ebook img

The Production Of Algal Biodiesel Using Hydrothermal Carbonization And In Situ Transesterification. PDF

230 Pages·2013·3.48 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Production Of Algal Biodiesel Using Hydrothermal Carbonization And In Situ Transesterification.

THE PRODUCTION OF ALGAL BIODIESEL USING HYDROTHERMAL CARBONIZATION AND IN SITU TRANSESTERIFICATION by Robert Bernard Levine A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Chemical Engineering) in The University of Michigan 2013 Doctoral Committee: Professor Phillip E. Savage, Chair Brian Goodall, Valicor Renewables Professor Nancy G. Love Professor Henry Y. Wang Distinguished University Professor Emeritus Walter J. Weber, Jr. © Robert Bernard Levine 2013 DEDICATION To my mother Rita. ii ACKNOWLEDGEMENTS This work would not have been possible without the mentorship provided by my advisor Phil Savage and the outstanding committee members who helped guide me towards its final form. These individuals generously shared with me wisdom gained over many years in their respective fields. I am grateful for their interest in my work as well as my professional development, and I thank them for giving freely of their time and ideas. I also wish to acknowledge my fellow graduate students, both in the Savage Group and beyond, for creating a vibrant community of scholarship. In particular, my time at the University of Michigan was influenced by fellow group members Shujauddin Changi, Jacob Dickenson, Julia Faeth, Chad Huelsman, Tannawan Pinnarat, and Peter Valdez, as well as Michael Hoepfner, Aaron Shinkle, Elizabeth Stuart, and Huanan Zhang. I also want to thank the many undergraduates who I had the experience of working, including Alexandra Bollas, Matthew Durham, Anna Jenks, and Sita Syal. My sincere gratitude also goes to the excellent staff of the Chemical Engineering Department. In particular, Pablo Lavalle was instrumental in helping me acquire much of the instrumentation required to carry out this work, and his creativity, willingness to share, and can-do attitude made working with him a pleasure. Likewise, Harald Eberhart, our glassblower, never ceased to amaze me with new solutions to my problems and his unwavering generosity. Finally, I wish to acknowledge the support of the administrative professionals who helped me in countless ways (Pam Bogdanski, Susan Hamlin, Shelley Fellers, Laurel Neff). Finally, I acknowledge financial support from an NSF Graduate Research Fellowship, a University of Michigan Graham Environmental Sustainability Institute Fellowship, and a University of Michigan Rackham Graduate Fellowship. I also gratefully acknowledge financial support from the University of Michigan College of Engineering and from the U.S. National Science Foundation. iii TABLE OF CONTENTS Dedication ............................................................................................................................ii Acknowledgements ............................................................................................................. iii List of Tables ....................................................................................................................... vi List of Figures .................................................................................................................... viii List of Abbreviations ........................................................................................................... xi Abstract .............................................................................................................................. xii CHAPTER 1 Introduction .................................................................................................. 1 1.1 The case for biofuels ............................................................................................ 1 1.2 Algae as a biofuel feedstock ................................................................................. 4 1.3 Process overview and chapter summaries .......................................................... 7 CHAPTER 2 Feedstock Production and Characterization ................................................. 9 2.1 Background ........................................................................................................... 9 2.2 Materials and methods ...................................................................................... 17 2.3 Results and discussion ........................................................................................ 25 2.4 Conclusions......................................................................................................... 38 CHAPTER 3 Hydrothermal Carbonization ...................................................................... 39 3.1 Background ......................................................................................................... 39 3.2 Materials and methods ...................................................................................... 45 3.3 Results and discussion ........................................................................................ 47 3.4 Conclusions......................................................................................................... 78 CHAPTER 4 Supercritical In Situ Transesterification ...................................................... 80 4.1 Background ......................................................................................................... 80 4.2 Materials and methods ...................................................................................... 84 4.3 Results and discussion ........................................................................................ 87 4.4 Conclusions....................................................................................................... 114 CHAPTER 5 Acid-catalyzed In Situ Transesterification ................................................. 115 5.1 Background ....................................................................................................... 115 5.2 Materials and methods .................................................................................... 116 iv 5.3 Results and discussion ...................................................................................... 117 5.4 Conclusions....................................................................................................... 129 CHAPTER 6 Triflate-Catalyzed In Situ Transesterification ............................................ 131 6.1 Background ....................................................................................................... 131 6.2 Materials and methods .................................................................................... 132 6.3 Results and discussion ...................................................................................... 134 6.4 Conclusions....................................................................................................... 147 CHAPTER 7 Algal Growth on the Aqueous Co-product of HTC .................................... 148 7.1 Backgrounds ..................................................................................................... 148 7.2 Materials and methods .................................................................................... 151 7.3 Results and discussion ...................................................................................... 154 7.4 Conclusions....................................................................................................... 170 CHAPTER 8 The Energy Balance of Algal Biodiesel Processes ..................................... 172 8.1 Background ....................................................................................................... 172 8.2 Methodology and model descriptions ............................................................. 176 8.3 Results and discussion ...................................................................................... 182 8.4 Conclusions....................................................................................................... 188 CHAPTER 9 Summary and Engineering Significance .................................................... 189 Appendix A. ..................................................................................................................... 192 References ...................................................................................................................... 195 v LIST OF TABLES Table 1.1. Feedstock oil yield .............................................................................................. 5 Table 1.2. Fertilizer consumption and non-oil product generation related to producing 20% of US transportation fuels from algae without nutrient recycling ............................. 5 Table 2.1. The metabolisms of algae .................................................................................. 9 Table 2.2. Algae bioreactor apparatus .............................................................................. 17 Table 2.3. Media compositions ......................................................................................... 19 Table 2.4. Fatty acid profiles for relevant microalgae ...................................................... 35 Table 3.1. Characterization of biomass feedstock and hydrochars for C. vulgaris HTC at 250 °C ................................................................................................................................ 50 Table 3.2. Hydrochar characterization from C. vulgaris HTC at 250 °C ............................ 53 Table 3.3. Hydrochar elemental analysis and energy content for C. protothecoides hydrochars at various temperatures and 60 min ............................................................. 57 Table 3.4. Lipid composition of hydrochars from HTC reactions containing C. protothecoides with and without acetic acid ................................................................... 59 Table 3.5. The effect of solids loading on lipid composition of Chlorella hydrochars ...... 61 Table 3.6. Hydrothermal carbonization yields and hydrochar characteristics for Nannochloropsis................................................................................................................ 69 Table 3.7. Hydrochar yields and lipid information from HTC (200 °C, 15 min) of algae grown in bubble column reactors ..................................................................................... 71 Table 3.8. Hydrochar elemental composition and energy yieldsa .................................... 73 Table 3.9. Aqueous phase analysis from HTC of C. protothecoides biomass for 60 min at various temperatures ....................................................................................................... 74 Table 3.10. Aqueous phase analysis from low-temperature HTC (200 °C x 15 min) with various feedstocks ............................................................................................................ 76 Table 4.1. Characterization of algal hydrochars used in SC-IST ........................................ 88 Table 4.2. Crude biodiesel yield and composition from the SC-IST of hydrochar A ......... 90 Table 4.3. Fatty acid ethyl ester composition of biodiesel produced through SC-IST ...... 94 Table 4.4. Fatty acid ethyl ester yield from SC-IST ........................................................... 96 Table 4.5. Reaction conditions and total ester yields for factorial experiment ............. 102 Table 4.6. Second order regression model for supercritical in situ transesterification of hydrochar A. .................................................................................................................... 103 Table 5.1. Characterization of algal hydrochars used in AC-IST ..................................... 118 vi Table 5.2. Mineral acid-catalyzed in situ transesterification factorial experiment ........ 125 Table 5.3. Regression analysis of factorial experiment .................................................. 126 Table 6.1 Non-catalytic oleic acid esterification ............................................................. 138 Table 6.2 Triflate-catalyzed hydrolysis of ethyl oleate ................................................... 140 Table 6.3 Characterization of carbonized solids used in TC-IST ..................................... 142 Table 7.1. C, N, and P content in the aqueous phase co-product from hydrothermal carbonization .................................................................................................................. 156 Table 7.2. Media N content, biomass growth, and N uptake for the growth experiment shown in Figure 7.3 ......................................................................................................... 161 Table 7.3 Biomass and Lipid Productivities (mg/L-h) for Growth Experiments in Figure 7.6 ......................................................................................................................................... 167 Table 7.4. Production model for algal biorefinergy using two-stage growth scheme to produce about one million gallons of biodiesel annually ............................................... 168 Table 8.1. Model productivity assumptions and land requirements ............................. 177 Table 8.2. Elemental composition and estimated energy content of process materials 178 Table 8.3. Elemental yields ............................................................................................. 178 Table 8.4. Process energy input assumptions ................................................................ 179 Table 8.5. Homogenization, extraction, and transesterification process assumptions . 181 Table 8.6. Mass flows in model algal biorefinery for 5 BGY biodiesel production ......... 183 Table 8.7. Summary of energy use and generation ........................................................ 184 Table 8.8. Detailed summary of process energy inputs ................................................. 186 Table 8.9. Energy required for traditional wet hexane extraction and transesterification ......................................................................................................................................... 187 vii LIST OF FIGURES Figure 1.1. Shares of energy sources in total global primary energy supply in 2008. ........ 2 Figure 1.2. Consumption of N and P fertilizer by all of US agriculture in comparison to algal biofuel production with varying amounts of nutrient recycling. ...................................... 6 Figure 2.1. C. vulgaris biomass density and media nitrate concentration over time.. ..... 26 Figure 2.2. Light microscopy of Chlorella vulgaris.. .......................................................... 27 Figure 2.3. Fatty acid profile of phototrophic and heterotrophic C. vulgaris................... 28 Figure 2.4. Biomass density and lipid content over time in sterile fermentation of C. protothecoides. ................................................................................................................. 29 Figure 2.5. Biomass density and lipid content over time in non-sterile carboy fermentation of C. protothecoides. ......................................................................................................... 30 Figure 2.6. Light microscopy of Chlorella protothecoides grown heterotrophically. ....... 31 Figure 2.7. Fatty acid profile of C. protothecoides over time during non-sterile fermentation on glucose ................................................................................................... 31 Figure 2.8. Biomass density over time in shaker flasks containing C. protothecoides grown in standard media containing glucose, glycerol, or cellulosic hydrosylate. . .................. 33 Figure 2.9. Change in fatty acid profile for developing marine bi-culture immediately following introduction of metal stress.............................................................................. 34 Figure 2.10. Light microscope image of bi-culture. ........................................................ 36 Figure 3.1. The properties of liquid and supercritical water. . ......................................... 41 Figure 3.2. Hydrolysis of triglycerides ............................................................................... 44 Figure 3.3. Chlorella hydrochar obtained from reaction at 250° C for 30 min ................. 48 Figure 3.4. Lipid content of C. vulgaris biomass (time 0) and hydrochars . .................... 49 Figure 3.5. Lipid composition and lipid retention in C. vulgaris biomass and hydrochars generated by reaction at 250 °C for various times.. ......................................................... 51 Figure 3.6. HT-GC-FID chromatogram showing FAs (9 to 12 min), MGs (13.5 to 16 min), DGs (20 to 21 min), and TGs (22 to 24 min) of Chlorella hydrochars processed at 250 °C. ........................................................................................................................................... 52 Figure 3.7. Light microscopy of Chlorella biomass processed at 230 °C for (a) 0 min, (b) 5 min, (c) 15 min, or (d) 30 min. ......................................................................................... 54 Figure 3.8. HTC of C. protothecoides biomass at 220 °C, 235 °C, and 250 °C for 30, 60, and 90 min. . ............................................................................................................................ 56 Figure 3.9. Lipid retention for C. protothecoides hydrochars. ........................................ 56 viii Figure 3.10. Solids yield in HTC reactions containing C. protothecoides with and without acetic acid. ....................................................................................................................... 58 Figure 3.11. Lipid retention in hydrochars from HTC reactions containing C. protothecoides with and without acetic acid ............................................................................................. 60 Figure 3.12. HTC of C. protothecoides at different solids contents at 235 °C for 60 min. 61 Figure 3.13. HTC of Nannochloropsis biomass at 215 °C for 15, 30 or 45 min. .............. 63 Figure 3.14. Filter cakes of Chlorella hydrochars reacted for 15 and 30 min at 215 °C. 63 Figure 3.15. Solids yield from low-temperature HTC of Nannochloropsis. ...................... 65 Figure 3.16. Lipid retention in hydrochars formed by low-temperature HTC of Nannochloropsis................................................................................................................ 66 Figure 3.17. GC-FID analysis of Nannochloropsis hydrochar (200 °C x 30 min) compared to unreacted biomass. .......................................................................................................... 67 Figure 3.18. GC-FID analysis of isomerization in commercial omega-3 ethyl ester product. ........................................................................................................................................... 68 Figure 3.19. FT-ICR-MS spectra showing molecular weight distribution of organic matter in aqueous phase co-product obtained from reacting N. oculata biomass at 200 °C for 15 min. ................................................................................................................................... 77 Figure 3.20. van Krevelen plot of organic compounds detected by FT-ICR-MS. ............ 78 Figure 4.1. Representative GC-FID chromatogram of fatty acid ethyl esters from supercritical in situ transesterification. ............................................................................ 87 Figure 4.2. Reaction water content (wt.%) for supercritical in situ transesterification of hydrochars with various amounts of azeotropic ethanol (4.4 wt.% water).. ................... 89 Figure 4.3. Supercritical esterification of oleic acid at 275 °C with 12:1 EtOH:FA molar ratio. ........................................................................................................................................... 98 Figure 4.4. Supercritical in situ transesterification of wet and dry hydrochars at 275 °C.99 Figure 4.5. Supercritical in situ transesterification of dry hydrochar B at 275–295 °C (~20 MPa). . ............................................................................................................................ 100 Figure 4.6. Parity plot comparing experimental data with regression model.. .............. 104 Figure 4.7. Supercritical in situ transesterification of partially dried hydrochar at 275 °C.. ......................................................................................................................................... 106 Figure 4.8. Comparing in situ transesterification under sub-critical and supercritical conditions with methanol and ethanol. ......................................................................... 109 Figure 4.9. Proposed process flow diagram for supercritical in situ transesterification.111 Figure 5.1. Total fatty acid ethyl ester yield from hydrochars reacted at 80, 90, and 100 °C for 15 to 120 min.. .......................................................................................................... 121 ix

Description:
THE PRODUCTION OF ALGAL BIODIESEL USING HYDROTHERMAL CARBONIZATION. AND IN SITU TRANSESTERIFICATION by. Robert Bernard
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.