ebook img

The Probability Lifesaver - All the tools you need to understand chance PDF

737 Pages·2017·7.833 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Probability Lifesaver - All the tools you need to understand chance

b a b o i r l i p t y r l e i v f a es All the tools you need to understand chance Steven J. Miller PRINCETON UNIVERSITY PRESS Princeton and Oxford Copyright(cid:2)c 2017byPrincetonUniversityPress PublishedbyPrincetonUniversityPress,41WilliamStreet, Princeton,NewJersey08540 IntheUnitedKingdom:PrincetonUniversityPress,6OxfordStreet, Woodstock,OxfordshireOX201TR press.princeton.edu LibraryofCongressCataloging-in-PublicationData Names:Miller,StevenJ.,1974– Title:Theprobabilitylifesaver:allthetoolsyouneedtounderstand chance/StevenJ.Miller. Description:Princeton:PrincetonUniversityPress,[2017]|Series:A Princetonlifesaverstudyguide|Includesbibliographicalreferencesandindex. Identifiers:LCCN2016040785|ISBN9780691149547(hardcover:alk.paper)| ISBN9780691149554(pbk.:alk.paper) Subjects:LCSH:Probabilities.|Chance.|Gamesofchance(Mathematics)| Randomvariables. Classification:LCCQA273.M551852017|DDC519.2-dc23LCrecord availableathttps://lccn.loc.gov/2016040785 BritishLibraryCataloging-in-PublicationDataisavailable ThisbookhasbeencomposedinTimesNewRomanwithStencilandAvantGarde TypesetbyNovaTechsetPvtLtd,Bangalore,India PrintedintheUnitedStatesofAmerica Contents NotetoReaders xv HowtoUseThisBook xix I GeneralTheory 1 1 Introduction 3 1.1 BirthdayProblem 4 1.1.1 StatingtheProblem 4 1.1.2 SolvingtheProblem 6 1.1.3 GeneralizingtheProblemandSolution:Efficiencies 11 1.1.4 NumericalTest 14 1.2 FromShootingHoopstotheGeometricSeries 16 1.2.1 TheProblemandItsSolution 16 1.2.2 RelatedProblems 21 1.2.3 GeneralProblemSolvingTips 25 1.3 Gambling 27 1.3.1 The2008SuperBowlWager 28 1.3.2 ExpectedReturns 28 1.3.3 TheValueofHedging 29 1.3.4 Consequences 31 1.4 Summary 31 1.5 Exercises 34 2 BasicProbabilityLaws 40 2.1 Paradoxes 41 2.2 SetTheoryReview 43 2.2.1 CodingDigression 47 2.2.2 SizesofInfinityandProbabilities 48 2.2.3 OpenandClosedSets 50 2.3 OutcomeSpaces,Events,andtheAxiomsofProbability 52 2.4 AxiomsofProbability 57 2.5 BasicProbabilityRules 59 2.5.1 LawofTotalProbability 60 2.5.2 ProbabilitiesofUnions 61 2.5.3 ProbabilitiesofInclusions 64 2.6 ProbabilitySpacesandσ-algebras 65 2.7 Appendix:ExperimentallyFindingFormulas 70 2.7.1 ProductRuleforDerivatives 71 2.7.2 ProbabilityofaUnion 72 2.8 Summary 73 2.9 Exercises 73 3 CountingI:Cards 78 3.1 FactorialsandBinomialCoefficients 79 3.1.1 TheFactorialFunction 79 3.1.2 BinomialCoefficients 82 3.1.3 Summary 87 3.2 Poker 88 3.2.1 Rules 88 3.2.2 Nothing 90 3.2.3 Pair 92 3.2.4 TwoPair 95 3.2.5 ThreeofaKind 96 3.2.6 Straights,Flushes,andStraightFlushes 96 3.2.7 FullHouseandFourofaKind 97 3.2.8 PracticePokerHand:I 98 3.2.9 PracticePokerHand:II 100 3.3 Solitaire 101 3.3.1 Klondike 102 3.3.2 AcesUp 105 3.3.3 FreeCell 107 3.4 Bridge 108 3.4.1 Tic-tac-toe 109 3.4.2 NumberofBridgeDeals 111 3.4.3 TrumpSplits 117 3.5 Appendix:CodingtoComputeProbabilities 120 3.5.1 TrumpSplitandCode 120 3.5.2 PokerHandCodes 121 3.6 Summary 124 3.7 Exercises 124 4 ConditionalProbability,Independence,and Bayes’Theorem 128 4.1 ConditionalProbabilities 129 4.1.1 GuessingtheConditionalProbabilityFormula 131 4.1.2 ExpectedCountsApproach 132 4.1.3 VennDiagramApproach 133 4.1.4 TheMontyHallProblem 135 4.2 TheGeneralMultiplicationRule 136 4.2.1 Statement 136 4.2.2 PokerExample 136 4.2.3 HatProblemandErrorCorrectingCodes 138 4.2.4 AdvancedRemark:DefinitionofConditionalProbability 138 4.3 Independence 139 4.4 Bayes’Theorem 142 4.5 PartitionsandtheLawofTotalProbability 147 4.6 Bayes’TheoremRevisited 150 4.7 Summary 151 4.8 Exercises 152 5 CountingII:Inclusion-Exclusion 156 5.1 FactorialandBinomialProblems 157 5.1.1 “Howmany”versus“What’stheprobability” 157 5.1.2 ChoosingGroups 159 5.1.3 CircularOrderings 160 5.1.4 ChoosingEnsembles 162 5.2 TheMethodofInclusion-Exclusion 163 5.2.1 SpecialCasesoftheInclusion-ExclusionPrinciple 164 5.2.2 StatementoftheInclusion-ExclusionPrinciple 167 5.2.3 JustificationoftheInclusion-ExclusionFormula 168 5.2.4 UsingInclusion-Exclusion:SuitedHand 171 5.2.5 TheAtLeasttoExactlyMethod 173 5.3 Derangements 176 5.3.1 CountingDerangements 176 5.3.2 TheProbabilityofaDerangement 178 5.3.3 CodingDerangementExperiments 178 5.3.4 ApplicationsofDerangements 179 5.4 Summary 181 5.5 Exercises 182 6 CountingIII:AdvancedCombinatorics 186 6.1 BasicCounting 187 6.1.1 EnumeratingCases:I 187 6.1.2 EnumeratingCases:II 188 6.1.3 SamplingWithandWithoutReplacement 192 6.2 WordOrderings 199 6.2.1 CountingOrderings 200 6.2.2 MultinomialCoefficients 202 6.3 Partitions 205 6.3.1 TheCookieProblem 205 6.3.2 Lotteries 207 6.3.3 AdditionalPartitions 212 6.4 Summary 214 6.5 Exercises 215 II IntroductiontoRandomVariables 219 7 IntroductiontoDiscreteRandomVariables 221 7.1 DiscreteRandomVariables:Definition 221 7.2 DiscreteRandomVariables:PDFs 223 7.3 DiscreteRandomVariables:CDFs 226 7.4 Summary 233 7.5 Exercises 235 8 IntroductiontoContinuousRandomVariables 238 8.1 FundamentalTheoremofCalculus 239 8.2 PDFsandCDFs:Definitions 241 8.3 PDFsandCDFs:Examples 243 8.4 ProbabilitiesofSingletonEvents 248 8.5 Summary 250 8.6 Exercises 250 9 Tools:Expectation 254 9.1 CalculusMotivation 255 9.2 ExpectedValuesandMoments 257 9.3 MeanandVariance 261 9.4 JointDistributions 265 9.5 LinearityofExpectation 269 9.6 PropertiesoftheMeanandtheVariance 274 9.7 SkewnessandKurtosis 279 9.8 Covariances 280 9.9 Summary 281 9.10 Exercises 281 10 Tools:ConvolutionsandChangingVariables 285 10.1 Convolutions:DefinitionsandProperties 286 10.2 Convolutions:DieExample 289 10.2.1 TheoreticalCalculation 289 10.2.2 ConvolutionCode 290 10.3 ConvolutionsofSeveralVariables 291 10.4 ChangeofVariableFormula:Statement 294 10.5 ChangeofVariablesFormula:Proof 297 10.6 Appendix:ProductsandQuotients ofRandomVariables 302 10.6.1 DensityofaProduct 302 10.6.2 DensityofaQuotient 303 10.6.3 Example:QuotientofExponentials 304 10.7 Summary 305 10.8 Exercises 305 11 Tools:DifferentiatingIdentities 309 11.1 GeometricSeriesExample 310 11.2 MethodofDifferentiatingIdentities 313 11.3 ApplicationstoBinomialRandomVariables 314 11.4 ApplicationstoNormalRandomVariables 317 11.5 ApplicationstoExponential RandomVariables 320 11.6 Summary 322 11.7 Exercises 323 III SpecialDistributions 325 12 DiscreteDistributions 327 12.1 TheBernoulliDistribution 328 12.2 TheBinomialDistribution 328 12.3 TheMultinomialDistribution 332 12.4 TheGeometricDistribution 335 12.5 TheNegativeBinomialDistribution 336 12.6 ThePoissonDistribution 340 12.7 TheDiscreteUniformDistribution 343 12.8 Exercises 346 13 ContinuousRandomVariables: UniformandExponential 349 13.1 TheUniformDistribution 349 13.1.1 MeanandVariance 350 13.1.2 SumsofUniformRandomVariables 352 13.1.3 Examples 354 13.1.4 GeneratingRandomNumbersUniformly 356 13.2 TheExponentialDistribution 357 13.2.1 MeanandVariance 357 13.2.2 SumsofExponentialRandomVariables 361 13.2.3 ExamplesandApplicationsofExponentialRandom Variables 364 13.2.4 GeneratingRandomNumbersfrom ExponentialDistributions 365 13.3 Exercises 367 14 ContinuousRandomVariables:TheNormalDistribution 371 14.1 DeterminingtheNormalizationConstant 372 14.2 MeanandVariance 375 14.3 SumsofNormalRandomVariables 379 14.3.1 Case1:μ =μ =0andσ2 =σ2=1 380 X Y X Y 14.3.2 Case2:Generalμ ,μ andσ2,σ2 383 X Y X Y 14.3.3 SumsofTwoNormals:FasterAlgebra 385 14.4 GeneratingRandomNumbersfrom NormalDistributions 386 14.5 ExamplesandtheCentralLimitTheorem 392 14.6 Exercises 393 15 TheGammaFunctionandRelatedDistributions 398 15.1 Existenceof(cid:3)(s) 398 15.2 TheFunctionalEquationof(cid:3)(s) 400 15.3 TheFactorialFunctionand(cid:3)(s) 404 15.4 SpecialValuesof(cid:3)(s) 405 15.5 TheBetaFunctionandtheGammaFunction 407 15.5.1 ProofoftheFundamentalRelation 408 15.5.2 TheFundamentalRelationand(cid:3)(1/2) 410 15.6 TheNormalDistributionandtheGammaFunction 411 15.7 FamiliesofRandomVariables 412 15.8 Appendix:CosecantIdentityProofs 413 15.8.1 TheCosecantIdentity:FirstProof 414 15.8.2 TheCosecantIdentity:SecondProof 418 15.8.3 TheCosecantIdentity:SpecialCases=1/2 421 15.9 CauchyDistribution 423 15.10 Exercises 424 16 TheChi-squareDistribution 427 16.1 OriginoftheChi-squareDistribution 429 16.2 MeanandVarianceofX∼χ2(1) 430 16.3 Chi-squareDistributionsandSumsofNormalRandom Variables 432 16.3.1 SumsofSquaresbyDirectIntegration 434 16.3.2 SumsofSquaresbytheChangeofVariablesTheorem 434 16.3.3 SumsofSquaresbyConvolution 439 16.3.4 SumsofChi-squareRandomVariables 441 16.4 Summary 442 16.5 Exercises 443 IV LimitTheorems 447 17 InequalitiesandLawsofLargeNumbers 449 17.1 Inequalities 449 17.2 Markov’sInequality 451 17.3 Chebyshev’sInequality 453 17.3.1 Statement 453 17.3.2 Proof 455 17.3.3 NormalandUniformExamples 457 17.3.4 ExponentialExample 458 17.4 TheBooleandBonferroniInequalities 459 17.5 TypesofConvergence 461 17.5.1 ConvergenceinDistribution 461 17.5.2 ConvergenceinProbability 463 17.5.3 AlmostSureandSureConvergence 463 17.6 WeakandStrongLawsofLargeNumbers 464 17.7 Exercises 465 18 Stirling’sFormula 469 18.1 Stirling’sFormulaandProbabilities 471 18.2 Stirling’sFormulaandConvergenceofSeries 473 18.3 FromStirlingtotheCentralLimitTheorem 474 18.4 IntegralTestandthePoorMan’sStirling 478 18.5 ElementaryApproachestowards Stirling’sFormula 482 18.5.1 DyadicDecompositions 482 18.5.2 LowerBoundstowardsStirling:I 484 18.5.3 LowerBoundstowardStirlingII 486 18.5.4 LowerBoundstowardsStirling:III 487 18.6 StationaryPhaseandStirling 488 18.7 TheCentralLimitTheoremandStirling 490 18.8 Exercises 491 19 GeneratingFunctionsandConvolutions 494 19.1 Motivation 494 19.2 Definition 496 19.3 UniquenessandConvergenceof GeneratingFunctions 501 19.4 ConvolutionsI:DiscreteRandomVariables 503 19.5 ConvolutionsII:ContinuousRandomVariables 507 19.6 DefinitionandPropertiesofMomentGenerating Functions 512 19.7 ApplicationsofMomentGeneratingFunctions 520 19.8 Exercises 524 20 ProofoftheCentralLimitTheorem 527 20.1 KeyIdeasoftheProof 527 20.2 StatementoftheCentralLimitTheorem 529 20.3 Means,Variances,andStandardDeviations 531 20.4 Standardization 533 20.5 NeededMomentGeneratingFunctionResults 536 20.6 SpecialCase:SumsofPoisson RandomVariables 539 20.7 ProofoftheCLTforGeneralSumsviaMGF 542 20.8 UsingtheCentralLimitTheorem 544 20.9 TheCentralLimitTheoremand MonteCarloIntegration 545 20.10 Summary 546 20.11 Exercises 548 21 FourierAnalysisandtheCentralLimitTheorem 553 21.1 IntegralTransforms 554 21.2 ConvolutionsandProbabilityTheory 558 21.3 ProofoftheCentralLimitTheorem 562 21.4 Summary 565 21.5 Exercises 565 V AdditionalTopics 567 22 HypothesisTesting 569 22.1 Z-tests 570 22.1.1 NullandAlternativeHypotheses 570 22.1.2 SignificanceLevels 571 22.1.3 TestStatistics 573 22.1.4 One-sidedversusTwo-sidedTests 576 22.2 Onp-values 579 22.2.1 ExtraordinaryClaimsandp-values 580 22.2.2 Largep-values 580 22.2.3 Misconceptionsaboutp-values 581 22.3 Ont-tests 583 22.3.1 EstimatingtheSampleVariance 583 22.3.2 Fromz-teststot-tests 584 22.4 ProblemswithHypothesisTesting 587 22.4.1 TypeIErrors 587 22.4.2 TypeIIErrors 588 22.4.3 ErrorRatesandtheJusticeSystem 588 22.4.4 Power 590 22.4.5 EffectSize 590 22.5 Chi-squareDistributions,GoodnessofFit 590 22.5.1 Chi-squareDistributionsandTestsofVariance 591 22.5.2 Chi-squareDistributionsandt-distributions 595 22.5.3 GoodnessofFitforListData 595 22.6 TwoSampleTests 598 22.6.1 Two-samplez-test:KnownVariances 598 22.6.2 Two-samplet-test:UnknownbutSameVariances 600 22.6.3 UnknownandDifferentVariances 602 22.7 Summary 604 22.8 Exercises 605 23 DifferenceEquations,MarkovProcesses, andProbability 607 23.1 FromtheFibonacciNumberstoRoulette 607 23.1.1 TheDouble-plus-oneStrategy 607 23.1.2 AQuickReviewoftheFibonacciNumbers 609 23.1.3 RecurrenceRelationsandProbability 610 23.1.4 DiscussionandGeneralizations 612 23.1.5 CodeforRouletteProblem 613 23.2 GeneralTheoryofRecurrenceRelations 614 23.2.1 Notation 614 23.2.2 TheCharacteristicEquation 615

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.