ThepropertiesofC-parameterandcouplingconstants R. Saleh-Moghaddam and M.E. Zomorrodian Department of Physics, Faculty of physics, Ferdowsi University of Mashhad, 91775-1436 Mashhad, Iran R [email protected] , [email protected] − (Dated:March10,2015) abstract:Inthisarticle,wepresentthepropertiesoftheC-parameterwhichisoneofeventshapevariables. Weobtainthecouplingconstantsbothintheperturbativeandinthenon-perturbativepartoftheQCDtheory. Toachievethiswefitthedispersivemodelaswellastheshapefunctionmodelwithourdata. Ourresultsare consistentwiththeQCDpredictions.Weexplainmorefeaturesofourresultsinthemaintext. PACSnumbers:12.38.-t;12.38.Bx;12.38.Lg Keywords:Quantumchromodynamics;Perturbativecalculations;non-Perturbativetheory 5 1 0 I. INTRODUCTION mentumtensorθ . jk 2 (cid:80) pipi/|pi| pr Eventshapevariablesine+e− annihilationprovideanideal θjk = i(cid:80)j|pki| . (1) A testing ground to study Quantum Chromo-Dynamics (QCD) i and have been measured and studied extensively in the last where pi arethespatialcomponents(j,k = 1,2,3)ofthei-th 2 threedecades.Inparticular,eventshapevariablesareinterest- particlemomentuminthecentreofmassframe. Thesumoni 1 ing for studying the interplay between perturbative and non- runsoverallthefinalstateparticles. Ifλi aretheeigenvalues perturbativedynamics[1]. Oneofthemostcommonandsuc- ] ofthematrix,wehave: h cessfulwaysoftestingQCDhasbeenbyinvestigatingthedis- p tributionofeventshapesine+e− →hadrons,whichhavebeen C =3(λ λ +λ λ +λ λ ). (2) 1 2 2 3 3 1 - p measuredaccuratelyoverarangeofcentre-of-massenergies, Therealsymmetricmatrixθ haseigenvaluesλ with0 ≤ e and provide a useful way of evaluating the strong coupling jk i h constant α . The main obstruction to obtaining an accurate λ3 ≤ λ2 ≤ λ1 ≤ 1. It describes an ellipsoid with orthogonal s [ value of α from distributions is not due to a lack of precise axes named minor, semi-major and major corresponding to s 2 databuttodominanterrorsinthetheoreticalcalculationofthe thethreeeigenvalues. Themajoraxisissimilarbutnotiden- v distributions. In particular, there are non-perturbative effects tical to nT. The C parameter varies in the range 0 ≤ C ≤ 1. 1 that cannot yet be calculated from first principles but cause C = 0 corresponds to a perfect two jet event (with massless 6 power-suppressedcorrectionsthatcanbesignicantatexperi- jets), while C = 1 characterizes a spherical event. Planar 7 events including in particular the O(α ) perturbative result, mentallyaccessibleenergyscales[2]. S 1 aredistributedintherange0≤C ≤3/4. 0 Inthisarticle,weshowthecrosssectionforC-parameteras Figure 1 shows the distribution for C-parameter (0 ≤ C ≤ . aneventshapeobservable. Alsoweperusebothperturbative 1 1)byusingtheMonteCarlodata(PYTHIAprogram)indif- andnon-perturbativetheoryforcalculatingcouplingconstants 0 ferentcenterofmassenergies. Weseethatthevaluesarebe- 5 using different models .It is mentioned that we have already tween0and1forallenergies. Weobserveadecreasingtrend 1 done some analyses on some event shape observables in our for all distributions by increasing the C parameter. The fig- v: previouspublications[3,4]. ure also indicates that there is not a significant difference on i The outline of the paper is as the following: In sect.2 we thedistributionsbetweendifferentenergies. Weconcludethat X define and review the C-parameter and show the cross sec- thisparameterisinsensitivetothedataofdifferentenergies. r tion distribution for different energies. In sect.3, we present a thecalculationsoftheperturbativetheoryaswellasthenon- perturbative theory up to the next to next to leading order (NNLO). We also achieve similar calculations for both the III. POWERCORRECTIONSANDDIFFERENTMODELS dispersiveandtheshapefunctionmodels. Andfinallyweex- tractthecouplingconstantfromouranalysis. Thelastsection QCD calculations based on NLO perturbation theory as summarizesourconclusions. well as NNLO theory are available for many observables in high energy particle reactions, like the total hadronic cross section in e+e− → hadrons and moments in deep inelastic scattering (DIS) processes and also in hadronic decay. The complicated nature of QCD, due to the process of gluon self II. C-PARAMETER couplingandtheresultinglargenumberofFeynmandiagrams inhigherordersofperturbationtheory,sofarlimitedthenum- The C parameter [5, 6] for electron−positron annihilation berofQCDcalculationsincompleteNNLO[7]. Weshallex- eventsisderivedfromtheeigenvaluesλ ofthelinearizedmo- plainthemethodsofcalculationforNLOandNNLOtheories. i 2 Allobservablesarechosensuchthattheytakevaluesbetween 0and1. Nowifweaddthethirdsentencetoaboveexpansion, wewillhavetheNNLOtheory. 1 dσ α (µ) dA α (µ) dB α (µ) dC =( s ) +( s )2 +( s )3 . (5) σ dy 2π dy 2π dy 2π dy tot C gives the NNLO correction. The perturbative contribution to (cid:104)yn(cid:105) is given up to NNLO in terms of the dimensionless coefficientsA ,B andC as[1]: y,n y,n y,n α (µ) α (µ) (cid:104)yn(cid:105) =( s )A +( s )2 PT 2π y,n 2π µ2 α (µ) (B +A β log )+( s )3(C +2B β y,n y,n 0 E 2π y,n y,n 0 cm FIG.1: ThecrosssectiondistributionsforC-parameterindifferent energies. µ2 µ2 µ2 log +A (β2log2 +β log ). (6) E y,n 0 E 1 E cm cm cm Wealsogiveanexplanationofotherwaysforcalculatingthe coupling constant such as the dispersive model and also the A , B and C are straightforwardly related to A , B y,n y,n y,n y,n y,n shapefunctionmodel. Thesemodelsincludeperturbativeand andC : y,n non-perturbativeregions. Oneoftheaspectswherethestudy of event shapes has taught us general lessons about QCD is A = A , y,n y,n the interplay between perturbative and nonperturbative cor- rections. The phenomenological success of renormalization based on models for power corrections has important conse- 3 B = B − C A , quences. y,n y,n 2 F y,n Inevent-shapemoments(y),oneexpectsthehadronization correctionstobeadditive,suchthattheycanbedividedintoa 3 9 perturbativeandanon-perturbativecontribution[8], C =C − C B +( C2 −K )A . (7) y,n y,n 2 F y,n 4 F 2 y,n that A , B and C are given in Table I also the constant (cid:104)yn(cid:105)=(cid:104)yn(cid:105) +(cid:104)yn(cid:105) . (3) y,n y,n y,n pt np K isgivenby[9,10]: 2 Nowweexplicatethesetheoriesandmodelsinthefollow- 1 3 123 ing: K = [− C2 +C C ( −44ζ ) 2 4 2 F F A 2 3 A. NLOandNNLOcorrections +C T N (−22+16ζ )]. (8) F R F 3 The perturbative expansion of a differential distribution Here Ecm denotes the centre of mass energy squared and weightedoftheobservableycanbewrittenforanyinfrared- is the QCD renormalization scale. The NLO expression is safe observable for the process e+e− → hadrons. The main obtained by suppressing all terms at order α3. The first two S theoreticalfeatureofjetobservablesisthattheycanbecom- coefficientsoftheQCDβ-functionare: puted in QCD perturbation theory. As a result, jets observ- 11C −4T N ablesarefinite(calculable)atthepartoniclevelorderbyorder β = A R F, 0 6 inperturbationtheory[7]. IfweassumetheNLOtheoryonly, we can compute its corresponding perturbative expansion in theform TABLEI: ContributionstoC-parameteratLO,NLOandNNLO[1]. 1 dσ =(αs(µ)) dA +(αs(µ))2 dB. (4) (cid:104)Cn(cid:105) A B C σ dy 2π dy 2π dy n=1 8.6379 172.778±0.007 3212.2±88.7 tot n=2 2.4317 81.184±0.005 2220.9±12.0 AgivestheLOresultandBtheNLOcorrection. σ denotes n=3 1.0792 42.771±0.003 1296.6±6.7 tot the total hadronic cross section calculated up to the relevant n=4 0.5685 25.816±0.002 843.1±3.9 order. The arbitrary renormalization scale is denoted by µ. n=5 0.3272 16.873±0.001 585.0±3.2 3 17C2 −10C T N −6C T N β = A A R F F R F. (9) 1 6 where C = N is color number, C = (N2 −1)/2N = 4/3, A F T =1/2andN isquarkflavors. R F The perturbative coefficients (A , B andC ) are inde- y,n y,n y,n pendent of the centre-of-mass energy. They are obtained by integrating parton-level distributions, which were calculated recently to NNLO accuracy [1]. These values are shown in TableI. In order to define the non-perturbative part of the theory, it is necessary to explain the dispersive as well as the shape functionmodelasthefollowing. B. Thedispersivemodel Non-perturbative power corrections can be related to in- fraredrenormalizationsintheperturbativeQCDexpansionfor theevent-shapevariables.Thedispersivemodelforthestrong couplingleadstoashiftinthedistributions[8]: dσ dσ (y)= pt(y−a .P) (10) dy dy y wherethenumericalfactorα dependsontheeventshapethat y for C-parameter it is a = 3π [11]. Then we obtain the non- y perturbativeparameterfromthismodelasthefollowing: 4C µ (cid:104)yn(cid:105) =a .P=a . FM I np y y π2 E cm µ k .[α (µ )−α (µ)−(log( )+1+ )2β α2(µ)] (11) 0 I s µ 4πβ 0 s I 0 In the MS renormalization scheme the constant k has the valuek=(67/18−π2/6)C −5/9N ,TheMilanFactorMis A F knownintwoloopsasM = 1.49±0.20[11,12],fornumber FIG.2: FittingthedispersivemodelwithdatafortheC-parameter offlavorN =3attherelevantlowscales[13]. F AsaresultforMthatso-callednon-inclusiveMilanfactor, wehad[14]: (cid:104)y3(cid:105)=(cid:104)y3(cid:105) +3(cid:104)y2(cid:105) (a .P)+3(cid:104)y1(cid:105) (a .P)2+(a .P)3. NLO NLO y NLO y y (15) 3.299C −0.862C −0.052N α defines the strong coupling constant and α defines the M=1+ A +2× A F s 0 β β nonperturbativeparameteraccountingforthecontributionsto 0 0 the event shape below an infrared matching scale µ (cid:27) 2. I Therefore it is possible to obtain α and α in this model. S 0 1.575C −0.104N =1+ A F =1.49±0.20 (12) We are using the AMY data taken from TRISTAN at KEK, β0 as well as DELPHI and ALEPH at CERN plus the PYTHIA eventgenerator.Byfittingthedispersivemodelwithdiagrams Nowwecanusethepowercorrectionstocalculatetheper- depictedinFigure2,weobservethatthemodelisconsistent turbativeandthenon-perturbativetheoriesforthemomentsof withthedata. y,wehave[8]: We observe that all distributions for the dispersive model (solid line) are in good agreement with the Monte Carlo (cid:104)y1(cid:105)=(cid:104)y1(cid:105) +a .P, (13) (PYTHIA) and the experimental data when compared with NLO y NLO or NNLO prediction because the latters do not include thepowercorrection. Inotherwordsthedispersivemodelin- (cid:104)y2(cid:105)=(cid:104)y2(cid:105) +2(cid:104)y1(cid:105) (a .P)+(a .P)2, (14) cludes both perturbative and the non-perturbative part of the NLO NLO y y 4 theory. Next step is to measure the strong coupling constant TABLEIII:CouplingconstantsforC-parameterin[15]. andthenon-perturbativeparameterbyfittingtheabovemodel Exp ALEPH DELPHI L3 with the data. The values for α (M ) and α (µ ) up to third s Z0 0 I α (M ) 0.123±0.003 0.122±0.004 0.116±0.005 powercorrectionarecitedinTableII.Ourresultsarealsocon- s Z0 α (µ) 0.461±0.016 0.444±0.022 0.457±0.040 sistentwiththoseobtainedbyusingotherexperiments(Table 0 I IIIisextractedfrom[15]). C. Theshapefunctionmodel KorchemskyandTafat[16]describepropertiesoftheevent shapevariables1−T and M2 notincludedinNLOperturba- H tion theory so called shape function, which does not depend onthevariablenorthecmsenergy. Thisismoregeneralthan the dispersive model, considering both as a shift of the per- turbative prediction and as a compression of the distribution peak. We should mention that the shape function model in- cludestheperturbativetheoryaswellasthenon-perturbative partoftheory. ThismodelisacombinationofboththeNLO prediction and the power correction terms (equation 3). To calculate the strong coupling constant in perturbative theory, weareusingequation4. Wealsousethefollowingexpansion formeasuringthefreeparameterinnon-perturbativetheory. λ (cid:104)C1(cid:105)=(cid:104)C1(cid:105) + 1 . (16) NLO E cm Analogously for the second moments and the third mo- ments,wefind[17]: λ λ (cid:104)C2(cid:105)=(cid:104)C2(cid:105) +2 1 (cid:104)C1(cid:105) + 2 . (17) NLO E NLO E2 cm cm λ λ λ (cid:104)C3(cid:105)=(cid:104)C3(cid:105) +3 1 (cid:104)C2(cid:105) +3 2 (cid:104)C1(cid:105) + 3 . (18) NLO E NLO E2 NLO E3 cm cm cm Inordertocalculatethestrongcouplingconstantconcerned withtheperturbativetheory,weperformafittingprocedureby includingjustthefirstpartofequation16. Ontheotherhand tofindthecouplingconstantinthenon-perturbativeregionwe doafittingprocedurebytakingintoaccountbothparameters inequation16. Weachieveasimilaranalysisforequations17 and 18. The coefficient λ is interpreted as the first moment 1 and λ as the second moment of the shape function. These 2 parameters are also known as the so called universal scales [18]. Figure 3 shows the distributions obtained from the exper- FIG.3: FittingtheC-parameterinshapefunctionmodelwithdata. imental data as well as PYTHIA. By fitting the shape func- tionmodelwiththecorrespondingdistribution,weobtainthe strongcouplingconstantα (M )andthenon-perturbativepa- s Z0 rameter(λ ). OurresultsareindicatedinTableIV. 1 TABLEIV:Measurementsofthecouplingconstantsusingtheshape functionmodel. TABLEII:Measurementsofthecouplingconstantsusingthedisper- n 1 2 3 sivemodel. α (M ) 0.149±0.003 0.143±0.003 0.140±0.0064 n 1 2 3 s Z0 λ 0.578±0.037 0.521±0.039 0.449±0.033 1 α (M ) 0.149±0.003 0.117±0.001 0.112±0.003 s Z0 α (µ) 0.460±0.015 0.471±0.007 0.499±0.017 0 I 5 These values are in good agreement with the results from othereventshapevariablescarriedoutinourpreviouspubli- cations [3, 4]. Our results are also consistent with the QCD predictions[13]. D. Thevariance Thesimplepredictionforthevarianceofeventshapevari- ables(y)onhadronlevelis[19]: Var(y)=(cid:104)y2(cid:105)−(cid:104)y(cid:105)2. (19) Wecanobtainapurelyperturbativeexpressionforthevari- FIG.4: Fittingvariancebyusingthedispersivemodel. ance in the dispersive model and also in the shape function model,uptostronglysuppressedcorrectionsO(α (Q2)). The S first and second orders give the identical prediction in NLO andNNLOmoments. However the NLO and NNLO do not include non- pertur- bativepart. ThusincaseoftheC-parameter,wehave: Var(C)=(cid:104)C2(cid:105) −(cid:104)C(cid:105)2 . (20) NLO NLO On the other hand, if we take into account the non- perturbativepartofthemodel,wewillhave: Var(C)=(cid:104)C2(cid:105) −(cid:104)C(cid:105)2 . (21) total total where the subscript indicates the perturbative as well as the non-perturbativepartsofourcalculationsinbothmodels. In Figures 4 and 5 we show the variance for dispersive as well asshapefunctionmodel. Theobtainedresultsbyfittingvari- ance with models are summarized in Table V and Table VI respectively. Both tables indicate that our values for the coupling con- stant in perturbative and in the non-perturbative regions are in good agreement with the QCD predictions. They are also consistentwiththoseobtainedfromotherexperiments[13]. FIG.5: Fittingvariancebyusingtheshapefunctionmodel. TABLEV:Measurementsofthecouplingconstantsbyusingthevari- anceofdispersivemodel. Observable α (M ) α (µ) s Z0 0 I C-parameter 0.1039±0.0059 0.5183±0.0211 TABLEVI:Measurementsofcouplingconstantsbyusingthevari- anceofshapefunctionmodel. Observable α (M ) λ s Z0 1 C-parameter 0.1052±0.0031 0.7164±0.0342 6 IV. REFERENCES [10] Dine,MandSapirstein,J.R.Phys.Rev.Lett.,1979,vol.43,pp. 668. [11] Dokshitzer,Yu.L.Lucenti,L.Marchesini,GandSalam,G.P. [1] Gehrmann-DeRidder,A.Gehrmann,T.Glover,EandHeinrich, Nucl.Phys.B,1998,vol.511,pp.396. G.JHEP,2009,vol.05,pp.106. [12] Dasgupta,M.Magnea,LandSmye,G.J.HighEnergyPhys., [2] Davison,R.AandWebber,B.R.Eur.Phys.J.C,2009,vol.59, 1999,vol.11,no.025. pp.13-25. [13] Pahl, C. Bethke, S. Biebel, O. Kluth, S and Schieck, J. Eur. [3] SalehMoghaddam,RandZomorrodian,M.E.pramanajournal Phys.J.C,2009,vol.64,pp.533-547. ofphysics,2013,vol.81,no.5,pp.775-790. [14] Dokshitzer,Yu.L.Arxiv:hep-ph/9911299v2,1999. [4] Saleh Moghaddam, R and Zomorrodian, M.E. Rom.J.Phys, [15] Kluth, S. Max-Planck-Institute for Physics Germany, 2015,vol.60,no.1-2,pp.190-199. arXiv:hep-ex/0606046v1,2006. [5] Parisi,G.Phys.Lett.B,1978,vol.74,pp.65. [16] Korchemsky, G. LPTHE Orsay, 1998, vol. 98, no. 44, [6] Donoghue,J.F.Low,F.EandPi,S.Y.Phys.Rev.D,1979,vol. arXiv:hep-ph/9806537v1. 20,pp.2759. [17] Korchemsky, GandTafat, S.J.HighEnergyPhys, 2000, vol. [7] Courtoy,A.Scopetta,SandVento,V.Eur.Phys.J.A,2011,vol. 0010,no.010. 47,pp.49. [18] Pahl, C. Bethke, S. Biebel, O. Kluth, S and Schieck, J. Eur. [8] Gehrmann,T.Jaquier,MandLuisoni,G.Eur.Phys.J.C,2010, Phys.J.C.,2009,vol.64,pp.351. vol.67,pp.57-72. [19] Webber,B.Nucl.Phys.Proc.Suppl.,1999,vol.71,pp.66. [9] Chetyrkin,K.G.Kataev,A.LandTkachov,F.V.Phys.Lett.B, 1979,vol.85,pp.277.