ebook img

The Proteasomal System in Aging and Disease PDF

425 Pages·2012·8.433 MB·1-422\425
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Proteasomal System in Aging and Disease

AcademicPressisanimprintofElsevier 32JamestownRoad,London,NW17BY,UK Radarweg29,POBox211,1000AEAmsterdam,TheNetherlands 225WymanStreet,Waltham,MA02451,USA 525BStreet,Suite1900,SanDiego,CA92101-4495,USA (cid:2) Thisbookisprintedonacid-freepaper. Copyright(cid:1)2012,ElsevierInc.AllRightsReserved Nopartofthispublicationmaybereproduced,storedinaretrievalsystemortransmittedinany formorbyanymeanselectronic,mechanical,photocopying,recordingorotherwisewithoutthe priorwrittenpermissionofthePublisher PermissionsmaybesoughtdirectlyfromElsevier’sScience&TechnologyRights DepartmentinOxford,UK:phone(+44)(0)1865843830;fax(+44)(0)1865853333; email:permissions@elsevier.com.Alternativelyyoucansubmityourrequestonlineby visitingtheElsevierwebsiteathttp://elsevier.com/locate/permissions,andselecting ObtainingpermissiontouseElseviermaterial Notice Noresponsibilityisassumedbythepublisherforanyinjuryand/ordamagetopersonsor propertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperation ofanymethods,products,instructionsorideascontainedinthematerialherein.Becauseofrapid advancesinthemedicalsciences,inparticular,independentverificationofdiagnosesanddrug dosagesshouldbemade LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN:978-0-12-397863-9 ISSN:1877-1173 ForinformationonallAcademicPresspublications visitourwebsiteatelsevierdirect.com PrintedandBoundintheUSA 12 13 14 11 10 9 8 7 6 5 4 3 2 1 Contributors Numbersinparenthesesindicatethepagesonwhichtheauthors’contributionsbegin. Martin A. Baraibar, Laboratoire de Biologie Cellulaire du Vieillissement, UR4-IFR83, Universite´ Pierre et Marie Curie–Paris 6, 4 place Jussieu, ParisCedex05,France(249) Betul Catalgol, Department of Biochemistry, Faculty of Medicine, Genetic andMetabolicDiseasesResearchCenter(GEMHAM), MarmaraUniversity, Haydarpasa,Istanbul,Turkey(277,397) Niki Chondrogianni, National Hellenic Research Foundation, Institute of Biology,MedicinalChemistryandBiotechnology,Athens,Greece(41) Boris Cvek, Department of Cell Biology & Genetics, Palacky University, Olomouc,CzechRepublic(161) Kelvin J. A. Davies, Ethel Percy Andrus Gerontology Center of the Davis SchoolofGerontologyandDivisionofMolecular&ComputationalBiology, Department of Biological Sciences, Dornsife College of Letters, Arts & Sciences: The University of Southern California, Los Angeles, California, USA(227) Deborah A. Ferrington, Department of Ophthalmology, University of Minnesota,Minneapolis,Minnesota,USA(75) Bertrand Friguet, Laboratoire de Biologie Cellulaire du Vieillissement, UR4-IFR83, Universite´ Pierre et Marie Curie–Paris 6, 4 place Jussieu, ParisCedex05,France(249) Efstathios S. Gonos, National Hellenic Research Foundation, Institute of Biology,MedicinalChemistryandBiotechnology,Athens,Greece(41) DaleS.Gregerson,DepartmentofOphthalmology,UniversityofMinnesota, Minneapolis,Minnesota,USA(75) Tilman Grune, Institute of Nutrition, Friedrich Schiller University, Jena, Germany,(1,113,397) Joerg Herrmann, Department of Internal Medicine, Division of Cardiovas- cularDiseases,MayoClinic,Rochester,Minnesota,USA(295) Tobias Jung, Institute of Nutrition, Friedrich Schiller University, Jena, Germany(1) Marc Ka¨stle, Institute of Nutrition, Friedrich Schiller University, Jena, Germany(113) AmirLerman,DepartmentofInternalMedicine,DivisionofCardiovascular Diseases,MayoClinic,Rochester,Minnesota,USA(295) ix x contributors CamPatterson,DepartmentofMedicine;DepartmentofPharmacology,and Department of Cell and Developmental Biology, The McAllister Heart Institute, University of North Carolina Chapel Hill, North Carolina, USA (295) AndrewM.Pickering,EthelPercyAndrusGerontologyCenteroftheDavis SchoolofGerontologyandDivisionofMolecular&ComputationalBiology, Department of Biological Sciences, Dornsife College of Letters, Arts & Sciences: The University of Southern California, Los Angeles, California, USA(227) SaulR.Powell,CenterforHeartandLungResearch,TheFeinsteinInstitute forMedicalResearch,Manhasset,NewYork,USA(295) Fu Shang, Laboratory for Nutrition and Vision Research, USDA Human NutritionResearchCenteronAging,Boston,Massachusetts,USA(347) Allen Taylor, Laboratory for Nutrition and Vision Research, USDA Human NutritionResearchCenteronAging,Boston,Massachusetts,USA(347) Xuejun Wang, Protein Quality Control and Degradation Research Center, Division of Basic Biomedical Sciences, Sanford School of Medicine, UniversityofSouthDakota,Vermillion,SouthDakota,USA(295) Preface The proteasomes, together with the proteasome-associated proteins and cellular systems, are among the most complex cellular structures. Literally, thereisnocellularprocesswithoutinvolvementofproteins,whichneedtobe degraded in a controlled manner or removed if they are damaged and this functionislargelytakenoverbytheproteasome.Thisleadingroleofthepro- teasomeamongtheintracellularproteasesleads,therefore,toaninvolvement oftheproteasomalsysteminalmostallcellularprocesses. Duringevolution,severalsystemsdevelopedwiththeaimtomaintainthe integrityofthecellularproteinpool.Theideathatproteinsarenotstablewithin the body but undergo a permanent turnover was first raised by Scho¨nheimer andcolleaguesinthelate1930s.1However,howthesepathwayswererealized remainedunknownuntilChristiandeDuvediscoveredintheearly1950sthe lysosomes,leadingtothediscoveryoftheirenzymaticactivities, includingthe proteolytic enzymes.2 It was accepted for some time that lysosomes were responsibleforthedegradationofmostcellularstructures,includingproteins. The proteasome was discovered as a structure in 1968/1969 by Harris et al.3 Ittooksometimetoassociatethisparticlewiththeprocessofproteindegradation andonlythedescriptionoftheubiquitinationprocessledtothediscoveryofthe realfunctionsoftheproteasome.Oneofthekeyarticleswaspublishedin1978by Ciechanover,Hod,andHershkodescribingtheinvolvementofseveralfractions of reticulate lysate in the ATP-dependent degradation of globin.4 In 2004, this pioneeringresearchwasacknowledgedwithawardingtheNobelPrizeinchem- istryforCiechanover,Hershko,andRose. Eversincethen,theresearchontheproteasomebecamewiderandwider andledtothediscoveryoftheroleoftheproteasomalsysteminthepathophys- iologyofseveralhumandiseasesandinthephysiologyoftheagingprocessitself. This volume focuses on some major roles of the proteasome in human healthanddisease.Thevolumeisdividedintotwoparts:thefirstpart(Chap- ters 1–5) describes the current knowledge of the structure, function, and regulation of the proteasomal system, whereas the second part (Chapters 6–11)describestheroleoftheproteasomeinaginganddisease. The structure of the proteasome is described in a chapter by Jung and Grune,referringtotoday’sknowledgeonthestructureofthe20Sproteasome andofsomeoftheproteasomalregulators.ThenextchapterbyChondrogianni andGonosfocusesonthefunctionofthissystemwithspecialattentiontothe xi xii preface ubiquitin system. In the next chapter, Ferrington and Gregerson describe a specialformoftheproteasomalsystem—theimmunoproteasome.Thisprotea- somal form was found to be induced by immunostimulatory cytokines. How- ever,today’sunderstandingattributes functionsbeyond theimmuneresponse to the immunoproteasome. A relatively new field is the understanding of the interaction of the proteasomal system with chaperons and the interactions of bothsystemsasaresponsetotheaccumulationofunfoldedproteinsaswellin theERasinthecytosol.ThisisreviewedinthechapterbyKa¨stleandGrune. Thelastchapterofthefirstpartofthevolume,writtenbyCvek,describesthe wealthofproteasomalinhibitorsknowntoday. Thesecondpartofthevolumedescribestheroleoftheproteasomalsystem in physiology and pathophysiology of disease and aging. One of the first functionsattributedtotheproteasomealreadyinthemid-1980sistheselective degradationofoxidativelymodifiedproteins.5Eversincethenourunderstand- ing of this process is becoming better, as reviewed by Pickering and Davies. However,theproteasomalsystemitselfisalsoaffectedbyoxidativestressand aging.Theroleoftheincreasinglyfailingproteasomalfunctionduringagingis describedbyBaraibarandFriguet.Moreover,theproteasomalfunctionisalso affected by diseases. This refers to the proteasomal malfunction in cardiovas- cular diseases, neurodegeneration, and eye diseases, as reviewed by Powell et al., Shang/Taylor, and Catalgol/Grune. Special attention was given to the possibilitiesoftreatmentofcancercellswithproteasomalinhibitors,asshown inthechapterofCatalgol. As you will see, by studying this volume, one can hardly overestimate the importance of the UPS for normal cellular metabolism. By realizing that this systemisconservedduringevolutionfromarchaebacteriathroughmammals,its importanceisfurtherunderlined.Duringitsevolution,componentsofthepro- teasomal system diverged in order to meet the ever more challenging tasks in morecomplex organisms. The proteasomal system interacts with an increasing numberofothercellularsystems.Itisexpectedthattheresearchontheprotea- somalsystemwilldiscovermorefunctionsinnearfuture.Furthermore,asalready demonstratedbytheusageofproteasomalinhibitorsincancer,moretherapeutic approachesorstrategiesareexpectedtobedevelopedinthefuture—eitherfor theproteasomedirectlyorfortheproteasome–ubiquitinsystem. TilmanGrune VolumeEditor References 1. Scho¨nheimerR,RittenbergD,FosterGL,KestonAS,RatnerS.Theapplicationofthenitrogen isotopeN15forthestudyofproteinmetabolism.Science1938;88:599–600. preface xiii 2. de Duve C, Gianetto R, Appelmans F, Wattiaux R. Enzymic content of the mitochondria fraction.Nature1953;172:1143–4. 3. Harris JR. The isolation and purification of a macromolecular protein component from the humanerythrocyteghost.BiochimBiophysActa1969;188:31–42. 4. CiechanoverA,HodY,HershkoA.Aheat-stablepolypeptidecomponentonanATP-dependent proteolyticsystemfromreticulocytes.BiochemBiophysResCommun1978;81:1100–5. 5. DaviesKJ.Freeradicalsandproteindegradationinhumanredbloodcells.ProgClinBiolRes 1985;195:15–27. Structure of the Proteasome TobiasJungandTilmanGrune InstituteofNutrition,FriedrichSchiller University,Jena,Germany I.Introduction.................................................................................. 1 II.The20SProteasome........................................................................ 2 A. TheProteasomala-Subunits......................................................... 7 B. TheProteasomalb-Subunits......................................................... 10 C. IntracellularAssemblyofthe20SProteasome................................... 12 D. Modelingofthe20SProteasomalProteolysis.................................... 15 III.Regulationofthe20SProteasome....................................................... 15 A. The19SRegulator...................................................................... 16 B. TheImmunoproteasome.............................................................. 16 C. TheThymus-SpecificProteasome(Thymoproteasome)........................ 19 D. The11SRegulator...................................................................... 20 E. TheHybridProteasome(PA28–20S–PA700)..................................... 21 F. ThePA200RegulatorProtein........................................................ 23 IV.Conclusion.................................................................................... 25 References.................................................................................... 26 The ubiquitin-proteasomal system is an essential element of the protein quality control machinery in cells. The central part of this system is the 20S proteasome. The proteasome is a barrel-shaped multienzyme complex, con- tainingseveralactivecentershiddenattheinnersurfaceofthehollowcylinder. So,theregulationofthesubstrateentrytowardtheinnerproteasomalsurface isakeycontrolmechanismoftheactivityofthisprotease. This chapter outlines the knowledge on the structure of the subunits of the20Sproteasome,thebindingandstructureofsomeproteasomalregulators andinducibleproteasomalsubunits.Therefore,thischapterimpartstheknowl- edgeonproteasomalstructurewhichisrequiredfortheunderstandingofthe followingchapters. I. Introduction Inordertomaintainthefunctionalityandtheviabilityofacell,mostofthe cellular proteins are subjected to a highly regulated turnover. To realize this, proteinsthataremisfolded,(oxidatively)damaged,ornolongerrequired,have to be recognized and removed.1–4 Removal of proteins is usually realized via proteolyticdegradation.Themostimportantproteolyticintracellularsystemof thecytosolistheproteasomalsystem,anevolutionarilyveryoldanddistributed machinerythatwasfoundtobepresenteveninmanyoftheoldestbacteria,as ProgressinMolecularBiology Copyright2012,ElsevierInc. andTranslationalScience,Vol.109 1 Allrightsreserved. DOI:10.1016/B978-0-12-397863-9.00001-8 1877-1173/12$35.00 2 JUNG AND GRUNE wellasinplantsandanimals.Thecentralpartoftheproteasomalsystemisthe 20S ‘‘core’’ proteasome, a large multisubunit and multicatalytic protease, as wellasseveraldifferentregulatorsthatcanchangetheactivityofthespecificity ofthe‘‘core’’particle. Inthefollowingsections,wedescribethestructureandfunctionofthe20S proteasome and its regulators. For a better differentiation between the varia- tions of the ‘‘proteasome,’’ the 20S ‘‘core’’ particle is always referred to as ‘‘proteasome,’’andtheotherforms,accordingtotheregulatorsthatareattached tothat‘‘core.’’ II. The 20S Proteasome The 20S proteasome represents the catalytic part of the proteasomal system, a highly regulated group of proteins that perform degradation of damaged or misfolded proteins, regulation of their life spans,1–6 and ‘‘quality control’’ofnewlysynthesizedproteins7–12thatareinvolvedinregulationofthe cell cycle,5 gene expression,13–17 immune responses,18–23 responses to (oxida- tive) stress,24–28 and carcinogenesis.29–31 Furthermore, the nuclear protein is involved in the maintenance of chromatin and influences DNA repair.32–34 So an evermore increasing spectrum of cellular functions are related to the proteasomalsystem. Theterm‘‘20S’’resultsfromthesedimentationconstantoftheproteasome ‘‘core’’ particle.35 The mammalian form of this particle is of a cylindrical structure of about 100(cid:1)160A˚ that contains four homologous rings (two alpha (a-) and two beta (b-)rings, arranged in the sequence a-b-b-a), which are built of seven different subunits each. The three-dimensional structure ofthelargeproteaseofseveralorganismshasbeeninvestigatedextensivelyvia X-raycrystallography.36–41 Two basic forms of the proteasome are known: the ancestral one that is foundinArchaeabacterialikeThermoplasmaacidophilumandtheevolution- arilyhigherformofyeast,plants,andanimals. As the evolutionary higher form, the ancestral proteasome contains four heptameric rings, arranged in the common a-b-b-a sequence, but in this ancestral proteasome each ring contains seven equal subunits, so only one a- and b-subunitarepresent(seeFig.1).Itisobviousthatfromthesesimple forms of the proteasome a more complex one evolved via the divergence of the single subunits into several homologous ones. So the evolutionary higher form of the 20S proteasome contains 14 different subunits overall (a –a and 1 7 b –b ), showing molecular masses between 20 and 30kDa (see Table I), 1 7 summarizing to a molecular weight of some 700kDa. While the catalytic centers are located in the inner b-rings, the outer a-rings of the proteasome STRUCTUREOFTHEPROTEASOME 3 Side view Perspectiveview Top view b a-ring a a b-ring b b-ring a-ring 5 nm FIG.1. Thestructureofthearchaea20SproteasomefromThermoplasmaacidophilum.This figure shows a basic model of the archaea proteasomal structure. As shown on the left, the proteasomecontains four homologousringsin thesequencea-b-b-a. Eachringcontainsseven identicalsubunits:thea-ringonlya-,theb-ringonlyb-subunits,asshowninthecentralimage.The rightpanelshowsthearrangementofthea-subunitsinaverticalviewontoana-ring. areresponsiblefortheregulationofsubstrateentrancetotheinnerproteolytic chamber,aswellasforrecognitionandbindingofthesubstratesthemselves.So the a-subunits are able to change both the activity and specificity of the proteasome. The proteolytic centers found in the inner rings are encoded by threedifferentb-subunits(b ,b ,andb ).Thus,duetothesymmetricarrange- 1 2 5 mentofthedifferentrings,theinnerchambercontains6differentproteolytic centers,protectedinsidetheproteasomeintheevolutionaryhigherformofthe proteasome, but 14 in the ancestral one. The inside of the proteasome is subdivided into two ‘‘ante chambers’’ (between the a- and b-rings) and one single‘‘mainchamber,’’foundbetweenthetwob-rings(seeFig.2).The‘‘main chamber’’isalsothelocationofthecatalyticcenters. As the proteasome is today referred to as a proteolytic system, several regulators are binding to the core proteasome, modulating the proteasomal activity.Today,asetofseveraldifferentproteasomalregulatorsareknown,all binding to the a-subunits of the outer proteasomal rings. The 11S regulator particle, in most organisms termed ‘‘PA28’’ or ‘‘REG,’’ is formed of three different subunits (PA28a, PA28b, and PA28g arranged in several diverse combinations). In Trypanosoma brucei, this ATP-independent regulator is called‘‘PA26.’’AnotherimportantregulatoristheATP-dependent ‘‘19S,’’also knownas‘‘PA700’’regulator;itsanalogueinarchaeaistermed‘‘PAN.’’Several otherregulatorsareknown,includingthenuclearregulator‘‘PA200,’’whichis known in three different isoforms (PA200i, PA200ii, and PA200iii) and 4 JUNG AND GRUNE TABLEI HERE,THEMOLECULARMASSES(AFTERPOSTTRANSCRIPTIONALPROCESSING,ASFOUNDINTHE ASSEMBLEDWHOLE20S‘‘CORE’’PROTEASOME)OFTHEPROTEASOMALSUBUNITSFROMBOTHHUMAN ANDYEASTPROTEASOMEARELISTED,ASWELLASTHESUBUNITSOFTWOPROTEASOMALREGULATORCAPS (11SAND19S) 20S‘‘core’’proteasome Systematic S.cerevisiae Homosapiens Mass[kDa] Literature a C7/Prs2 HsPROS27/HsIota 27.5 42 1 a Y7 HsC3 25.9 43,44 2 a Y13 HsC9 29.5 45,46 3 a Pre6 HsC6/XAPC7 27.9 47,48 4 a Pup2 HsZeta 26.4 49–51 5 a Pre5 HsC2/HsPROS30 30.2 52 6 a C1/Prs1 HsC8 28.4 53–56 7 b Pre3 HsDelta/Y 25.3(21.9) 57–59 1 b – Lmp2 23.2(20.9) 60–63 1i b Pup1 Z 20.0(24.5) 64–66 2 b – Mecl1 28.9(23.8) 67,68 2i b Pup3 HsC10-II 22.9 69,70 3 b C11/Pre1 HsC7-I 22.8 69,71 4 b Pre2 X/MB1 N/A(22.4) 71 5 b – Lmp7 30.4(21.2) 67,72–74 5i b C5/Prs3 HsC5 26.5(23.3) 75,76 6 b Pre4 HsN3/HsBPROS26 29.2(24.4) 69,77,78 7 11S(PA28)activatorcap Systematic Othernames Mass[kDa] Literature 11Ssubunita REGaorPA28a 28.723 79,80 11Ssubunitb REGborPA28b 27.348 20 11Ssubunitg REGgorPA28g 30.886 81–84 19S(PA700)regulatorcap Systematic Othernames Mass[kDa] Literature ATPase-subunits Rpt1 S7orp48,Mss1,Yta3,Cim5 48.633 85 Rpt2 S4orp56Yhs4,Yta5,Mts2 49.184 86–88 Rpt3 S6borp48,Tbp7,Yta2,Ynt1,MS73 47.336 89,90 Rpt4 S10borp42,Sug2,Pcs1,Crl13,CADp44 44.173 91,92 Rpt5 S6aorp50,Tbp1,Yta1 49.118 93,94 Rpt6 S8orp45,Trip1,Sug1,Cim3,Crl3,Tby1,Tbp10 45.653 95–97 Non-ATPase-subunits Rpn1 S2orp97,Trap2,Nas1,Hrd2,Rpd1,Mts4 100.199 98 Rpn2 S1orp112,Sen3 105.866 99,100 Rpn3 S3orp58,Sun2 61.005 101 (Continues)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.