ebook img

The prospects of Jerusalem artichoke in functional food ingredients and bioenergy production PDF

12 Pages·2015·1.03 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The prospects of Jerusalem artichoke in functional food ingredients and bioenergy production

BiotechnologyReports5(2015)77–88 ContentslistsavailableatScienceDirect Biotechnology Reports journal homepage: www.elsevier.com/locate/btre Review TheprospectsofJerusalemartichokeinfunctionalfoodingredientsand bioenergy production Linxi Yanga, Quan Sophia Hea,*, Kenneth Corscaddena, Chibuike C. Udenigweb aDepartmentofEngineering,FacultyofAgriculture,DalhousieUniversity,Truro,NSB2N5E3,Canada bDepartmentofEnvironmentalSciences,FacultyofAgriculture,DalhousieUniversity,Truro,NSB2N5E3,Canada ARTICLE INFO ABSTRACT Articlehistory: Jerusalem artichoke, a native plant to North America has recently been recognized as a promising Received17September2014 biomassforbioeconomydevelopment,withanumberofadvantagesoverconventionalcropssuchaslow Receivedinrevisedform24November2014 inputcultivation,highcropyield,wideadaptationtoclimaticandsoilconditionsandstrongresistanceto Accepted8December2014 pestsandplantdiseases.AvarietyofbioproductscanbederivedfromJerusalemartichoke,including Availableonline13December2014 inulin,fructose,naturalfungicides,antioxidantandbioethanol.Thispaperprovidesanoverviewofthe cultivationofJerusalemartichoke,derivationofbioproductsandapplicableproductiontechnologies, Keywords: withanexpectationtodrawmoreattentiononthisvaluablecropforitsapplicationsasbiofuel,functional Jerusalemartichoke foodandbioactiveingredientsources. Functionalfood ã2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND Lacticacid Bioactiveingredients license(http://creativecommons.org/licenses/by-nc-nd/3.0/). Bioethanol Biobutanol Contents 1. Introduction ....................................................................................................... 77 2. CharacteristicsofJerusalemartichoke .................................................................................. 2 3. CultivationofJerusalemartichoke ..................................................................................... 2 4. BioproductsderivedfromJerusalemartichoke ........................................................................... 3 4.1. Functionalfoods .............................................................................................. 3 4.1.1. Inulin ................................................................................................ 3 4.1.2. Fructose .............................................................................................. 4 4.2. Bioactivecompounds .......................................................................................... 5 4.3. Biofuels ..................................................................................................... 5 4.3.1. Ethanol .............................................................................................. 5 4.4. Separatehydrolysisandfermentation ............................................................................. 6 4.5. Simultaneoussaccharificationandfermentation .................................................................... 6 4.5.1. Butanol .............................................................................................. 8 4.6. Chemicals ................................................................................................... 8 5. Conclusions ........................................................................................................ 8 Acknowledgement .................................................................................................. 9 References ........................................................................................................ 9 1.Introduction Since the beginningof the 21st century, civilizationhas been facingtwomajorproblems:thesteadydeclineoffossilfuels,and environmentalproblemscausedbytheextensiveuseofthesefossil fuelsfortheproductionofenergyandchemicals.Oneeffectiveway * Correspondingauthor.Tel.:+19028936180;fax:+19028931859. toaddressthesechallengesistousebiomassinsteadoffossilfuels E-mailaddress:[email protected](Q.S.He). http://dx.doi.org/10.1016/j.btre.2014.12.004 2215-017X/ã2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/3.0/). 78 L.Yangetal./BiotechnologyReports5(2015)77–88 fortheproductionoffuelsandchemicals,anemergingareatermed hairy oval shaped leaves and an underground rhizome system as“bioeconomy”.Thistypeofeconomyundoubtedlycontributesto whichbearssmalltubers.ItisanAngiospermplantspeciesofthe environmental, social and economic sustainability if it is well Compositae family, which is commonly referred to as the designedandimplemented[1–3].Acriticalaspectofshiftingfrom sunflower or daisy family [10,20–22]. The stems are stout and thecurrent“petroeconomy”toa“bioeconomy”istominimizethe ridged which can become woody overtime. Its leaves alternate impactofnewapplicationsofbiomass(i.e.,fuelsandchemicals)on nearthetopofthestem,thelowerleavesarelargerandbroader, traditionalusesofbiomass(i.e.,foodandfeed),therebypreventing andcangrowupto30cmlongwhilethehigheronesaresmaller anyresultanteconomicimbalance.Therefore,significantacademic andnarrower.Intermsofflowerheads,eachis5–7.5cmwideand and industrial activities are focused on identifying abundant formed by small, yellow, tubular disk flowers in the center and biomasssourcesand/ordevelopingcropsthatarelesscompetitive surroundedbyflorets,whichoccurseparatelyoringroupsatthe with conventional crops in terms of water, land and nutrient endofalarbranchesandmainstems.Asfortubers,theyareuneven requirements.Theavailabilityandapplicationofbiomasssources andelongatevaryingfromknobbytoroundclusters.Thecolorsof areregion-dependentanditisthereforeessentialtoidentifyplant tubersrangefrompalebrowntowhite,redandpurple[10,23].The species suitable to local cultivation conditions to increase the morphologyofJerusalemartichokeplantandtubersareillustrated economic viability of biomass production [4–6]. Two commonly inFig.2. cited examples of successful transition to a bioeconomy include The Jerusalem artichoke was first cultivated by Native bioethanol production from sugarcane in Brazil and biodiesel Americans long before the arrival of the Europeans, and was production from non-edible Jatropha oil in South Asia; however, calledsunroots.FollowingitsintroductiontoEurope,diverseLatin thesespeciescannotbeappliedreadilytoNorthAmericawithout and common names were ascribed to Jerusalem artichoke. Kays consideringthedegreeofclimaticadaptation[7–9]. andNottingham[22] collectedandreportednearly100common JerusalemartichokeisaplantnativetoNorthAmerica.Ithasa names used in different languages. Now some of the most numberofadvantageouscharacteristicsovertraditionallyagricul- commonly used English names include Jerusalem artichoke, tural crops, including high growth rate, good tolerance to frost, sunchoke, topinambur, woodland sunflower or earth apple. droughtandpoorsoil,strongresistancetopestsandplantdiseases, Interestingly, the name “Jerusalem artichoke” is misleading as it withminimaltozerofertilizerrequirements[10,11].Convention- isatypeofsunflowerinthesamegenusasthegardensunflower; ally, Jerusalem artichoke has been used for food or animal feed however, it has no relation to Jerusalem, neither is it a type of [12,13],andforthepasttwodecades,alternativeuseshavebeen artichoke[24]. explored especially for the production of functional food ingre- dientssuchasinulin,oligofructoseandfructose[14,15].Itisalso 3.CultivationofJerusalemartichoke found that some bioactive ingredients can be extracted from its leavesandstems,whichcreatesanopportunityforapplicationsin Jerusalem artichoke is native to temperate regions of North the pharmaceutical sector[16,17]. Morerecently, a renewedand Americaandcantolerateanannualprecipitationrangingfrom31 rapidly growing interest is for the use of Jerusalem artichoke to282cm,withsuitableaveragetemperaturerangeof6.3–26.6(cid:1)C, tubers, which are rich in inulin, as raw materials for bioethanol andpHof4.5–8.2.Althoughitcanadaptwelltoawiderangeofsoil production [18,19]. Multiple applications of Jerusalem artichoke typesandpHlevelsinasunnyposition,slightlyalkalinesoilsare areillustratedinFig.1.Thesediverseapplicationsalongwithlow- favorableforartichokeproduction.Generallytheplantcantolerate costofplantationrenderJerusalemartichokeapromisingbiomass sub-zerotemperatureswhilethetuberscanwithstandfreezingfor forthedevelopmentofabioeconomy. several months even if the frost kills the stems and leaves. The This review is a comprehensive survey of the cultivation of cold-tolerantnatureofthetubersallowsthemtobepreservedin Jerusalem artichoke, production of a variety of potential bio- the ground during the cold winter until harvested as required products and applicable production technologies. Considerable [10,22]. emphasisisplacedonJerusalemartichokebioethanolproduction. Several studies suggested that Jerusalem artichoke should be plantedinearlyspringtoadepthof10–15cm.Seedtubersshould 2.CharacteristicsofJerusalemartichoke bespaced30–60cmapartineachrow,withrows45–120cmapart. The optimal soil temperature for planting is between 6 and 7(cid:1)C Jerusalemartichoke(Helianthustuberosus)isaperennialplant duetothefactthattubersbecomedormantattemperatureslower which consists of a stemabout 1–3m tall, small yellow flowers, than 5(cid:1)C. Ideally, it should be planted in well-drained soil with [(Fig._1)TD$FIG] Fig.1. MultipleapplicationsofJerusalemartichoke. [(Fig._2)TD$FIG] L.Yangetal./BiotechnologyReports5(2015)77–88 79 Fig.2. PlantandtubersofJerusalemartichoke. slightalkalinity.ThesuggestedvalueofsoilpHforgrowthranges inulin, oligofructose and fructose [10,22,31,32], having both from4.5to8.2.Irrigationisnotnormallyneededandtheplantis nutritional and functional attributes, particularly beneficial to usuallyreadytobeharvestedinapproximately125days.Yieldsare individualswithType2diabetesandobesity[33–35]. relatively high, typically 16–20t/ha for tubers, and 18–28t/ha green weight for foliage. It can be harvested using potato 4.1.1.Inulin harvesting machinery. Once harvested, it needs to be handled Inulinisapolysaccharide,similartostarch,andexistsasawhite carefullytopreventbruising.Recommendedstorageconditionsare powderwithneutraltaste.Chemically,itisalinearbiopolymerof 0–2(cid:1)Catarelativehumidityof95%for4–5months[10,13,25,26]. D-fructose units connected by b (2,1) glycosidic linkages, and TheJerusalemartichokehasanaggressivenessnatureandshould terminated with one D-glucose molecule linked to the fructose a be managed cautiously with tubers missed during harvest chainbyan (2,1)bond.Thedegreeofpolymerizationofinulin expected to grow aggressively in next season. However, this generallyrangesfrom2to60.Todate,inulinhasbeenincreasingly aggressivenatureisadvantageousandreducestheneedforpest usedasfunctionalingredientsinprocessedfoodsduetoitsunique managementsincetheplantgrowssoquickly[13,27]. characteristics[10,36,37]. b DuetothepotentialapplicationofJerusalemartichokeinthe Inulinwiththe (2,1)linkagesbetweenthefructosemonomers bioenergysector,itisnowincreasinglygrownasaspecialtyplant cannot be digested by human intestinal enzymes, giving rise to by many farmers. Although aggressive growth is expected, for important applications in functional foods suitable for manage- commercialscalecultivation,itstillmaybenecessarytoidentify ment of Type 2 diabetes, obesity and other blood sugar-related regional pests and diseases that may affect crop growth. healthconditions[33,36–39].Whenorallyingested,inulinpasses Unfortunately very little research is reported on this aspect. through the mouth, stomach and small intestine without being McCarter and Kays [28] found that rust and powdery mildew metabolized, until it enters into the large intestine where it caused by Puccinia helianthi and Erysiphe cichoracearum, respec- becomesfermentedbythecolonicmicroflora.Thus,consumption tivelyreducedthetuberyield.Otherpotentialissuessuchasslugs, ofinulinhasnoinfluenceonbloodsugarlevelsandstimulationof birds, deer and rabbits may pose a threat to the plant, as do insulin secretion. The non-digestible nature of inulin inherently diseasessuchaspowderymildewandSclerotiniarot[13,29]. results in a caloric value that is significantly lower than other typical carbohydrates, since energy is only derived from the 4.BioproductsderivedfromJerusalemartichoke metabolismoffattyacidsandlactateresultingfromfermentation. Consequently,inulincanbeusedtoreplacefat,sugarandflourin 4.1.Functionalfoods dairyproducts,incerealsandinbakedgoodsforcaloriereduction [40–42].Additionally,inulinisconsideredaformofsolubledietary A functional food is defined as food that is demonstrated to fiberandiscategorizedasaprebiotic.Inulininfluencesintestinal affect at least one target function in the body beyond basic functions by increasing stool frequency and stool amounts, nutritionaleffects,inawaytoeitherenhancestageofwell-being particularly in constipated patients, along with decreasing fecal and health and/or reduce the risk of disease. A functional food pHvalue.Theseeffectshelpsuppresstheproductionofputrefac- mustremaininanormalfoodformratherthanpillsorcapsules, tivesubstanceinthecolon[33,37,43–45].Inulinasaprebioticalso anddemonstratetheireffectsinamountsthatcanbeconsumedin simulatesthegrowthofexistingstrainsofbeneficialbacteriainthe thediet.Afunctionalfoodcanbeanaturalfood,orafoodwhich colon which enhances the absorption of important mineral oneormorecomponentshavebeenaddedto,orremovedfrom,or componentslikecalciumandmagnesiumaswellasthesynthesis afoodwherethenature/bioavailabilityofoneormorecomponents of B vitamins [33,36,46–49]. It was also found that the incorpo- has been modified, or any combination of these possibilities rationofinulininadietreducedthelipidcontentofbloodandliver [30,31]. Jerusalem artichoke is a natural raw material for the insaturatedfat-fedrats.However,similareffectshavenotyetbeen derivation of a number of functional food ingredients such as confirmedinhumans[50–53].Recentstudiesobservedthatinulin 80 L.Yangetal./BiotechnologyReports5(2015)77–88 played an important role in the prevention and inhibition of ofadvantages,includinghigheryields,lessdegradationofinulin, colorectal,colonandbreastcancers[37,54–58]. room temperature operation and much less amounts of water Oligofructose, another functional ingredient, is a short chain used. polysaccharide containing less fructose units (2–10). It can be derived from partial hydrolysis of inulin. Oligofructose has very 4.1.2.Fructose similar functional and nutritional properties as inulin Inulincanbecompletelyhydrolyzedtoitsmonomer,fructose, [31,33,37,42,44,59,60] and its applications as a functional food whichiswidelyusedassweetenerinsteadofsucroseorglucosein ingredientarenotrepeatedlystatedinthispaper. functional foods, pharmaceuticals and beverages. The most Giventhesehealthbenefitsofinulin,thedevelopmentofmore significant difference between fructose and other monosacchar- efficientprocessesforinulinproductionandfeedstockidentifica- idesisthedifferenceinglycemicindex(GI).GIwasfirstintroduced tionhavegainedconsiderableattention.Jerusalemartichokeand by Jenkins et al. [70] as a means to categorize carbohydrates Chicory are the two most commonly used sources for inulin accordingtotheirabilitytoraisebloodglucose,andhasbeenused productiononanindustrialscale[37].Jerusalemartichoketubers to help individuals with Type 2 diabetes and obesity with their containahighamountofmedium-lengthchainsofinulinthatcan foodselection.Basedonthisdefinition[70],GIisdeterminedby be extracted by the processes similar to sugar extraction from measuring the blood glucose response caused by ingestion of a sugarcane. A typical inulin production process includes three certain amount of carbohydrate with respect to a rise in blood majorsteps,namelypretreatment,extractionandpurification.In glucosecausedbythesameamountofglucoseintake.GIofglucose ordertoincreasediffusionrate,Jerusalemartichoketubersarefirst isassumedas100,andGIofsucroseis65whileGIoffructoseis sliced and ground into small particles. Extraction usually is only23[71].ThesignificantlylowGIoffructosemakesitthemost conductedinhotwater.Followingseparationfromsolidresidues, favorable sweetener for patients with diabetes or obesity inulinandwatersolutionisfurtherpurifiedbybleaching,activated [34,35,72]. More interestingly, the sweetness of fructose was carbonadsorptionorion-exchangeapproaches.Purifiedinulinin reported to be 100–150% higher than that of sucrose, which wateristhenconcentratedanddriedtogivefinishedpureinulin indicatesthatusingasmalleramountoffructosecanprovidethe powders [61]. Even though an inulin production process is not same texture and sweetness in food than obtained using other complicated, it is still challenging to obtain inulin with good sugars [73–76]. Less sugar intake definitely helps reduce the quality and high yield. Therefore, efforts made to increase the microbialdecompositionandaggregationinthemouthleadingto economic viability of inulin production are hereby briefly lowerchanceoftoothdecay.Thereforeitisextremelyattractiveas reviewed. fructose additive, not only satisfies the taste buds, but also Jerusalemartichoketuberscontainakindofenzymeexistingin producesrelevanthealthbenefits. their epidermal cells, called polyphenol oxidase (PPO). Once Conventionally,fructoseisproducedfromhydrolysisofstarch, harvested,tubersarestillengagedinaseriesofphysiologicaland involvingthree enzymesamylases oralpha-amylase andglucoa- metabolicactivities.PPOcanoxidizetheendogenouspolyphenols mylaseinthreestepswhiletheresultinghydrolysatecontains45% intomelanininthepresenceofoxygen.Thisprocessisknownas fructose and 55% glucose [77,78]. Inulin is a more advantageous browning,whichseriouslyaffectthenutrient,flavorandappear- feedstockthanstarchsincehydrolysisofinulinneedsonlysingle anceofthefinishedproduct.Li[62]systematicallyinvestigatedthe enzymatic hydrolysis with inulinase as biocatalyst [79], with effects of temperature and pH value on the activity of PPO, and fructose yields reported as high as 95% [77]. The economy of a suggestedthatapretreatmentofJerusalemartichokeinwaterwith hydrolysis process is highly associated with the activity and aneutralpHvalueat80(cid:1)Cfor2minsuppressedenzymeactivity, stabilityofenzyme,operatingmodeandbioreactorconfiguration. and thuseffectivelyeliminatedthe occurrence of browning.In a Comparedtomostchemicalreactions,biologicalreactionssuchas studyconductedbyJiang[63],theeffectsofextractionoperating hydrolysisarerelativelyslow.Itrequiresalongreactiontimeorthe parameters on the yield of inulin were evaluated, and optimal use of large bioreactors. In addition, large amounts of enzyme extractionconditionsforachievinganinulinyieldof89.5%were involvedinhydrolysisremaininreactionbrothafterthereaction provided: extraction temperature of 70(cid:1)C, ratio of water to andareverydifficulttorecover.Therefore,significantresearchhas Jerusalem artichoke solid of 15:1, extraction time of 90min and been conducted to immobilize the enzyme to retain biocatalyst two times of re-extraction of solid residues. Kierstan [64] andatthesametimetoachievecontinuousoperation.Riccaetal. attemptedanenzymaticmethodtoisolateinulinfromJerusalem [80] have reviewed the main advancements achieved in the artichoke, expecting an increased inulin yield. However their production of fructosefrom inulin enzymatic hydrolysisprior to research indicated that enzyme treatment of crude Jerusalem 2007. Progress made in recent years or research not covered in artichoke had no significant improvement on the extraction Ricca's review is summarized here with a focus on newenzyme efficiency and the best extraction method required the involve- development, enzyme immobilization and innovative bioreactor ment of some mechanical means. Sonication is increasingly design. employed in solvent extraction of bioactive ingredients from ResearchconductedbySirisansaneeyakul,etal.[81]focusedon vegetablesasitiscapableofenhancingmasstransferandsolvent the synergistic effect of a combined exo- and endo-inulinases penetration [65]. Research [66] conducted regarding the perfor- system.Theyobservedthatanenzymesystemconsistedofmold mancecomparisonamongconventionalextraction,directsonica- andyeastinulinaseswithamixingratioof5:1,wasbetteratinulin tion extraction and indirect sonication extraction found that hydrolysisthanthemoldandyeastalone.Theresultinghydroly- indirect sonication extractionwas the most suitable method for satecontained78.2%offructose.Yuetal.[82]developedanovel inulin extraction from Jerusalem artichoke. Microwave-assisted recombinantinulinase-secretingSaccharomycescerevisiaestrainto extraction is another promising method to improve extraction produce glucose-free fructose from Jerusalem artichoke. Such a efficiency [67]. Xiao et al. [68] applied a microwave-assisted recombinant biocatalyst was capable of hydrolyzing inulin into extractionprocessininulinisolation.Theyobservedthatwiththe fructoseandglucose,andsubsequentlymetabolizingglucose.Asa aidofmicrowaves,theyieldofinulinwasincreasedfrom10.8%to result, only fructose accumulated in the hydrolysate, which 12.2%onawetbasiswhiletheextractiontimewasdecreasedfrom provided a promisingone-stepprocesstoproducefructosewith 100min to just 6min. Zhu’s group [69] employed a three-stage highpurity.Guiraudetal.[83]attemptedtoimmobilizeinulinase homogenateextractionforinulinpreparation.Incomparisonwith on a DEAE-cellulose matrix by a simple adsorption method. As- theconventionalhotwaterextraction,thisprocesshadanumber preparedcatalystwastestedinacontinuousreactorataflowrate L.Yangetal./BiotechnologyReports5(2015)77–88 81 of10mL/h,inulinsolutionof5g/L,at40(cid:1)Cfor3weeks,achievinga extracts of Jerusalem artichoke leaves presented the strongest conversionrateforinulinof100%.InastudyconductedbySanta inhibitoryabilityforpeppergraymoldwithintheirexperimental etal.[84],anovelsol-gelimmobilizingmethodwasemployedto scope.InmorerecentresearchconductedbyChenetal.[98] six depositinulinaseonaporoussilicaxerogelmatrix.Thisbiocatalyst phenolicacidswereisolatedfromJerusalemartichokeleavesusing presented a promising operational stability at 40(cid:1)C for 20 n-butanolasasolvent,andamongthesixphenolicacidsisolated, consecutive24-hbatchrunswithoutnoticeabledecayinproduct caffeicacid,3,4-dicaffeoylquinicacidand1,5-dicaffeoylquinicacid yield.Singhetal.[85]developedastablecontinuousflowreactor wereidentifiedtoberesponsibleforG.zeaeinhibition.Thisstudy withinulinaseimmobilizedonDuoliteA568tohydrolyzeinulin. sufficiently demonstrates that Jerusalem artichoke leaves are a Thereactorcouldruncontinuouslyataflowrateof4mL/h,at55(cid:1)C potentialsourceofnaturalfungicides. for75daysandtheexperimentalhalf-lifewas72days,whichisa Conventional solvent extraction has been a major extraction veryencouragingadvanceinthecontinuoushydrolysisofinulin. technology for the separation of bioactive ingredients from Zhu’s group [86,87] has conductedongoingresearchon fructose Jerusalemartichokeleaves.Sincetheleavescontainawidevariety productionfromJerusalemartichokesincetheearly1990s[86].An ofchemicalcompounds,extractsusingdifferentsolventswithout innovativedynamicmembraneseparatorwasdevelopedandwas furtherpurificationshowedvaryingbioactivities[96–98].There- coupledtoahydrolysisreactor,whichwasabletoperformreaction fore further work is needed to extract bioactive substances, and separation at the same time. The enzyme was filtered by subsequently separate extracts, identify and characterize the membrane spectator and recycled into the hydrolysis reactor bioactivityofeachcompound.Thereleaseofbioactivecompounds providing a cost-effective process for fructose production. This from Jerusalem artichoke can be affected by processing. For uniquedesignhasbeenappliedonanindustrialscale. instance,puffingandextrusionprocesseswererecentlyfoundto increasethetotalphenoliccontent,freeradicalscavengingactivity 4.2.Bioactivecompounds andferricreducingantioxidantpowerofJerusalemartichoketea infusion compared to processing by roasting and hot air drying In addition to functional foods derived from Jerusalem [99]. Moreover, a previous study showed that a combination of artichoke tubers, the leaves also have important applications. high hydrostatic pressure (HPP) and enzymatic treatments and Jerusalemartichokeleavesaretraditionallyusedasafolkmedicine fermentationincreasedthephenoliccontentandinvitroantioxi- forthetreatmentofbonefractures,skinwounds,swellingandpain dant (radical scavenging and superoxide-like) activities of [88–90].Anumberofvaluablebioactivecompoundsofmedicinal Jerusalem artichoke tuber extract compared to water extraction significancehavebeenisolatedfromtheaerialpartsofJerusalem [100]. Therefore, for industry scale production of bioactive artichoke, demonstrating antifungal, antioxidant, anticancer ac- compounds from Jerusalem artichoke, processing and extraction tivitiesandothermedicinaleffects[16,17,88,91–98]. technologyshouldbecriticallyevaluatedandselectedaccordingto InresearchconductedbyNakagawaetal.[92],twolectinswere the physicochemical properties of targeted ingredients and the extractedfromcallusofJerusalemartichoke,andthenpurifiedby nature of the plant matrix. In addition to HPP, other non- chromatography and preparative electrophoresis. Both lectins conventional extraction techniques such as ultrasound-assisted, showed a strong activity for hemagglutination. Pan et al. [16] microwave-assisted and supercritical fluid extraction can be successfully isolated nine bioactive compounds from the whole considered as alternative approaches to increase the yield and plantofJerusalemartichoke,includingent-17-oxokaur-15(16)-en- preserve the bioactivity of ingredients in Jerusalem artichoke b 19-oic acid, ent-17-hydroxykaur-15(16)-en-19-oic acid, ent-15 - [101,102]. hydroxykaur-16(17)-en-19-oic acid methyl ester, ent-15-nor-14- oxolabda-8(17), 12E-dien-18-oic acid, 4,15-isoatriplicolide ange- 4.3.Biofuels late, 4,15-isoatriplicolide methylacrylate, (+)-pinoresinol, ((cid:3))-loliolide, and vanillin. The bioactivities of nine compounds 4.3.1.Ethanol were subsequently evaluated using the MCF-7 human breast Jerusalemartichoke(JA)iscurrentlyrecognizedasanemerging cancer cell line and a soybean isoflavonoid defense activation energycropforbioethanolproduction;however,ethanolproduc- bioassay. Two of the compounds were identified as cytotoxic tion from Jerusalem artichoke has a long history. In the 19th agents, one of which was capable of stimulating defense century, a French chemist, Anselme Payen promoted Jerusalem metabolites, and four of which were able to block isoflavone artichoketubers for beerproductioninFrance.Interestingly,the accumulationinsoybean.Continuouseffortsonbioactiveingredi- beerderivedfromJerusalemartichoketubersissweetandhasa entextractionfromJerusalemartichokeleavesinXiaoandYuan’s fruity taste [103,104]. Due to the unique aroma, Jerusalem team [17,93,94] have led to important advances. Six phenolic artichokeethanolhasalsobeenusedtoproducebrandyinFrance extracts from Jerusalem artichoke leaves exhibited free radical andGermanyaswellassakeinJapan[105].DuringandafterWorld scavengingactivities,renderingJerusalemartichokeleavesagood WarI,extensiveresearchwasconductedbytheBritishDepartment source for natural antioxidants [17,95]. Very recently, this group ofScientificandIndustrialResearchtodevelopfuelethanolfrom [94]furtherisolatedaseriesofsesquiterpenelactones,exhibiting Jerusalemartichoke.ItwasdemonstratedthatJerusalemartichoke cytotoxicityagainstcancercelllines,whichisconsistentwiththe wasabletoproducethesameamountoffermentablecarbohydrate resultsreportedbyPanetal.[16]. peracreforalcoholassugarbeetandmorethantheIrishpotato. The extracts from Jerusalem artichoke leaves also exhibited However,withtheriseofthemodernpetroleumindustry,interest antifungalproperties[96–98].Liuetal.[96]useddifferentsolvents infuelethanoldeclined[106,107].Inthe1980sarenewedinterest to extract Jerusalem artichoke leaves, and tested extracts’ inJerusalemartichokeethanolwasstimulatedbythe1973oilcrisis antifungal properties in several fungi such as Rhizoctonia solani, [108,109];howeverthisresearchwasagaininterruptedwithlower Gibberella zeae, Alternaria solani and Botrytis cinerea. Their study oil prices following the crisis. Renewed interest in Jerusalem indicated that Jerusalem artichoke leaf extracts from different artichoke as a source for ethanol production has occurred again solvents showed different antifungal activities. For example, the and this time is largely driven by the rapid decline of fossil fuel inhibitoryeffect of aqueous extracts was lower than those from reservescoupledwiththenegativeeffectsofoverconsumptionof organic solvents. The extracts from ethyl acetate showed the petroleum-based fuels on environment such as global warming, highest inhibitory activity to the four fungi employed in this climatechange,acidrainandozonelayerdepletion.Mucheffort research.WhileastudyfromHanetal.[97]foundthattheacetone and significant progress have been made to develop biofuels, 82 L.Yangetal./BiotechnologyReports5(2015)77–88 mainlybioethanolandbiodieseltosubstitutepetro-fuels[110,111]. yield.ItwasalsoobservedthatZ.mobiliswasabletofermentthe CurrentlyinNorthAmerica,corn,wheatandbarleyaredominant Jerusalem artichoke juiceintoethanol without adding anyother feedstocks for commercial bioethanol production but they nutrients, and the ethanol yield using Z. mobilis in fermentation compete with food and feed supply, raising a heated debate on washigherthanfoundusingK.marxianus.KimandHamdy[125] “fuelvsfood”.Asaconsequence,effortsarereorientedtoutilize optimizedhydrolysisconditionstoobtaincompletehydrolysisof lignocellulosicbiomass(agriculturalandforestryresidues)and/or inulinandminimumgenerationofyeastinhibitors.Theyproposed develop dedicated energycrops [1,112–115]. Undoubtedly, ligno- thatJerusalemartichokeslurryshouldbehydrolyzedin0.1MHCl cellulose is the most economical and abundantly available at97(cid:1)Cfor15min.Undersuchconditions,maximumreductionof feedstock,howeverthecostlypretreatmentofconvertingcellulose sugar to 84.8% fructose equivalent was achieved while the intofermentablesugaristhekeytechnicalbarriertoeconomically concentration of inhibitor 5-hydroxymethylfurfural (HMF) was competitive production. Bioethanol production from lignocellu- 0.07%, lower than 0.1%, the limit for yeast growth inhibition. losic biomass is still at the development stage [116]. Jerusalem Razmovski et al. [126] examined the effects of temperature, artichoketubersarerichininulin,whichcanbeeasilyhydrolyzed residencetimeandhydromoduleonJerusalemartichokehydroly- and then converted into ethanol using biocatalysts. The ethanol sis.TheJerusalemartichokehydrolyzatesobtainedundervarious yield is equivalent to that of sugarcane and twice that obtained hydrolysisconditionswerefurthertestedinalcoholicfermentation from corn. These characteristics make Jerusalem artichoke an withS.cerevisiaeasabiocatalyst.Theyfoundthatacidhydrolysis outstandingsubstrateforethanolproduction[18,19,117–119],and at high temperatures and long residence times increased it has recently been listed as one of the most promising energy the concentration of yeast inhibitor HMF and accelerated the crops in China, Europe and New Zealand [4,120–122]. Generally, degradation of fructan. Based on their experimental results, the there are two routes for bioethanol production from Jerusalem highestethanolyieldof7.6w/wwasobtainedwhenacidhydrolysis artichoketubers:(1)separatehydrolysisandfermentation(SHF) was carried out at 126(cid:1)C, 60min of residence time and hydro- and (2) simultaneous saccharification and fermentation (SSF) as moduleratioof1:1.Zubr[127]investigatedtheeffectsofseveral showninFig.3. enzymes on hydrolysis of Jerusalem artichoke tubers, including Novozym 188, Celluclast, Novo 230, Novo SP 249, and combina- 4.4.Separatehydrolysisandfermentation tionsofthereof.Theirworkindicatedthatcellulolyticenzymeslike Novozym 188 and Cellules had very disappointing performance, Separatehydrolysisandfermentation(SHF)methodischarac- generatingasmallamountoffructoseandglucose.Novo230was terized as inulin hydrolysis and sugar fermentation being themostefficientenzymeforinulinhydrolysis,givingthehighest conductedintwoseparatereactors.Typically,Jerusalemartichoke sugar yield under the authors’ experimental scope. At the same tubers are processed into pulpy mash and then hydrolyzed into time, S. cerevisae, traditional brewing yeast, was identified as an fermentable sugars (fructose and glucose) using either dilute efficientcatalystforthealcoholicfermentationoftheseferment- mineral acids or inulinase enzyme. Subsequently, fermentable ablesugarsresultedfromhydrolysisstep. sugar is separated from solid residues and transferred into a fermenterwheresugarisfermentedintoethanolemployingyeasts 4.5.Simultaneoussaccharificationandfermentation suchasZymomonasmobilis,KluyveromycesmarxianusandSaccha- romycescerevisae. Simultaneoussaccharificationandfermentation(SSF)ischar- Theresearchonhydrolysisofinulinforfructoseproductionhas acterizedasinulinhydrolysisandsugarfermentationbeingcarried beenstatedinSection4.1.2.[77–87]Such-preparedfructosecanbe out in one bioreactor using combination biocatalysts. Obviously, furtherconvertedintoethanol.Fortheethanolproductionstarting suchadirectconversionofsolubleinulinintoethanolwithouta with tubers through SHF process, hydrolysis step has significant prior hydrolysis step is highlyfavorable from capital investment impactsonthefollowingfermentationstep.Completehydrolysis and operating cost perspectives. Moreover, a SSF process ofinulinproducesamaximumamountofsugarthatleadstohigh significantly reduces the fermentable sugar loss caused by ethanol yield. However, hydrolysis process may generate some separationandtransferofsugarsfromhydrolyzerintofermenter byproducts which could inhibit the activity of yeast in the as in a SHF process. For Jerusalem artichoke ethanol production fermentation step, consequently prolonging fermentation time. throughSSF,themajortechnicalbarrieristheidentificationofthe Fleming et al. [123] investigated the effectiveness of various most efficient enzymes which are capable of facilitating both mineralacids(hydrochloric,sulfuric,citricandphosphoricacids) hydrolysisandfermentation. in hydrolysisofJerusalemartichoke tubers.Theyconcludedthat One approach is to use a mixture of inulinase and yeast to there was no significant difference among these acids in their convert ground Jerusalem artichoke tubers to ethanol. Kim and influenceoninulinhydrolysis.TheresearchconductedbyToran- Rhee [128] co-immoblized inulinase and Z. moblilis in alginate Diazetal.[124]evaluatedtheeffectofacidorenzymatichydrolysis beadstofacilitateaone-stepproductionofethanolfromJerusalem ofinulinonthesubsequentalcoholicfermentation.Itwasfound artichoke tubers in a continuous mode. The maximum ethanol thatacidhydrolysiswasfasterthanenzymatichydrolysiswhilethe productivitywasreportedas55.1g/L/handtheyieldwas95%of byproductsfromacidhydrolysisinhibitedthegrowthofyeastin theoretical yield. In the study reported by Nakamura et al. thesubsequentfermentationstep,whichresultedinalowethanol [129,130], simultaneous hydrolysis and fermentation of tubers [(Fig._3)TD$FIG] Fig.3. TworoutesforbioethanolproductionfromJerusalemartichoketubers. L.Yangetal./BiotechnologyReports5(2015)77–88 83 was conducted in a batch operation mode using a mixture of ethanol production. However, these processes involving two Aspergillus niger 817 and S. cerevisiae 1200. The ethanol concen- species with different culture conditions pose difficulties to trationwas10.4%(v/v)for15hfermentationtime;theyieldwas process optimization. Ethanol productivity was compromised 92% of theoretical yield. Szambelan et al. [131] compared the due to both biocatalysts working under sub-optimal conditions. ethanol yields from different processes, using single yeast and a Another effort is to use yeasts that possess inulinase activity to mixture culture of microorganisms. The mixed culture of achievesimultaneoussaccharificationandfermentation.Guiraud KluyveromycesfragilisandZ.mobilisorK.fragilisandS.cerevisiae et al. [133] first demonstrated that K. fragilis and K. fragilis with gavethebestresultsundertheauthors’researchscope.Theyieldof inulinaseactivitywereabletoconvertJerusalemartichoketubers ethanol was 94% of maximum theoretical yield and the ethanol toethanoldirectly.Followingtheirpioneeringresearch,numerous concentrationwas 9.9% (v/v). Ge et al. [132] attempted a newly effortsweremadetodevelopand/orscreenmoreeffectivestrains isolated extroinulinase-hyperproducing strain, A. niger SL-09, tofacilitateSHFofJerusalemartichoke.Duvnjak[134] evaluated coupled with S. cerevisiae Z-06 to ferment ground Jerusalem theperformanceofseveralyeastsinhydrolysisandfermentation, artichoke tubers into ethanol in a batch operation. The ethanol including K. marxianus ATCC12708, K. marxianus ATCC 10,606, concentrationwasashighas19.5%(v/v)for48hfermentationwith Kluyveromyces cerevisiae ATCC 22,295 and K. fragilis. Their work theconversionefficiencyof90%.Theresultfromthisresearchis indicated that Jerusalem artichoke juice contained enough significant in that high ethanol concentration in the finished nutrients for both yeast growth and ethanol production. K. fermentation broth can dramatically reduce the cost of the marxianus ATCC12708 was identified as the most suitable yeast, subsequent distillation step, making the overall ethanol produc- providinganethanolyieldof87.5%oftheoreticalvaluewithin25h tionmoreeconomicallyviable. fermentation. From the early 1980s, Professor Margaritis’s team Employmentofamixtureofenzymescanrealizesimultaneous [108,109,135–149] have been devoting their research to ethanol hydrolysis and fermentation of Jerusalem artichoke tubers for production from Jerusalem artichoke. Extensive works were Table1 SSFprocessesreportedinliterature. Biocatalysts Fermentationconditions Ethanolconcentration Yielda Reference Simultaneoussaccharificationandfermentation(SSF) (amixtureofvariousenzymes) Inulinase+Z.moblilis 35(cid:1)C,continuous 55.1g/L/h 95% Kim[128]1990 A.niger817+S.cerevisiae1200 30(cid:1)C,15h 10.4%(v/v) 92% Nakamuraetal.[130] 1996 K.fragilis+ 30(cid:1)C,72h 9.9%(v/v) 94% Szambelanetal.[131] Z.moblilis3881 2005 K.fragilis+ 30(cid:1)C,72h 9.1%(v/v) 86% S.cerevisiaeBc16a A.nigerSL-09+ 30(cid:1)C,48h 19.6%(v/v) 90% GeandZhang[132]2005 S.cerevisiaeZ-06 Simultaneoussaccharificationandfermentation(SSF) (yeastwithinulinaseactivity) K.fragilis 28(cid:1)C,6days 11.1%(v/v) 98% Guiraudetal.[133] 1981 K.marxianus 28(cid:1)C,6days 11.5%(v/v) 98% K.marxianusATCC12708 28(cid:1)C,30h 14g/L 87% Duvnjaketal.[134] 1981 K.marxianusATCC10606 28(cid:1)C,30h 12g/L 83% K.cicerisporusATCC22295 28(cid:1)C,30h 13g/L 86% K.fragilis105 28(cid:1)C,30h 11g/L 79% K.marxianusUCD55-82 35(cid:1)C,60h 44g/L 88% BajpaiandMargaritis[138], K.marxianusUCD55-82 35(cid:1)C,continuous 7g/L/h 90% Sachsetal.[106], 1982 K.marxianusCECT10875 28(cid:1)C,30h 19g/L 96% Negro[150],2006 K.cicerisporusY179 30(cid:1)C,144h 12.3%(v/v) 86.9 Yuetal.[152],2010 S.cerevisiaeKCCM50549 30(cid:1)C,36h 32.6g/L 70% Limetal.[151]2011 K.marxianusATCC8554 35(cid:1)C,84h 60.9g/L 87% Yuanetal.[153],2008 S.cerevisiae6525withclonedinulinasegene 35(cid:1)C,48h, 72.5g/L 85% Yuanetal.[155],2013 K.marxianuswithoverexpressedinulinasegene 35(cid:1)C,72h, 96.2g/L 93% Yuanetal.[156]2013 SaccharomycesspW0withexo-inulinasegene 28(cid:1)C,144h 12.5%(v/v) 62.5% Zhangetal.[157]2010 SaccharomycesspW0with18SrDNAintegrationofexo-inulinasegene 28(cid:1)C,120h 12.6%(v/v) 66% Yuanetal.[156]2011 SaccharomycesspW0withendo-inulinasegene 30(cid:1)C,120h 12.6%(v/v) 65% Lietal.[159]2013 K.marxianusPT-1 40(cid:1)C,84h 73.6g/L 90% Huetal.[160]2012 orS.cerevisiaeJZ1C 40(cid:1)C,84h 65.2g/L 79.7% S.cerevisiaeDQ1 30(cid:1)C,72h 128.1g/L 73.5% Guoetal.[161]2013 a Ethanolyieldisthepercentageoftheoreticalyieldonthebasisoftotalsugarinfeedstock. 84 L.Yangetal./BiotechnologyReports5(2015)77–88 conductedrangingfromyeastscreening[135],enzymeimmobili- verypromising.Table1summarizesthebiocatalysts,fermentation zation method [136,139–142], batch and continuous operation conditionsandethanolproductivitiesofavarietyofSSFprocesses modes [106,141,177], kinetics of ethanol production forJerusalemartichokeethanolproductionreviewedinthispaper. [136,138,142,143]andhydrolysisofinulin[146–149],whichbuilt a valuable foundation for the research on Jerusalem artichoke 4.5.1.Butanol ethanol. In their early work, K. marxianus UCD (FST) 55-82 was Biobutanolasanewgenerationofbiofuelhasrecentlydrawn demonstratedtobethemostsuitableyeastforthefermentationof increasing attention due to its higher heating value and low Jerusalem artichoke tubers among eight yeasts tested in their volatilityincomparisonwithbioethanol.Explorativeresearchon investigation[135].K.marxianusUCD(FST)55-82withinulinase butanolproductionfromJerusalemartichokehasbeenconducted. activity was further employed in a continuous bioreactor to SarchamiandRehmann[162]optimizedtheenzymatichydrolysis hydrolyze and ferment Jerusalem artichoke juice, producing ofinulinfromJerusalemartichoke,andobtainedmaximuminulin ethanol with a yield of 90% of theoretical value [108]. The conversionof94.5%undertheoptimalconditions(temperatureof performanceofthisyeastwasalsotestedinabatchoperationfor 48(cid:1)C,pHof4.8,substrateconcentrationof60g/L,enzymeloading ethanolproduction[108].Theethanolconcentrationwas44g/Lat of10units/gsubstrateandfermentationtimeof24h),producing theendofafermentationtimeof60h,achievingayieldof88%of butanolof9.6g/L.Chenetal.[163]usedClostridiumacetobutylicum the theoretical yield. Negro et al. [150] conducted a direct L7tohydrolyzeJerusalemartichokejuice.Itwasfoundthatwitha fermentation of inulin using K. marxianus CECT 10,875. The starting sugar concentration of 62.87g/L,11.2g/L of butanol was ethanolconcentrationwas19g/Lattheendoffermentation,witha producedfor60hoffermentation,andtheratioofbutanol,acetone yieldof96%oftheoreticalyield.WorkbyLimetal.[151]identified andethanolwas0.64:0.29:0.05. S. cerevisiae KCCM50549 as another promising yeast for SFH process of Jerusalem artichoke tubers, giving a relatively high 4.6.Chemicals ethanolconcentrationof36.2g/Landayieldof70%oftheoretical valuewithin 30h. Ethanol produced from this yeast is 1.6 times Lactic acid is widely used in the food, pharmaceutical and higherthanthatfromS.cerevisiaeNCY625.Yuetal.[152]noticed chemical industries, and it is an important building block for that Kluyveromyces cicerisporus Y179 expressed a high level of synthesizing a variety of chemicals [164,165]. In response to an inulinase activity, which was suitable for ethanol production by increasingdemandforlacticacid,Jerusalemartichokestandsout SSHmethod.Theexperimentalresultsindicatedthatmoreethanol asalowcostrawmaterialforlacticacidproduction.Geetal.[165] was produced by this yeast at 30(cid:1)C than at 37(cid:1)C or 42(cid:1)C. After first attempted to use mixed culture of A. niger SL-09 and 144hfermentation,ethanolwiththeconcentrationof12.3%(v/v) Lactobacillus sp to produce lactic acid from JA. In a SSF process, was achieved, and the yield of ethanol was 86.9% of theoretical thehighestlacticacidconcentrationof120.5g/Lwasobtainedin value.Dr.Bai’sgroup[153–156]haveconductedongoingresearch 36h of the fed-batch fermentation with a high conversion on ethanol production from Jerusalem artichoke tubers using a efficiency of 94.5%. This group further enhanced the process by consolidated bioprocessing (CBP) strategy which integrated introducingLactobacilluscaseiG-02,leadingtoanincreasedlactic inulinase production, hydrolysis of inulin and ethanol fermenta- acidconcentrationof141.5g/L[166].ItwasreportedbyChoietal. tion.IntheearlyworkconductedbyYuanetal.[153]K.marxianus that a direct lactic acid fermentation could be realized using ATCC8554 were proven to have a good alcoholic fermentation Lactobacillusparacaseiwithoutapre-stepofinulinhydrolysis.The abilityandhighinulinaseproductioncapacity.Employmentofthis lacticacidconcentrationwas92.5g/Landtheconversionefficiency yeast converted Jerusalem artichoke tubers to ethanol directly, ofinulin-typesugarstolacticacidwas98%ofthetheoreticalyield achieving an ethanol yield of 87% for fermentation time of 84h. [167].Daoetal.[168]developedapracticalandeconomicalwayto Yuanetal.[155]furtherdevelopedanewrecombinantyeastthat produce lactic acid from JA. They used commercially available containedcommerciallyavailableS.cerevisiae6525integratedby glucoamylase,glucoamylaseGA-LNewandPediococcusacidilactici inulinase gene cloned from K. marxianus. Using this new yeast, DQ 2 to hydrolyze and ferment JA tubes. The lactic acid ethanol concentration in broth was significantly increased to concentration of 111.5g/L was obtained. Another study on lactic 72.5g/Lattheendof48hfermentation,whileusingthehoststrain, acidproduction[169]conductedbyWangetal.usedthermophilic S.cerevisiae6525alone,ethanolconcentrationwasonly67.0g/Lin Basilluscoagulansstrain.Theobtainedlacticacidwas134g/Lwitha 60h. Yuan et al. [156] also applied K. marxianus with over- starting sugar concentration of 140g/L. Research from Shi et al. expression of inulinase gene in the fermentation of Jerusalem [170]focusedonthedevelopmentofefficientbioreactors.Afibrous artichoketubers.Significantimprovementofethanolproductivity bed bioreactor with immobilized Lactococcus lactis significantly was observed, detailed data of which are listed in Table 1. The improvetheoverallproductionefficiency,resultinginlacticacid researchofDr.Chi’steam[157–159]focusedonthedevelopment concentrationof142g/Linafed-batchmodeoperation. and application of Saccharomyces sp W0 with inulinase gene Jerusalemartichokealsohaspotentialforgeneratingavariety expression in Jerusalem artichoke ethanol production. The exo- ofotherschemicals[164,171]suchasbutyricacid[172],citricacid inulinase gene and endo-inulinase gene were integrated into [173], succinic acid [174], 2,3-butanediol [175,176] and sorbitol Saccharomyces sp W0 respectively. Ethanol productivities using [177].Afewstudieshavebeenreported,ofwhichdetailsarenot SaccharomycesspW0withandwithoutinulinasegeneexpression statedinthispaper. aresummarizedinTable1.Huetal.[160]examinedtheactivitiesof 21newlyisolatedand65previouslyavailableS.cerevisiaestrainsin 5.Conclusions directfermentation of Jerusalem artichoke throughconsolidated bioprocessing(CBP).TheirworkidentifiedK.marxianusPT-1andS. Jerusalem artichoke is an economically important plant with cerevisiae JZ1C as good thermo-tolerant strain candidates for advantages of low input cultivation, high crop yield and wide Jerusalemartichokeethanolproduction.Undertheirexperimental adaptation to climatic and soil conditions. In addition to its conditions, these two strains gave 90% and 79.7% of theoretical applicationsasfunctionalfoodandbioactiveingredientsources,it ethanolyieldrespectivelyat40(cid:1)Cwithin84hfermentation.Very is recognized as a sustainable feedstock for biofuel production. recently,Guoetal.[161] reportedanimprovedCBPprocessina Thesediverseeconomicvaluesidentifyitasapromisingbiomass helicalribbonstirringbioreactorusingmutantyeast,S.cerevisiae for bioeconomy development. However, Jerusalem artichoke is DQ1. The ethanol concentrationwas as high as 128g/L, which is currently underutilized. This paper provides a review of the L.Yangetal./BiotechnologyReports5(2015)77–88 85 considerable amount of research that has been already been tuberosus and polyamine research: past and recent applications of a conducted;however moreresearch and developmentareneces- classicalgrowthmodel,PlantPhysiol.Biochem.48(2010)496–505. [22] S.J.Kays,S.F.Nottingham,BiologyandChemistryofJerusalemartichoke: sary before the utilization of Jerusalem artichoke can become HelianthustuberosusL.,CRCpress,BocaRaton,FL,2007. economicallyandtechnicallyviable.Furtherstudiesareexpected [23] A.J.Huxley,M.Griffiths,M.Levy,TheNewRoyalHorticulturalSociety to focus on: (1) optimization of the cultivation conditions to DictionaryofGardening,MacmillanPublishers,London,1992. [24] N.Lindsayjean,Jerusalemartichokes:nothingaboutthisnameisright,Food improve crop yield per input; (2) increasing inulin content in (2013)52. tubersbygeneticmodificationofthespecies;(3)identificationand [25] G.Grassi,G.Gosse,Topinambour(JerusalemArtichoke),CommissionofThe development of enzymes with high activity and stability to EuropeanCommunities,Luxembourg,1989. facilitate more efficient bioprocesses for bioproduct production; [26] Chabbert,P.Braun,J.P.Guiraud,M.Arnoux,P.Galzy,Productivityand fermentabilityofJerusulemartichokeaccordingtoharvestingdate,Biomass and (4) exploring new enzyme immobilization technologies and 3(1983)209–224. designing advanced bioreactors for continuous operation to [27] C.J.Swanton,P.B.Cavers,D.R.Clements,M.J.Moore,ThebiologyofCanadian increase overall productivity. Outcomes of these research areas weeds.101.HelianthustuberosusL,Can.J.PlantSci.72(1992)1367–1382. [28] S.M.McCarter,S.J.Kays,DiseaseslimitingproductionofJerusalemartichoke should establish Jerusalem artichoke as an essential natural inGeorgia,PlantDis.68(1984)299–302. resourceinadevelopingbioeconomy. [29] A.Mckeown,J.Todd,C.Bakker,JerusalemArtichoke.SpecialtyOpportunities, aResourceforSpecialtyCropGrowers,MinistryofAgricultureand Food MinistryofRuralAffairs,MinistryofAgricultureandFood,Ontario,2010. Acknowledgement [30] A.T.Diplock,P.J.Aggett,M.Ashwell,F.Bornet,E.B.Fern,M.B.Roberfroid, ScientificconceptsoffunctionalfoodsinEurope:consensusdocument,Br.J. This work was supported by National Research Council of Nutr.81(1999)S1–S28. [31] M.B.Roberfroid,Functionalfood:conceptsandapplicationtoinulinand Canada (NRC) Industrial Research Assistance Program (IRAP) oligofructose,Br.J.Nutr.87(2002)S139–S143. program. [32] M.Roberfroid,Dietaryfiber,inulin,oligofructose:areviewcomparingtheir physiologicaleffects,Crit.Rev.FoodSci.Nutr.33(1993)103–148. [33] K.R.Niness,Inulinandoligofructose:whatarethey?J.Nutr.129(1999) References 1402S–1406S. [34] L.Barta,J.Rosta,EffectofJerusalemartichokehoney-containingisocaloric [1] P.S.Nigam,A.Singh,Productionofliquidbiofuelsfromrenewablerecourses, dietonthesugarmetabolismofdiabeticchildren,Gyermekgyogyaszat9(8– Prog.EnergyCombust.Sci.37(2011)52–68. 9)(1958)280–283. [2] K.McCormick,N.Kautto,ThebioeconomyinEurope:anoverview, [35] F.R.Bornet,Undigestiblesugarsinfoodproducts,Am.J.Clin.Nutr.59(1994) Sustainability5(2013)2589–2608. 763S–769S. [3] J.A.Mathews,Fromthepetroeconomytothebioeconomy:integrating [36] G.Kelly,Inulintypeprebiotics–areview:PartI,Altern.Med.Rev.13(2008) bioenergyproductionwithagriculturaldemands,BiofuelsBioprod.Biorefin. 315–329. (2009)613–632. [37] K.K.Nair,S.Kharb,D.K.Thompkinson,Inulindietaryfiberwithfunctionaland [4] H.Kerckhoffs,R.Renquist,Biofuelfromplantbiomass,Agron.Sustain.Dev.33 healthattributes:areview,FoodRev.Int.26(2010)189–203. (2013)1–19. [38] H.F.Root,M.L.Baker,Inulinandartichokesinthetreatmentofdiabetes,Arch. [5] F.Gao,L.Zhao,X.Z.Wang,TheResearchReviewabouttheeffectofbio-fuel Intern.Med.36(1925)126–145. development on agricultural market and agriculture, Agric. Agric. Sci. [39] J.J.Rumessen,S.Bode’,O.Hamberg,E.Gudmand-Høyer,Fructansof Procedia(2010)488–494. Jerusalem artichokes: intestinal transport, absorption, fermentation and [6] B.Coulman,A.Dalai,E.Heaton,C.PerezLee,M.Lefsrud,D.Levin,P.G.Lemaux, influence on blood glucose, insulin and C-peptide responses in healthy D.Neale,S.P.Shoemaker,J.Singh,D.L.Smith,J.K.Whalen,Developmentsin subjects,Am.J.Clin.Nutr.52(1990)675–681. crops and management systems to improve lignocellulosic feedstock [40] A.Beringer,R.Wenger,Inulininderernährungdesdiabetikers,Dtsch.Z. production,BiofuelsBioprod.Biorefin.7(2013)582–601. VerdauungsStofwechselkrankh15(1995)268–272. [7] S.Matsuoka,J.Ferro,P.Arruda,TheBrazilianexperienceofsugarcaneethanol [41] B.K.E.Knudsen,I.Hessov,RecoveryofinulinfromJerusalemartichoke industry,InVitroCell.Dev.Biol.-Plant45(2009)372–381. (HelianthustuberosusL.)inthesmallintestineofman,Br.J.Nutr.74(1995) [8] L.C.Meher,C.P.Churamani,Z.ArifMdAhmed,S.N.Naik,Jatrophacurcasasa 101–113. renewablesourceforbio-fuels–areview,Renew.Sustain.EnergyRev.26 [42] A.Franck,Technologicalfunctionalityofinulinandoligofructose,Br.J.Nutr. (2013)397–407. 87(2002)S287–S291. [9] M.Mofijur,H.H.Masjuki,M.A.Kalam,M.A.Hazrat,A.M.Liaquat,M. [43] H.Trowell,D.Burkitt,Physiologicalroleofdietaryfiber:aten-yearreview, Shahabuddin,M.Varman,ProspectsofbiodieselfromJatrophainMalaysia, ASDCJ.Dent.Child.53(1986)444–447. Renew.Sustain.EnergyRev.16(2012)5007–5020. [44] G.R.Gibson,E.R.Beatty,X.Wang,J.H.Cummings,Selectivestimulationof [10] Duke,J.A.,1983.HandbookofEnergyCrops. bifidobacteria in the human colon by oligofructose and inulin, [11] R.Slimestad,R.Seljaasen,K.Meijer,S.L.Skar,Norwegian-grownJerusalem Gastroenterology108(1995)975–982. artichoke(HelianthustuberosusL.):morphologyandcontentofsugarsand [45] G.R.Gibson,M.B.Roberfroid,Dietarymodulationofthehumancolonic fructo-oligosaccharidesinstemsandtubers,J.Sci.FoodAgric.90(2010)956– microbiota—introducingtheconceptofprebiotics,J.Nutr.125(1995)1401– 964. 1412. [12] X.Y.Ma,L.H.Zhang,H.B.Shao,G.Xu,F.Zhang,F.T.Ni,M.Brestic,Jerusalem [46] C.Coudray,C.Demigné,Y.Rayssiguier,Effectsofdietaryfibersonmagnesium artichoke(Helianthustuberosus),amedicinalsalt-resistantplanthashigh absorptioninanimalsandhumans,J.Nutr.133(2003)1–4. adaptabilityandmultiple-usevalues,J.Med.PlantsRes.5(2011)1272–1279. [47] S.A.Abrams,I.J.Griffin,K.M.Hawthorne,L.L.Liang,S.K.Gunn,G.Darlington, [13] C.J.Swanton,A.S.Hamill,JerusalemArtichoke.Factsheet,Ministryof K.J. Ellis, A combination of prebiotic short-and long-chain inulin-type AgricultureandFood,Ontario,1994,pp.077–94. fructans enhances calcium absorption and bone mineralization inyoung [14] I.Panchev,N.Delchev,D.Kovacheva,A.Slavov,Physicochemical adolescents,Am.J.Clin.Nutr.82(2005)471–476. characteristics of inulins obtained from Jerusalem artichoke (Helianthus [48] A.Franck,Prebioticsstimulatecalciumabsorption:areview,FoodAust.57 tuberosusL.),Eur.FoodRes.Technol.233(2011)889–896. (2005)530–532. [15] W.Praznik,E.Cie(cid:1)slik,A.Filipiak-Florkiewicz,Solubledietaryfibersin [49] M.A.Levrat,C.Rémésy,C.Demigné,Highpropionicacidfermentationsand Jerusalem artichoke powders: composition and application in bread, mineralaccumulationinthececumofratsadaptedtodifferentlevelofinulin, Nahrung46(2002)151–157. J.Nutr.21(1991)1730–1737. [16] L.Pan,M.R.Sinden,A.H.Kennedy,H.Chai,L.E.Watson,T.L.Graham,A.D. [50] N.Kaur,A.K.Gupta,B.Saijpaul,Hypotriglyceridaemiceffectofcichorium Kinghorn, Bioactive constituents of Helianthus tuberosus (Jerusalem intybus roots in ethanol injected and saturated fat-fed rats, J. artichoke),Phytochem.Lett.2(2009)15–18. Ethnopharmacol.23(1988)343. [17] X.Y.Yuan,M.Z.Gao,H.B.Xiao,C.Y.Tan,Y.G.Du,Freeradicalscavenging [51] H.Kaur,A.K.Gupta,S.Saijpal,P.P.InduGupta,Triglycerideandcholesterol activities and bioactive substances of Jerusalem artichoke (Helianthus loweringeffectofchicoryrootsintheliverofdexamethosone-injectedrat, tuberosusL.)leaves,J.FoodChem.133(2012)10–14. Med.Sci.Res.17(1989)1009–1010. [18] J.Cepl,P.Kasal,H.Souckova,A.Svobodova,P.Bucher,Non-foodproductionof [52] A.Pedersen,B.Sandstrõm,J.M.M.VanAmelsvoort,Theeffectofingestionof Jerusalemartichoke(Helianthustuberosus)andpossibilitiesofitsenergetic inulinonbloodlipidsandgastrointestinalsymptomsinhealthyfemales,Br.J. utilization,ActualTasksAgric.Eng.-Zagreb40(2012)517–526. Nutr.78(1997)215–222. [19] A.Wieczorek,TheJerusalemartichokeHelianthustuberosusaspotential [53] K.G.Jackson,G.R.J.Taylor,A.M.Clohessy,C.M.Williams,Theeffectofthedaily energysource,ActaAliment.Pol.14(1988)115–122. intake of inulin on fasting lipid, insulin and glucose concentrations in [20] A.Monti,M.T.Amaducci,G.Venturi,Growthresponse,leafgasexchangeand middle-agedmenandwomen,Br.J.Nutr.82(1999)23–30. fructansaccumulationofJerusalemartichoke(HelianthustuberosusL.)as [54] K.DeAlmeidaGualtieri,R.LosiGuembarovski,J.M.M.Oda,L.Fiori-Lopes,N. affectedbydifferentwaterregimes,Eur.J.Agron.23(2005)136–145. KetelutCarneiro,V.D.deCastro,J.SoniNeto,M.AngelicaEharaWatanabe, [21] A.Tassoni,N.Bagni,M.Ferri,M.Franceschetti,A.Khomutov,M.Paula Inulin: therapeutic potential, prebiotic properties and immunological Marques, S.M. Fiuza, A.R. Simonian, D. Serafini-Fracassini, Helianthus aspects,FoodAgric.Immunol.24(2013)21–31. 86 L.Yangetal./BiotechnologyReports5(2015)77–88 [55] M.J.Clark,K.Robien,J.L.Slavin,Nutritioneffectofprebioticsonbiomarkersof [86] H.J.Zhu,Q.Guo,TheproductionandapplicationofJerusalemartichoke,Appl. colorectalcancerinhumans:asystematicreview,Nutr.Rev.70(2012) Technol.Market(2001)5. 436–443. [87] H.J.Zhu,J.B.Hu,Z.X.Zhao,D.W.Jin,Q.D.Nie,Thestudyofproducingfructose [56] G.H.McIntosh,Experimentalstudiesofdietaryfibreandcoloncancer-an usingdynamicmembraneseparationtypeenzymaticdevice,Chem.Indus. overview,in:J.W.vanderKamp,N.G.Asp,J.MillerJones,G.Schaafsma(Eds.), Eng.12(1995)1–7. Dietary Fibre: Bio-active Carbohydrates for Food and Feed, Wageningen [88] H.Baba,Y.Yaoita,M.Kikuchi,SesquiterpenoidsfromtheleavesofHelianthus AcademicPress,Wageningen,TheNetherlands,2004,pp.165–178. tuberosusL,J.TohokuPharm.Univ.52(2005)21–25. [57] H.S.Taper,M.Roberfroid,Influenceofinulinandoligofructoseonbreast [89] HealthDepartmentandNationalChineseMedicineManagementOffice. cancerandtumorgrowth,J.Nutr.129(1999)1488S–1491S. ChineseHerbMedicine.ShanghaiScienceTechnologyPress,1998. [58] C.Rumney,I.Rowland,Non-digestibleoligosaccharides-potentialanti- [90] Talipova,LipidsofHelianthustuberosusL,Chem.Nat.Compd.37(2001)213– canceragents,Nutr.Bull.20(1995)194–203. 215. [59] M.Weidmann,M.Jager,Synergisticsweeteners,FoodIngredientsAnal.Int. [91] M.S.Ahmed,F.S.El-Sakhawy,S.N.Soliman,H.D.M.R.Abou,Phytochemical (1997)51–56. andbiologicalstudyofHelianthustuberosusL,Egypt.J.Biomed.Sci.18(2005) [60] D.H.Kim,Y.J.Choi,S.K.Song,J.W.Yun,Productionofinulooligosaccharides 134–147. usingendo-inulinasefromaPseudomonassp,Biotechnol.Lett.19(1997) [92] R.Nakagawa,D.Yasokawa,T.lkeda,K.Nagashima,Purificationand 369–371. characterizationoftwolectinsfromcallusofHelianthustuberosus,Biosci. [61] A.Abou-Arab,H.Talaat,F.Abu-Salem,Physico-chemicalpropertiesofinulin Biotechnol.Biochem.60(1996)259–262. producedfromJerusalemartichoketubersonbenchandpilotplantscale, [93] X.Yuan,M.Gao,K.Wang,H.B.Xiao,C.Tan,Y.Du,Analysisofchlorogenicacids Aust.J.BasicAppl.Sci.5(2011)1297–1309. in Helianthus tuberosus Linn leaves using high performance liquid [62] J.Q.Li,PolyphenoloxidasecharacteristicsofJerusalemartichoke,Acta chromatography–massspectrometry,Chin.J.Chromatogr.26(2008)335– AgriculturaeBoreali-OccidentalisSinica8(2010)038. 338. [63] S.J.Jiang,ResearchonextractionofinulinfromHelianthustuberosusL, [94] X.Y.Yuan,M.C.Cheng,M.Z.Gao,R.J.Zhuo,L.X.Zhang,H.B.Xiao,Cytotoxic GuangzhouChem.Ind.40(2012)82–84. constituentsfromtheleavesofJerusalemartichoke(HelianthustuberosusL.) [64] M.Kierstan,Studiesonenzymaticmethodsforextractionofinulinfrom andtheirstructure–activityrelationships,Phytochem.Lett.6(2013)21–25. Jerusalemartichoke,EnzymeMicrobiol.Technol.5(1983)445–448. [95] J.Moskovitz,M.B.Yim,P.B.Chock,Freeradicalsanddisease,Arch.Biochem. [65] M.Toma,M.Vinatoru,L.Paniwnyk,T.J.Mason,Investigationoftheeffectsof Biophys.397(2002)354–359. ultrasoundonvegetalissuesduringsolventextraction,Utrason.Sonochem.8 [96] H.W.Liu,Z.P.Liu,L.Liu,G.M.Zhao,Studiesontheantifungalactivitiesand (2001)137–142. chemicalcomponentsofextractsfromHelianthustuberosusleaves,Nat.Prod. [66] L.Y.Wei,J.H.Wang,X.D.Zheng,D.Teng,Y.L.Yang,C.G.Cai,T.H.Feng,F.Zhang, Res.Dev.19(2007)405–409. Studies on the extracting technical conditions of inulin from Jerusalem [97] R.Han,L.H.Wang,Q.W.Zhong,K.Sun,Y.Li,Studyonantifungalactivityofthe artichoketubers,J.FoodEng.79(2007)1087–1093. extractfromthe leavesof Helianthus tuberosus, Mod. Agric. Sci. Technol. [67] P.C.Veggi,J.Martinez,M.A.A.Meireles,Microwave-assistedExtractionfor (2010)5. Bioactive Compounds: Theory and Practice, Food Engineering, Series 4, [98] F.J.Chen,X.H.Long,M.N.Yu,Z.P.Liu,L.Liu,H.B.Shao,Phenolicsand Springer, 2013. antifungal activities analysis in industrial crop Jerusalem artichoke [68] Z.J.Xiao,D.H.Zhu,X.H.Wang,M.D.Zhang,Studyonextractionprocessof (HelianthustuberosusL.)leaves,Indus.CropsProd.47(2013)339–345. inulinfromHelianthustuberosus,Mod.FoodSci.Technol.29(2013)02. [99] Y.J.Lee,M.Lee,S.Y.Yu,etal.,Changesinphysicochemicalcharacteristicsand [69] H.D.Li,H.J.Zhu,J.J.Qiao,J.H.Du,H.Zhang,Optimizationofthemainliming antioxidant activitiesof Jerusalem artichoke tea infusions resultingfrom process for inulin crude extract from Jerusalem artichoke tubers, Front. differentproductionprocesses,FoodSci.Biotechnol.23(2014)1885–1892. Chem.Sci.Eng.6(2012)348–355. [100] D.Kim,J.P.Fan,H.C.Chung,etal.,Changesinextractabilityandantioxidant [70] D.J.Jenkins,T.M.Wolever,R.H.Taylor,H.Barker,H.Fielden,J.M.Baldwin,A.C. activitiesofJerusalemartichoke(HelianthustuberosusL.)tubersbyvarious Bowling,H.C.Newman,A.L.Jenkins,D.V.Goff,Glycemicindexoffoods:a highhydrostaticpressuretreatments,FoodSci.Biotechnol.19(2010)1365– physiologicalbasisforcarbohydrateexchange,Am.J.Clin.Nutr.34(1981) 1367. 362–366. [101] J.Azmir,I.S.M.Zaidul,M.M.Rahman,K.M.Sharif,A.Mohamed,F.Sahena,M.H. [71] K.Foster-Powell,S.H.A.Holt,J.C.Brand-Miller,Internationaltableofglycemic A. Jahurul, K. Ghafoor, N.A.N. Norulaini, A.K.M. Omar, Techniques for indexandglycemicloadvalues:2002,Am.J.Clin.Nutr.76(2002)5–56. extractionofbioactivecompoundsfromplantmaterials:areview,J.Food [72] M.S. Segal, R.J. Johnson, Is the fructose index more relevant with Process.Eng.117(2013)426–436. regards to cardiovascular disease than the glycemic index? Eur. J. Nutr. [102] T.Fornari,G.Vicente,E.Vázquez,M.R.García-Risco,G.Reglero,Isolationof 46 (2007) 406–417. essential oil from different plants and herbs by supercritical fluid, J. [73] A.M. Fontvieille, A. Faurion, I. Helal, S.W. Rizkalla, S. Falgon, M. Chromatogr.A1250(2012)34–48. Letanoux, G. Tchobroutsky, G. Slama, Relative sweetness of fructose [103] J.F.Hu,S.Y.Qiu,Researchprocessinethanolproductionbythefermentation compared with sucrose in healthy and diabetic subjects, Diabetes Care ofJerusalemartichoke,Liq.-Mark.Sci.Technol.182(2009)100–104. 12 (1989) 481–486. [104] Zelenkov,V.N.,2000.MethodofBeerBrewingUsingJerusalemArtichoke. [74] A.T.Cameron,Therelativesweetnessofsucrose,glucose,andfructose,Trans. Russianfederationpatent149894. R.Soc.Can.J.Biol.Sci.37(1943)11–27. [105] Hui,Y.H.,1991.DataSourceBookforFoodScientistsandTechnologist. [75] R.S.Schallenberger,Hydrogenbondingandthevaryingsweetnessofthe [106] R.M.Sachs,C.B.Low,A.Vasavada,M.J.Sully,L.A.Williams,G.C.Ziobro,Fuel sugars,J.FoodSci.28(1963)584–589. alcoholfromJerusalemartichoke,Calif.Agric.35(1981)4–6. [76] H. Stone, S.M. Oliver, Measurement of the relative sweetness of [107] Biofuel.org,UK,2014HistoryofBiofuelshttp://biofuel.org.uk/history-of- selected sweeteners and sweetener mixtures, J. Food Sci. 34 (1969) biofuels.html(Retrievedon03.02.14). 215–222. [108] A.Margaritis,P.Bajpai,ContinuousethanolproductionfromJerusalem [77] C.H.Kim,S.K.Rhee,FructoseproductionfromJerusalemartichokeby artichoketubers.I.UseoffreecellsofKluyveromycesmarxianus,Biotechnol. inulinaseimmobilizedonchitin,Biotechnol.Lett.11(1989)201–206. Bioeng.24(1982)1473–1482. [78] W.Y.Kim,S.M.Byun,T.B.Uhm,HydrolysisofinulinfromJerusalemartichoke [109] A.Margaritis,P.Bajpai,ContinuousethanolproductionfromJerusalem byinulinaseimmobilizedonaminoethylcellulose,EnzymeMicrob.Technol.4 artichoketubers.II.UseofimmobilizedcellsofKluyveromycesmarxianus, (1982)239–244. Biotechnol.Bioeng.24(1982)1483–1493. [79] A.Pandey,C.R.Soccol,P.Selvakumar,V.T.Soccol,etal.,Recentdevelopments [110] G.J.Zhang,W.D.Long,Akeyreviewonenergyanalysisandassessmentof inmicrobialinulinases,Appl.Biochem.Biotechnol.81(1999)129–145. biomassresourcesforasustainablefuture,EnergyPolicy38(2010)2948– [80] E.Ricca,V.Calabrò,S.Curcio,G.Lorio,Thestateoftheartintheproductionof 2955. fructosefrominulinenzymatichydrolysis,Crit.Rev.Biotechnol.27(2007) [111] J.Hill,Environmentalcostandbenefitsoftransportationbiofuelproduction 129–145. fromfood-andlignocellulose-basedenergycrops.Areview,Agron.Sustain. [81] S.Sirisansaneeyakul,N.Worawuthiyanan,W.Vanichsriratana,P. Dev.27(2007)1–12. Srinophakun, Y. Chisti, Production of fructose from inulin using mixed [112] O.J.Sanchez,C.A.Cardona,Trendsinbiotechnologicalproductionoffuel inulinases from Aspergillus niger and Candida guilliermondii, World J. ethanol from different feedstocks, Bioresour. Technol. 99 (2008) 5270– Microbiol.Biotechnol.23(2007)543–552. 5295. [82] J.Yu,J.X.Jiang,W.M.Ji,Y.Y.Li,J.P.Liu,Glucose-freefructoseproductionfrom [113] R.L.Naylor,A.Liska,M.B.Burke,W.P.Falcon,J.C.Gaskell,Therippleeffect: Jerusalemartichokeusingarecombinantinulinase-secretingSaccharomyces biofuels,foodsecurity,andtheenvironment,Environment49(2007)30–43. cerevisiaestrain,Biotechnol.Lett.33(2011)147–152. [114] A.Demirbas,Political,economicandenvironmentalimpactsofbiofuels:a [83] J.P.Guiraud,S.Demeulle,P.Galzy,InulinhydrolysisbytheDebaryomyces review,Appl.Energy86(2009)S108–S117. phaffiiinulinaseimmobilizedonDEAEcellulose,Biotechnol.Lett.3(1981) [115] R.C.Brown,T.R.Brown,BiorenewableResourcesEngineeringNewProducts 683–688. fromAgriculture,Wiley-BlackwellPublishing, 2013. [84] G.L.M.Santa,S.M.S.A.Bernardino,S.Magalhães,V.Mendes,M.P.C.Marques,L. [116] A.Limayem,S.C.Ricke,Lignocellulosicbiomassforbioethanolproduction: P. Fonseca, P. Fernandes, From inulin to fructose syrups using sol-gel currentperspective,potentialissuesandprospects,Prog.EnergyCombust. immobilizationinulinase,Appl.Biochem.Biotechnol.165(2011) Sci.38(2012)449–467. 1–12. [117] L.L.Li,L.Li,Y.P.Wang,Y.G.Du,S.Qin,Bio-refineryproductsfromtheinulin- [85] R.S.Singh,R.Dhaliwal,M.Puri,Developmentofatablecontinuousflow containingcropJerusalemartichoke,Biotechnol.Lett.35(2013)471–477. immobilizedenzymereactorforthehydrolysisofinulin,J.Indus.Microbiol. [118] J.Matías,J.González,J.Cabanillas,L.Royano,InfluenceofNKPfertilization Biotechnol.35(2008)777–782. andharvestdataonagronomicperformanceofJerusalemartichokecropin

Description:
Linxi Yang a, Quan Sophia He a,*, Kenneth Corscadden a, Chibuike C. Jerusalem artichoke, a native plant to North America has recently been
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.