Some of them are at theoriginofthedevelopmentofdrugs[16]suchasbiguanide,metformin,antidiabeticdrugs,and Galegaofficinalis. Indevelopedcountries,traditional,complementary,andalternativemedicinesare becomingincreasinglypopularandarecommonlyusedtotreatorpreventchronicdiseasesandare improvingqualityoflife[15]. Therefore,wewillseethroughthisreviewthatmanycompoundssurroundinguscanbeareal asset in the prevention of “diabesity” but also a valuable aid in addition to current treatments to preventtheoccurrenceofsuchcomplications. Wewillalsodiscusstheappealfortheuseofsingle moleculestothedetrimentoftotalextracts,therebypromotingmolecularsynergy. 2. DiabesityandCardiovascularComplications 2.1. TheEvolutionofObesityandDiabetes Developedsocietiesfacetwocrucialhealthproblems: overweightandobesity. Obesityisthe most common metabolic disease, and the number of individuals who are overweight or obese is fast increasing worldwide [22]. Overweight and obesity are defined as abnormal or excessive fat accumulationthatmayimpairhealth. Bodymassindex(BMI)isasimpleindexofweight-for-height thatiscommonlyusedtoclassifyoverweightandobesityinadults. Itisdefinedasaperson'sweight inkilogramsdividedbythesquareofhisheightinmeters(kg/m2). BMIiswidelyusedasameasure ofweightstatusanddiseaseriskandiswidelyusedforroutinecharacterizationofweightstatusin epidemiology,clinicalnutrition,andresearch. Moreover,fatmassandfat-freemassasassessedby validatedtechniques(densitometry,dualimpedanceanalysis,etc.) arealsocurrentlyused. Thus,the termobesityinourreviewisusedinabroadsensethatincludesBMI,fatmass,%bodyfat,etc. Obesityhasmorethandoubledsince1980. Theprevalenceofoverweightandobeseyouthhas increaseddramaticallyoverthepastthreedecades[23]. In2014,morethan1.9billionadults,18years andolder,wereoverweight. Oftheseover600millionwereobese. 39%ofadultsaged18yearsand overwereoverweightin2014,and13%wereobese. Mostoftheworld’spopulationlivesincountries whereoverweightandobesitykillsmorepeoplethandoesunderweight. Overweightandobesityhavereachedepidemicproportionsgloballyalongwithanadoptionofa Westernizedlifestylecharacterizedbyacombinationofexcessivefoodintakeandinadequatephysical activity. Raised BMI is a major risk factor for noncommunicable diseases such as cardiovascular diseases(mainlyheartdiseaseandstroke),whichweretheleadingcauseofdeath. The dramatic rise in the prevalence of obesity and changes in lifestyle-related factors such as areductioninphysicalactivityhavebeenaccompaniedbyalarmingincreasesintheincidenceand Diseases2016,4,24 3of51 prevalenceoftype2diabetes[24]. Diabetesisachronicdiseasethatoccurseitherwhenthepancreas does not produce enough insulin or when the body cannot effectively use the insulin it produces. Insulin is a hormone that regulates blood sugar [25]. Hyperglycemia, or raised blood sugar, is a commoneffectofuncontrolleddiabetesand,overtime,leadstoseriousdamagetomanyofthebody's systems,especiallythenervesandbloodvessels. In2014,9%ofadults18yearsandolderhaddiabetes. In2012,diabeteswasthedirectcauseof1.5milliondeaths. Morethan80%ofdiabetesdeathsoccurin low-andmiddle-incomecountries. Epidemiologicalstudieshaveconfirmedastrongpositiveassociationbetweenexcessadiposity andriskofdevelopingtype2diabetes. BasedonthedatafromtheBehavioralRiskFactorsSurveillance SystemconductedbytheUnitedStates,Mokdadetal.[26]estimatedthat,foreverykilogramincrement inself-reportedbodyweight,theriskofdiabetesincreasesbyabout9%. Theterm“diabesity”hasbeen coinedtoillustratethecloserelationshipbetweenobesityanddiabetes[27,28]. 2.2. Lifestyle Lifestylehabitshavedeterioratedovertimewithincreasesinobesity,centralobesity,anddiabetes andstagnatingratesofpersistentsmoking. Anincreaseinobesityanddiabeteshasparalleledthe growth of urbanization and globalization in the region. For example, in China, the prevalence ratesofdiabetesinlargeprovincialcapitalcitiesrangefromahighof8%(intheEasternregion)to 4.6%(inthelowestintheWesternregion)[29]. Behavioralriskfactorsincludetobaccouse,alcohol consumption,unhealthydiet,andphysicalinactivity. Physicalinactivityisthe4thmortalityriskfactor formortality[30]withanincreaseof20–30%ofdeathcomparedwithpeoplewhopractice30minof exerciseaday[31]. Finally,advancesinagricultureandfoodsystems,consequentincreasesinfoodavailability,anda shiftindietaryconsumptionpatternswitheconomicdevelopmentandurbanizationofdeveloping societiespromotesoverweightandobesity. This“new”dietfavorsconsumptionoffats, saturated fatslargelyfromanimalsourcesandsugars. Theessenceofthesechangesiscapturedbytheterm “nutrition transition” which accompanies the demographic and epidemiologic transition in these countrieswitheconomicdevelopment[32]. Epidemiologicalstudiesindicatethatweightloss,evenmoderate,canimproveinsulinsensitivity, improveinsulinaction,anddecreasetheriskofdevelopingtype2diabetes. Improvementsininsulin actionafteranaverageof10%weightreductionwerelostwithweightregainbutlargelypreserved withweightmaintenance[33]. Physicalactivityisassociatedwithasignificantreductionintheriskoftype2diabetes,whereasa sedentarylifestyleisassociatedwithanincreasedrisk[34,35]. Thereisa20%increasedriskofdiabetes foreach2-hdailyincrementinwatchingtelevision[36].However,somestudieshavedemonstratedthe feasibilityandefficiencyoflifestyleinterventionprogramsinthepreventionofdiabetesinindividuals withimpairedglucosetolerance[37,38]. Thelifestyleinterventionprogrampermitsareductionin weightwithmoderateexerciseandacontrolledfoodintake(reductionoffat,increaseinfiber,and frequentconsumptionoffruits,vegetables,etc.) 2.3. DiabeticComplications: LinkwithOxidativeStressandInflammation Chronichyperglycemia,disturbancesofcarbohydrate,andlipidandproteinmetabolismlead to metabolic derangements in diabetes and various complications including both macro- and microvascular dysfunctions [22]. Over time, diabetes can damage the heart, blood vessels, eyes, kidneys, and nerves. The incidence of cardiovascular diseases in people with diabetes, one of the majorcomplications,isthreetofourtimesthatinnon-diabeticindividuals. Inamultinationalstudy, 50%ofpeoplewithdiabetesdieofcardiovasculardisease(primarilyheartdiseaseandstroke)[39], with a twofold increase in risk of heart failure in male patients, and a fivefold increase in female patients[40]. Likewise,diabetesincreasedincidenceofcoronaryarterydiseaseandatherosclerotic lesionsatayoungerage,oftenassociatedwithmultivesseldiseaseandinvolvementofdistalcoronary Diseases2016,4,24 4of51 segments. Hypertension is also commonly found in both type 1 and type 2 diabetes [41]. Finally, diabetescancausedistinctpathologicalterationsinthemyocardium,independentofitseffectonblood pressureandcoronaryatherosclerosis,termed“diabeticcardiomyopathy”(DMC)[42]. Wewillfocus oncardiovascularcomplicationsbelowinthisreview. Combinedwithreducedbloodflow,neuropathy(nervedamage)inthefeetincreasesthechance offootulcers,infection,andtheeventualneedforlimbamputationandaffectsalmost30%to50% ofpatientswithdiabetes. Onepercentofglobalblindnessisattributedtodiabeticretinopathy[43] duetoalong-termaccumulateddamagetothesmallbloodvesselsintheretina,andtheoverallrisk ofdyingamongpeoplewithdiabetesisatleastdoubletheriskoftheirpeerswithoutdiabetes[44]. Anotherimportantmicrovascularcomplicationsisdiabeticnephropathy,ofwhichthereisaninefold higherriskinpatientswithdiabetes,leadingtoend-stagerenaldiseaserequiringchronicdialysisand transplantation[23]. Oxidative stress has been suggested to be a common pathway for the pathogenesis of complicationsindiabetes[24,25]. Forexample,(1)theproductionofhydrogenperoxidebymesangial cellsandlipidperoxidation,activationofproteinkinaseC(PKC),mitogen-activatedprotein(MAP) kinases,andcytokineproductionleadtorenalinjury[26];(2)theredox-sensitivenucleartranscriptional factor, NFκB, accumulation of advanced-glycation end-products (AGEs) localized in sub-retinal membranes, and microvessels are activated earlier in the course of diabetic retinopathy [23,27] in addition to polyol accumulation and glycation associated to cataract [28]; (3) AGEs inhibit axonal regeneration[29],anincreaseinDNAdamageandthestimulationofthePKCpathway,andNFκB andTGF-βincreasedepositionoftheextracellularmatrix[30], andallmechanismshaveinvolved inneuropathy. Moreover,HbA1c,abiomarkeroftheoverallglycemicexposure,isthemostknown diabeticparameterlinktooxidativestress.Infact,itisduetotheglycationofhemoglobin.Theincrease inHb1AcvariabilitypredictstheriskofmicrovascularcomplicationsinT1D[31–33]andtheriskof nephropathyandcardiovasculardiseasesinT2D[34–36]. In addition to oxidative stress, inflammation stands out as a determinant process in the developmentofdiabeticcomplications[37]. Itisdifficult,infact,tounderstandtheimpactofthese factorswithouteachother,sincenumerousinterplaysexistbetweeninflammationandoxidativestress and vice versa [38,39]. Hyperglycemia increases the levels of pro-inflammatory proteins [37], and infiltratedmacrophagessecreteinflammatorycytokines(correlatewithahigherbodymassindex: IL-6,IL-8,MCP-1[43]),therebyleadingtoalocalandsystemicinflammation. Increasedproductionof TNF-αhasalsobeenwidelyassociatedwithobesity-relatedinsulinresistanceandabnormalvascular reactivity,thevasculaturebeinganimportanttargetofTNF-α[44]andcloselylinkedtodiabeticmicro- andmacro-complications[40,45]. 3. OxidativeStressandCardiovascularComplications Theconceptthatoxygen,whichisessentialtolife,couldbecausingcelldamageandinvolved inmanydiseases,wasdiscoveredinrecentyears. Today,manyepidemiologicalandclinicalstudies stronglysuggesttheinvolvementofreactiveoxygenspecies(ROS)inthegenesisandevolutionof chronicdiseases,includingdiabetesanditscomplications[7](Figure1).Chronichyperglycemiacaused amajoroxidativestress[22],andYubero-Serranoetal.[46]recentlyproposedSODactivityasthemost relevantoxidativestressbiomarkerinpatientssufferingfrommetabolicsyndrome. Itcouldbeusedas apredictivetooltodeterminethedegreeoftheunderlyingoxidativestressinthispathology. Diseases2016,4,24 5of51 Diseases 2016, 4, 24 5 of 48 FFiigguurree 11.. OOxxiiddaattiivvee ssttrreessss iinn tthhee mmiiddddllee ooff ddiisseeaasseess aanndd ccoommpplliiccaattiioonnss,, iinncclluuddiinngg ddiiaabbeetteess.. 3.1. Oxidative Stress: A Question of Balance 3.1. OxidativeStress: AQuestionofBalance 33..11..11.. OOxxyyggeenn PPaarraaddooxx aanndd AAnnttii--OOxxyyggeenn OOxxyyggeenn,, wwhhiicchh fifirrsstt aappppeeaarreedd tthhrreeee bbiilllliioonn yyeeaarrss aaggoo iinn EEaarrtthh''ss aattmmoosspphheerree,, iiss aann eesssseennttiiaall mmoolleeccuullee ffoorr lliiffee.. TThhrroouugghh rreeddooxx mmeecchhaanniissmmss,, ooxxyyggeenn,, tthhee fifinnaall eelleeccttrroonn aacccceeppttoorr,, iiss ttrraannssffoorrmmeedd iinnttoo wwaatteerr bbyy tthhee mmiittoocchhoonnddrriiaall rreessppiirraattoorryy cchhaaiinn [[4411]].. TThhiiss rreeaaccttiioonn iiss aa ssoouurrccee ooff eenneerrggyy tthhrroouugghh AATTPP pprroodduuccttiioonn aanndd aallssoo tthhee ffoorrmmaattiioonn ooff 22%% ttoo 33%% ooff rreeaaccttiivvee ooxxyyggeenn ssppeecciieess ((RROOSS)),, aa ffrreeee rraaddiiccaall tthhaatt iiss ppaarrttiiccuullaarrlylyu unnstsatbalbelea nadndre arcetaivcteiv[4e2 []4.2In]. 1I9n5 41,9G54er, sGchemrsacnhmpuabnl ipshuebdlitshheedfr etehera dfriecea lrtahdeiocrayl otfhoeoxyryg eonf tooxxyicgietyn, dtouxeictiotyp, adrtuiael ltyo repdaurtciaedllyf orremdsucoefdo xfyogrmens [o47f ],oaxnydge,ntw [o47y]e, aarnsda,f ttewr,oH yaremaras napftreorp, oHseadrmthaen cpornocpeopsteodf itnhveo clvoinncgefprte eorf aidnivcaollsviinngth fereaeg irnagdpicraolcse sins [4th8e]. aWghinegre pasroMcecsCso [r4d8a].n dWFhreidreoavsi cMhdcCisocordv earendd tFhreideonvziycmh deissucopveerorexdid tehed iesnmzyumtaes esu(SpOerDo)xiidne1 d96is9m[u49ta]saen (dSOpDro)v iind e1d96c9o [n4v9i]n acnindg perovvidideendce coabnovuintctihneg iemvpidoerntacnec aeboofuftr etheer aidmicpaolrstianntchee olfi vfrineeg rsaydstiecamls[ 5in0 ]t,hteh elivcoinngc espytsotefman [t5i-0o],x itdhaen ctosnhcaespbt eoefn arnetpi-oorxtieddafnotrs mhausc bheleonn greeprobryteDdu fforra imssuecahn ldonMgoeru breyu Dinuftrhaeis1s9e2 a0ns,dw Mhoeunrtehue yind tihseco 1v9e2r0esd, wthhaetnth tehepyo ldyimsceorvizearetido nthoaft athcreo lpeoinlywmaesriiznahtiiobnit eodf baycrhoyledinro wquaisn ionnhei,baitnedo xbyyg ehny-ddreopqeunidneonnte,m aenc hoaxnyigsemn-[d5e1p].eOndriegnitn amlleychnaanmisemd “[a5n1t]i. -Ooxryiggienna,l”lyt hneamAnedg lo“a-Snatix-oonxytgeremn,”“ athneti oAxnidgalon-tS”awxoans tqeurmick “lyanptrioivxiildeagnedt” awndasr eqpuliacckelyd .pSriinvcileegtheed parnodp reerptileasceads.s Seicnocned thme epsrsoepnegretriesso afsR sOecSonwde rmeedsissecnogveerrse odf fRoOrtSh wefierres tdtiismcoevbeyreMd fitotra lthaen fdirMst utirmade biny 1M97it7ta[5l 2a]n,dm Manuyrastdu idni e1s9a7r7e [n5o2w], minatnerye sstteuddiienst ahrise dneolwic aitnetebraelsatnecde ibne tthwies ednetlihceatbee bnaelfiacniacle abnedtwheaernm tfhuel ebfefencetfsicoiafl farened rhaadrimcaflus,l weffheiccths iosf tfhreeer eraddoixcarlesg, uwlahtiicohn isf otrhem raeidnotaxi nreinggulraetdioonx fhoor mmeaoinsttaasinisinagn drehdaosx phroomviedoesdtapsirso taencdti ohnast oprliovvinidgeodr pgarontiesmctisofnr otom livvairnigo uosrgoaxnidisamtisv efrsotmre svsaersi.ous oxidative stresses. 33..11..22.. FFrreeee RRaaddiiccaallss,, OOxxiiddaattiivvee SSttrreessss,, aanndd DDiiaabbeetteess BBeessiiddee pphhyyssiioollooggiiccaall ooxxiiddaattiioonnss,, mmaannyy eennvviirroonnmmeennttaall pprroocceesssseess hhaavvee iinndduucceedd ffrreeee rraaddiiccaall ffoorrmmaattiioonnss:: aaiirrp poolllulutatanntsts[ 5[35]3,]t,o tboabcaccoc[o5 4[5],4U], VUrVa draiadtiioatniofrno mfrosmun s[u5n5 ][,5a5n]d, ainnddu isntdriuaslitzreiadlilzifeeds tlyiflees[t5y6l]e. D[5i6ff]e. rDeniftfeenrednotg eenndoougseennozuysm eenszcyamneasls ocafno ramlsfor efeorrmad ifcraeles aratdpihcyalssi oalot gpichaylscioolnocgeinctarla tcioonncse:nNtrAatDioPnHs: oNxAidDasPeH, xoaxnidthaisnee, xoaxnitdhaisnee, ocxyicdlaos-eo,x cyygcelnoa-osexsyg(eCnOasXess) ,(CaOndXsl)i,p aon-odx lyipgeon-oaxsyesge(nLaPsOess )(,LPnOitrsi)c, -noxitirdice- soyxnidthea ssyesnt(hNaOseSs) ,(PN4O50S)c, yPto4c5h0 rocymtoec,harnodmme,i taoncdh omnditroicahlochnadirnia[l5 7ch].aTinh e[s5e7]f.r eTehreasde icfraelew reardeicreadl uwceerde breydtuhceefid rbsty litnhee ofifrsatn ltiinoex iodfa annttdioexfeidnasne:t tdheefesnuspee: rtohxei dsuepdeirsomxuidtae sdeiSsmOuDta[s5e8 ]S.OFDre e[5r8a]d. iFcraeles irnacdliucdales rienacclutidvee nreitarcotgiveen nspitercoigeesn(R sNpeSc)iaens d(RrNeaSc)t iavnedo xryegacetnivsep eocxiyesge(Rn OspS)e.cTiehse (mROosSt)i. mTphoe rmtaonstti simsuppoerrtoaxnitd ies asnuipoenro(Oxi2d.´e )a,nwiohnic h(Ois2.−r)a, pwidhliychd iiss mrauptiadtelyd dinistmoouxtaytgeedn ianntod ohxyydgreong eanndp ehryodxirdoege(Hn 2pOer2o)xbiydesu (pHe2rOox2)i dbey dsuispmeurotaxsidee( SdOisDm)u. Ttahseen (,ScOaDta)l.a sTeh(eCnA, cTa)tadliassme u(tCaAteTs)H d2iOsm2uintatotesw Hat2eOr2a nindtoo xwyagteenr ,aanndd ogxlyugtaetnh, ioanned pgelurotaxtidhaiosnee( GpPerxo)xrieddauscee (sGbPoxth) rHed2Ouc2easn bdotohr gHa2nOic2s ahnydd orrogpaenroicxsi dheysd(rRoOpeOroHx)i.dHeso w(ReOveOr,Hin). tHheowpreevseern, cien othfet rpanressietinocne mofe ttarlasnssiuticohn amseirtaolns osurccho paps eirr,onO 2o.´r caonpdpeHr,2 OO22.−f aonrmd Hth2Oe2s ftorormng thoex idstarnotngh yodxriodxaynlt rhayddicraolxy(Ol rHad.)icvaila (FOeHnt.)o vniar eFaecntitoonn arneadcttihoen Hanadb etrh–eW Heiasbserre–aWcteiiosns .reWacittihonc.h Wloirtihd echiolonrsidaen idonHs aOnd, 2 2 mHy2Oel2o, pmeryoexloidpaesreoxpirdoadsue cperhoydpuocec hhloyrpooucshalocriodu(sH aOcCidl )(.HNOitCrilc).o Nxiidtreic( NoOxi.d)ei s(pNrOod.) uicse pdrfordoumceodx yfrgoemn boyxyvgaernio ubsy nvitarricioouxsi dneitsryicn tohxaisdees (sNynOthS)asaensd (pNrOodSu) caensdth persotdrouncgeso xthidea nsttropnergo xoyxniditarnitte p(OerNoxOyOn-it)rbitye (ONOO-) by reacting with O2.−. No enzymatic process can degrade ONOO–; however, with the presence of CO2, it form nitrate anion (NO3−) and nitrogen dioxide (NO2) (Figure 2). Diseases 2016, 4, 24 6 of 48 In diabetes, the alteration of the first sites in the mitochondrial membrane lead to the activation of the complex II [59] and contribute to the formation of excessive O2.− by a leakage of electrons [60]. NADPH oxidases (Nox’s), a family of enzymes with the sole function of producing ROS, are implicated in the pathophysiology of many cardiovascular diseases [61–64] and are the major source of glucose-induced ROS production in the vasculature [65,66], kidney [65], liver [66,67], and β cells [68], confirming this enzyme as a mediator of diabetic complications. Recently, Brandes et al. [69] described molecular mechanisms of Nox activation and supported their implications in diabetes, hyperglycemia, and hyperinsulinemia through complex pathways involving NADPH oxidases. Xanthine oxidase is also implicated in diabetes and vascular complications [70], whereas treatment Diseases2016,4,24 6of51 of T2D patients with Allopurinol, a XO inhibitor, reduces the level of oxidized lipids in plasma and improves blood flow [70]. Glucose itself, as well as its metabolites, is known to react with hydrogen perreoaxcitdine ginw tihthe Opre.´se.nNcoe eonf ziyromna atincdp rcoocpepsserc aionndse tgor afodremO NhyOdOro–x;yhlo rwadevicearl, wduitrhintgh eapurteos-oenxicdeaotifoCnO, , 2 2 deistcfroibrmedn init rdaitaebaenteiosn an(Nd Ocom´)palincdatnioitnrso gbeyn Wdoiolfxfi daned(N DOea)n( Finig 1u9r8e72 ()F.igure 2). 3 2 Figure 2. Oxidative defense and complications. AGEs: advanced glycated end-products; Figure 2. Oxidative defense and complications. AGEs: advanced glycated end-products; COX: COX: cyclooxygenases; H O : hydrogen peroxide; LOX: lipoxygenases; NO: nitric cyclooxygenases; H2O2: hydrogen2 pe2roxide; LOX: lipoxygenases; NO: nitric oxide; NOS: NO synthase; oxide; NOS: NO synthase; NADPH oxydase: nicotinamide adenine dinucleotide oxidase; NADPH oxydase: nicotinamide adenine dinucleotide oxidase; MDA: malondialdehyde (lipid MDA:malondialdehyde (lipid peroxidation); SOD: superoxyde dismutases; GPx: glutathione peroxidation); SOD: superoxyde dismutases; GPx: glutathione peroxydase; GSH gluthathione; peroxydase;GSHgluthathione;O .´:superoxideanion;ONOO.´:peroxynitrite;OH.hydroxylradical; O2.−:superoxide anion; ONOO.−: p2eroxynitrite; OH. hydroxyl radical; 8-OHdG: 8-hydroxy-2’- 8-OHdG:8-hydroxy-2’-deoxyguanosine(DNAdamages). deoxyguanosine (DNA damages). 3.1.3. AInntidoixaibdeatnest,s tDheefaelntesreast ionofthefirstsitesinthemitochondrialmembraneleadtotheactivationof thecomplexII[59]andcontributetotheformationofexcessiveO .´ byaleakageofelectrons[60]. 2 The body has a number of very effective antioxidant defense systems to lower the concentration NADPH oxidases (Nox’s), a family of enzymes with the sole function of producing ROS, are of free radicals in the body. The term antioxidant refers to “any substance that, when present at low implicatedinthepathophysiologyofmanycardiovasculardiseases[61–64]andarethemajorsourceof concentration compared with that of an oxidizable substrate, significantly delays or inhibits oxidation glucose-inducedROSproductioninthevasculature[65,66],kidney[65],liver[66,67],andβcells[68], of the substrate” [71]. Nature of the antioxidant systems differs depending on the cell types, tissues, confirmingthisenzymeasamediatorofdiabeticcomplications. Recently,Brandesetal.[69]described and localization in the intracellular or extracellular medium [72]. There are different types of molecularmechanismsofNoxactivationandsupportedtheirimplicationsindiabetes,hyperglycemia, molecules, natural or synthetic, with enzymatic or scavenging activities (Figure 3). and hyperinsulinemia through complex pathways involving NADPH oxidases. Xanthine oxidase is also implicated in diabetes and vascular complications [70], whereas treatment of T2D patients withAllopurinol,aXOinhibitor,reducesthelevelofoxidizedlipidsinplasmaandimprovesblood flow[70]. Glucoseitself,aswellasitsmetabolites,isknowntoreactwithhydrogenperoxideinthe presenceofironandcopperionstoformhydroxylradicalduringauto-oxidation,describedindiabetes andcomplicationsbyWolffandDeanin1987(Figure2). 3.1.3. AntioxidantsDefenses Thebodyhasanumberofveryeffectiveantioxidantdefensesystemstolowertheconcentration offreeradicalsinthebody. Thetermantioxidantrefersto“anysubstancethat,whenpresentatlow concentrationcomparedwiththatofanoxidizablesubstrate,significantlydelaysorinhibitsoxidation ofthesubstrate”[71]. Natureoftheantioxidantsystemsdiffersdependingonthecelltypes,tissues, andlocalizationintheintracellularorextracellularmedium[72].Therearedifferenttypesofmolecules, naturalorsynthetic,withenzymaticorscavengingactivities(Figure3). DDiisseeaasseess 22001166,, 44,, 2244 77 ooff 4581 Figure 3. Oxidative defense strategies. CAT: catalase; GPx: glutathione peroxydase; SOD: Figure 3. Oxidative defense strategies. CAT: catalase; GPx: glutathione peroxydase; SOD: superoxyde superoxydedismutases. dismutases. TThhee ffiirrsstt lilninee ofo dfedfeenfesnesse asgaaignasitn fsrteefr reaedricaadlisc galrsougpros uthpesseth eenszeyemnaztyicm saytsitcemsyss t(eSmODs,( SCOADT,, GCPAxT), (GFPigxu)r(eFsi g2 uarneds 32) aanndd a3r)ea aniddeadr ebya imdeicdrobnyumtriiecnrotsn (uctorpiepnetrs, z(cionpc,p seerl,enziinucm,)s e[7le3n] iausm co)f[a7c3to]rass. Tcohfearcet oarres. tThhreeree iasroefotrhmrese fiosro ftohrem sSOfoDr tdheesScrOibDedd eisnc rmibaemdminalms a[m74m]: atlhse[ 7m4]a:ntghaenmesaen-SgOanDe s(eM-SnOSDOD(M) ninS OthDe) minittohcehmonidtorciah,o cnodprpiae,r c(oCpup)e, ror(C zuin),c o(rZnzi)n icn (Zthne) ciyntothpelacsymto apnlads mthea nmdittohcehomnidtoricah, oannddr ibao,tahn dCub/oZtnh eCxutr/aZcenlleuxltarra cSeOllDul a(rCSuO/ZDn (CSuO/DZ) ninS OvDes)sienlsv. eCssAelTs .iCs AeTssiesnetisaslelyn tiparlleysepnrte sienn tpienropxeirsooxmiseosm aensda nind einryethryrothcyrotecsy te[7s5[]7. 5G].PxG Pisx pisrepsreenste nint intheth eexetxratrcaeclleullluarl arflufliudi d(b(lboloodo)d )anandd inin tthhee ccyyttooppllaassmm aanndd mmeemmbbrraanneess ooff cceellllss [[7766]] aanndd ffoorrmmss aa ccoouuppllee wwiitthh gglluuttaatthhiioonnee rreedduuccttaassee ((GGRR)) pprroovviiddiinngg gglluuttaatthhiioonnee ((GGSSHH)) bbiiooaavvaaiillaabbiilliittyy [[77]].. TThhee sseeccoonndd lliinnee ooff ddeeffeennsseess iinnvvoollvveess nnoonn--eennzzyymmaattiicc aannttiiooxxiiddaannttss,, ssuucchh aass nnaattuurraallllyy nnuuttrriieennttss pprroovviiddeedd bbyy ffoooodd,, wwiitthh aa ssccaavveennggiinngg eeffffeecctt ((ccaappttuurree ooff ffrreeee eelleeccttrroonn aanndd ffoorrmmaattiioonn ooff mmoorree ssttaabbllee eennttiittiieess)),, aa ssttimimuulalatotorryy eefffefectc toonn enednodgoegneonuosu sanatniotixoixdiadnatn etneznyzmyems,e os,r obrotbho t[h77[]7. 7M].aiMn aminolmecoulleecsu alrees GarSeHG, SvHit,amviitna mEi n(tEhe( tmheosmt oascttiavcet ivfoermfo:r mα:-toαc-otpochoeprohle),r ovl)i,tavmitianm Cin (CL-a(Lsc-oasrbcoicr baiccida)c,i dv)i,tavmitainm iAn (Aca(rcoatreontoeindosi)d, sb),utb uatlsaol sopoplyoulynusnatsuartuatreadte dfatftaytt yacaicdisd soro reexxooggeennoouus sflflaavvoonnooididss ((qquueerrcceettiinn, ,rruuttiinn,, rreessvveerraattrrooll,, eettcc..)),, wwhhiicchh ccaann ssttrreennggtthheenn tthhee aannttiiooxxiiddaanntt ddeeffeennsseess ooff tthhee bbooddyy [[7733]].. FFoorr eexxaammppllee,, iinnccrreeaassiinngg ccoonncceennttrraattiioonn ooff GGSSHH wwiitthh tthheessee pprroodduuccttss ccaann pprrootteecctt aaggaaiinnsstt ccaanncceerr [[7788]] aanndd ddiiaabbeettiicc ccoommpplliiccaattiioonnss [[7799]].. VViittaammiinn EE ttrraappss oorrggaanniicc ffrreeee rraaddiiccaallss ffrroomm tthhee ooxxiiddaattiioonn ooff lliippiiddss aanndd hheellppss rreedduuccee lliippiidd ppeerrooxxiiddaattiioonn.. ΒB--cceellllss aarree ppaarrttiiccuullaarrllyy sseennssiittiivvee ttoo RROOSS bbeeccaauussee tthheeyy aarree llooww iinn ffrreeee rraaddiiccaall qquueenncchhiinngg ((aannttiiooxxiiddaanntt)) eennzzyymmeess ssuucchh aass CCAATT,, SSOODD,, aanndd GGPPxx [[8800––8822]] aanndd hhaavvee aa lloowweerr lleevveell ooff GGSSHH [[8822,8,833]]. . HHoowweevveerr,, tthhee bbaallaannccee bbeettwweeeenn ffrreeee rraaddiiccaallss aanndd aannttiiooxxiiddaanntt ddeeffeennssee ssyysstteemmss iiss ccrruucciiaall ttoo mmaaiinnttaaiinniinngg hhoommeeoossttaassiiss;; iiff iittss eeqquuiilliibbrriiuumm iiss bbrrookkeenn iinn ffaavvoorr ooff tthhee pprroo--ooxxiiddaanntt eennttiittiieess,, ppaatthhoollooggiiccaall ooxxiiddaattiivvee ssttrreessss aappppeeaarrss [[8844]] ((FFiigguurree 44)).. Diseases2016,4,24 8of51 Diseases 2016, 4, 24 8 of 48 Figure4.Oxidativestress:Aquestionofbalance. Figure 4. Oxidative stress: A question of balance. 3.2. FreeRadicals: GoodandBadBoys? 3.2. Free Radicals: Good and Bad Boys? ROS and RNS are well recognized for playing a dual role as both deleterious and beneficial ROS and RNS are well recognized for playing a dual role as both deleterious and beneficial species,sincetheycanbeeitherharmfulorbeneficialtolivingsystems[85],butitisawell-known species, since they can be either harmful or beneficial to living systems [85], but it is a well-known featurethatcellsarecapableofgeneratingendogenouslyandconstitutivelyROS[6]. feature that cells are capable of generating endogenously and constitutively ROS [6]. 3.2.1. PhysiologicalRoles: TheGoodBoySide 3.2.1. Physiological Roles: The Good Boy Side Oxygenhomeostasisatthetissuelevelisvitalfordevelopment,growth,andsurvival,andcells Oxygen homeostasis at the tissue level is vital for development, growth, and survival, and cells hence have evolved a number of mechanisms to sense and respond to low oxygen levels. Under hence have evolved a number of mechanisms to sense and respond to low oxygen levels. Under physiologicalconditions,beneficialeffectsoffreeradicalsoccuratlowormoderateconcentrations physiological conditions, beneficial effects of free radicals occur at low or moderate concentrations andinvolvephysiologicalrolesintheregulationofcellularsignalsimplicatedinproliferationand and involve physiological roles in the regulation of cellular signals implicated in proliferation and cell adhesion, apoptosis, inflammatory responses, and the regulation of transcription factors [6]. cell adhesion, apoptosis, inflammatory responses, and the regulation of transcription factors [6]. ROS, ROS, in low concentration, are generating when cells are stimulated by cytokines, growth factors, in low concentration, are generating when cells are stimulated by cytokines, growth factors, and and hormones [86], and ROS can thus play a role as a secondary messengers [87,88] like the hormones [86], and ROS can thus play a role as a secondary messengers [87,88] like the mitogen- mitogen-activatedproteinkinase(MAPK)pathways[89],probablythemostsignificanteffectofmetals activated protein kinase (MAPK) pathways [89], probably the most significant effect of metals and andROS.Thisinvolvestheactivationofnucleartranscriptionfactorsandcontroloftheexpression ROS. This involves the activation of nuclear transcription factors and control of the expression of ofprotectivegenesthatrepairdamagedDNA,powertheimmunesystem,arresttheproliferationof protective genes that repair damaged DNA, power the immune system, arrest the proliferation of damagedcells,andinduceapoptosis[89]. Celladhesionplaysanimportantroleinembryogenesis, damaged cells, and induce apoptosis [89]. Cell adhesion plays an important role in embryogenesis, cell growth, differentiation, wound repair, and others, depending on redox regulation [90] and cell growth, differentiation, wound repair, and others, depending on redox regulation [90] and the theinvolvement ofNADPHoxidase [91]. Inan inflammatoryenvironment, activated neutrophils involvement of NADPH oxidase [91]. In an inflammatory environment, activated neutrophils and and macrophages produce a large quantity of ROS via NADPH oxidase and myeloperoxidase. macrophages produce a large quantity of ROS via NADPH oxidase and myeloperoxidase. This This“oxidativeburst”playsakeyroleinthedefenseagainstenvironmentalpathogens[92]. Lowand “oxidative burst” plays a key role in the defense against environmental pathogens [92]. Low and moderatelevelsofROSalsoplayimportantrolesinregulatingautophagyandapoptosis,therefore moderate levels of ROS also play important roles in regulating autophagy and apoptosis, therefore controlling cell death and survival [93,94], and ROS generated during ischemic preconditioning controlling cell death and survival [93,94], and ROS generated during ischemic preconditioning (alternation of short periods of ischemia and reperfusion) confer cardiac protection by reducing (alternation of short periods of ischemia and reperfusion) confer cardiac protection by reducing necrosis and the severity of arrhythmias, improving functional recovery when challenged with a necrosis and the severity of arrhythmias, improving functional recovery when challenged with a longerperiodofischemia[95]. Thismechanismisverycomplexandinvolvestriggers, mediators, longer period of ischemia [95]. This mechanism is very complex and involves triggers, mediators, andmultiplesecondmessengers’pathways[96–98],butitisaninnatephysiologicadaptiveprocess and multiple second messengers’ pathways [96–98], but it is an innate physiologic adaptive process against potentially lethal ischemic injury. NO stimulates soluble guanylyl cyclase, leading to the against potentially lethal ischemic injury. NO stimulates soluble guanylyl cyclase, leading to the relaxation of vascular smooth muscle [99] and the essential role of NO in endothelium-induced relaxation of vascular smooth muscle [99] and the essential role of NO in endothelium-induced relaxation was discovered by Furchgott and Zawadzki in 1980 [100]. Nowadays, various studies relaxation was discovered by Furchgott and Zawadzki in 1980 [100]. Nowadays, various studies reportapivotalroleofNOonvascularhomeostasis(anti-thrombotic,anti-aggregate,anti-migration, report a pivotal role of NO on vascular homeostasis (anti-thrombotic, anti-aggregate, anti-migration, andrelaxation)[101–103]. ROSplayacrucialroleintheactivationofmechanotransductionsignaling and relaxation) [101–103]. ROS play a crucial role in the activation of mechanotransduction signaling pathwaysandincardiaccontractionandrelaxation[104]. Inaddition,incardiovascularhealth,insulin pathways and in cardiac contraction and relaxation [104]. In addition, in cardiovascular health, sensitivityplaysavitalrole,andROSinterveneintheinsulinsignalingpathway. H O inducestypical insulin sensitivity plays a vital role, and ROS intervene in the insulin signali2ng2 pathway. H2O2 metabolicactionsofinsulin,linkingROStoinsulin[105],increasesglucoseuptakeinadipocytesand induces typical metabolic actions of insulin, linking ROS to insulin [105], increases glucose uptake in adipocytes and muscles [106], is involved in the modulation of vascular endothelial function [107], Diseases2016,4,24 9of51 muscles[106],isinvolvedinthemodulationofvascularendothelialfunction[107],andstimulates GLUT4 translocation and lipids synthesis in adipocytes [108]. However, ROS levels are the major determinantsofimpairedversusenhancedinsulinsensitivity[109]throughaROS-inducedincreasein PI3K/Aktsignaling[110]. 3.2.2. PathologicalRoles: TheBadBoySide Certainlynecessaryinmanyphysiologicalpathways,theirexcessiveproductioncausesdirect damage to biological molecules (DNA oxidation, proteins, lipids, and carbohydrates) as well as secondary damage due to cytotoxic and mutagenic character of metabolites released in particular during the lipid oxidation (Figures 2 and 5). The body may also react against these abnormal compoundsbyproducingantibodies,whichunfortunatelymaybeautoantibodiescreatingathird Diseases 2016, 4, 24 10 of 48 waveofattack. FFiigguurree 55.. RReeaaccttiivvee ooxxyyggeenn ssppeecciieess ((RROOSS)) aanndd ccoommpplliiccaattiioonnss.. IImmppaacctt ooff RROOSS oonn lliippiiddss,, DDNNAA,, pprrootteeiinnss,, gglluuccoossee,, aanndd vveesssseellss.. 3.3. Oxidative Stress, Diabetes, and Vascular Complications While DNA is the memory of all the biochemical live composition, it is very sensitive to free radicIanlc“raetatsaecdk .o”xAidtatthiveev setrryeslse ahsat,s fibveeenm parionpcolasesdse tsoo bfeo xoindea toifv ethdea mmaajgoer mcaeudseiast eodf hbyypOerHgl‚yccaenmbiae- ginednuercaetde dtr.iAggmerosn goft hdeimabeatriec ocxoimdipzleidcabtiaosness,, aimbapsliiccastietes ss,einvterraa-lc amteencharayniasdmdsu [c1ts2,5s]t, raanndd bisr eaa kbsip,aonladr DprNoAce-spsr. oTtehien fbirrsitd igse tsh[e1 1g1e]n.eIrnaatidodni toifo nROtoSR, aOnSd, RthNeS sesucocnhda sisp ae rdoexcyrneaitsreit eins apnladsmniatr aicnotixoixdiedhanavtse saulscoh baes evnitiammpilnic aEt,e vditianmDinN AC,d laipmoaicg eac[1id1,2 ]a.nTdh eglmutoasthtieoxnteen [s1i2v6e]l.y Bsotuthd ihedavDe NbAeenle soibosnerisvethde ifno rdmiaabteiotinc opfa8ti-eOnHts -[G12,7a,n1d28t]h wesiethc hmaincgroe-s aanred tmheacfirrosvtasstceuplsaor fdciaarbceitnico gceonmepsilsic[a8t5io];nist [i3s,n12o9c],o liinnckidinegn cmeetthaabtotlhice- cgaernceinraotgeedn iRcOagS etnot sthaere dpeovweleorpfumlefnret eorfa ddiiacbaletgiec nceormatpolrisca(UtioVnasn [d24i]o.n Tizhiinsg roraled ioaft ihonyp,semrgolykcee,malicao hhoals, absebeens teosstafibbliesrhse,dca brcyi nlaorggeen-siccamlee ptarloss,ppeoclyticvyec slitcuhdyiedsr foocra brboothn sT,1eDtc .a)n(Fdi gTu2rDe, 5t)h.e DCCT/EDIC (Diabetes ContrTohl eancdar Cboomnprleiacacttiivonesc Tomriapl)o u[1n3d0s],( tRhCe CUsK),PsDucSh (aUsKm Parloosnpdeciatilvdee Dhyiadbeet(eMs SDtAud)ya)n [d1341-h],y adnrdo xtyhne oSnteennoal- (22 -sHtuNdEy )[,1a3r2e].f oDrimabeedtiecn cdaordgieonvoausscluyladru croinmgplliipcaidtiopnesr oaxpipdeaatiro tno abned mgulyltciofaxcitdoartiiaoln ino forciagribno [h1y3d3,r1a3t4es],. Tbhuet,y inre apcatrtwiciuthlarth, egltyiscsoul-eoxainddatcivelel usltarrespsr ohtaesi nbseeton fsourgmgeAstGedE sto(a dbev atnhcee udngiflyyicnagti olinnke nbde-tpwroeednu ctthse) various molecular disorders in diabetes mellitus [59,135]. In fact, it is well established that hyperglycemia and acute glucose fluctuations have many side effects: modifying the redox balance, increasing circulating FFA, increasing NADPH oxidase activity and TNFα [126], and decreasing NADPH levels and glutathione, all of which generate by-products, activate oxidative, and inflammatory signaling. Hyperglycemia induces (1) an increase in glucose and other sugar fluxes through the polyol pathway, (2) an increase in advanced-glycation end-products (AGEs) formation through the hexosamine pathway, (3) expression of their receptor (RAGE) [136], and (4) the stimulation of protein kinase C (PKC) pathway. These mechanisms lead to increase production of glycative, glycoxidative, and carbonyl free radicals [22,137,138], which altered enzymatic and non- enzymatic antioxidant defenses. For example, oxidative stress increases mitochondrial DNA damages and causes axons cell death, leading to neuropathies [139]. Accumulation of sorbitol, due to an enzymatic conversion of excessive glucose, disrupts osmotic balance [140], a higher fructose production induces AGEs formation [141], and all participate in peripheral insulin resistance development [142,143] and β-cells injury [144]. Elevated AGEs may be a significant risk factor for T1D [145] and induce the progression of pre-diabetes to diabetes [146] and some complications such Diseases2016,4,24 10of51 and ALEs (advanced lipid peroxidation end-products), inducing protein dysfunctions (loss of activity,increasedsensitivitytoproteases)[113,114]anddamageincellularresponses—inparticular, ininflammatoryresponsesandapoptosis[114,115]. Lipids,mainlypolyunsaturatedfattyacids,arethe maintargetoftheattackbyOH‚andformconjugateddieneradical[116]. Thesemodificationsconcern circulatinglipoproteinsormembranephospholipids. Thesederivativesareoftenhydrophobicand willthereforeforminandaroundabnormalclustersofendothelialcells. TheseRCCs,MDA,4-HNE,or oxidized-LDLwerefoundinlargequantitiesduringmechanismsofcarcinogenesisinvariousstagesof cardiovasculardiseases[117]suchasatherosclerosis[118,119],metabolicsyndrome[7],diabetesand complications[120],obesity,andinsulinresistance[121],andinchronicinflammatorydiseasessuch aslupus[122],asthma,chronicinflammationofthelungs,andrespiratoryallergies[123,124],andin degenerativediseases[120](Figure5). 3.3. OxidativeStress,Diabetes,andVascularComplications Increased oxidative stress has been proposed to be one of the major causes of hyperglycemia-inducedtriggersofdiabeticcomplications,implicatesseveralmechanisms[125],and is a bipolar process. The first is the generation of ROS, and the second is a decrease in plasma antioxidantssuchasvitaminE,vitaminC,lipoicacid,andglutathione[126]. Bothhavebeenobserved indiabeticpatients[127,128]withmicro-andmacrovasculardiabeticcomplications[3,129],linking metabolic-generatedROStothedevelopmentofdiabeticcomplications[24].Thisroleofhyperglycemia has been established by large-scale prospective studies for both T1D and T2D, the DCCT/EDIC (DiabetesControlandComplicationsTrial)[130],theUKPDS(UKProspectiveDiabetesStudy)[131],and the Steno-2 study [132]. Diabetic cardiovascular complications appear to be multifactorial in origin [133,134], but, in particular, glycol-oxidative stress has been suggested to be the unifying linkbetweenthevariousmoleculardisordersindiabetesmellitus[59,135]. Infact,itiswellestablished that hyperglycemia and acute glucose fluctuations have many side effects: modifying the redox balance, increasing circulating FFA, increasing NADPH oxidase activity and TNFα [126], and decreasing NADPH levels and glutathione, all of which generate by-products, activate oxidative, andinflammatorysignaling. Hyperglycemiainduces(1)anincreaseinglucoseandothersugarfluxes throughthepolyolpathway,(2)anincreaseinadvanced-glycationend-products(AGEs)formation throughthehexosaminepathway,(3)expressionoftheirreceptor(RAGE)[136],and(4)thestimulation of protein kinase C (PKC) pathway. These mechanisms lead to increase production of glycative, glycoxidative,andcarbonylfreeradicals[22,137,138],whichalteredenzymaticandnon-enzymatic antioxidant defenses. For example, oxidative stress increases mitochondrial DNA damages and causesaxonscelldeath,leadingtoneuropathies[139]. Accumulationofsorbitol,duetoanenzymatic conversionofexcessiveglucose,disruptsosmoticbalance[140],ahigherfructoseproductioninduces AGEsformation[141],andallparticipateinperipheralinsulinresistancedevelopment[142,143]and β-cells injury [144]. Elevated AGEs may be a significant risk factor for T1D [145] and induce the progressionofpre-diabetestodiabetes[146]andsomecomplicationssuchasdiabeticretinopathy[147]. Asshownbefore,oxidativestressiscloselylinktoinflammation.Indeed,circulatingTNF-αmayimpair vascularfunctionbyalteringthebalancebetweenendothelial-derivedvasodilatorandvasoconstrictor substancesbecauseitdownregulatedtheexpressionofeNOSandupregulatedET-1productionin endothelialcells[148]. Moreover,itmayalsodirectlyactivateNADPHoxidaseandthenincreasethe productionofROSinthevasculature[149]. Oxidativestresscanbemeasuredinvivoinmultipletypesincludingcells,solidtissues,urine, blood,andsaliva. Severalinvestigationscorrelatedoxidativestressobservedinserumandinsaliva, and,today,salivacanbeconsiderateasanoxidativestressdiagnosticfluid[150,151]. Somehuman studies highlight reactive compounds in saliva in some pathologies, such as T1D [152–155] and T2D[153,156],withthedetectionofbiomarkerssuchas8-oxodG[152],MDA,andTBARS,proteins carbonyl [152], and total antioxidant capacity [153–156]. Recently, Wang et al. published a critical reviewofsalivarybiomarkersofoxidativestress[157],highlightingtheproblemofstandardizationin

Description:
confirming this enzyme as a mediator of diabetic complications. Recently, Brandes et al. [69] described molecular mechanisms of Nox activation and supported their implications in diabetes, hyperglycemia, and hyperinsulinemia through complex pathways involving NADPH oxidases. Xanthine oxidase.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.