ebook img

The Probability Lifesaver: All the Tools You Need to Understand Chance PDF

753 Pages·2017·3.74 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Probability Lifesaver: All the Tools You Need to Understand Chance

The Probability Lifesaver APRINCETONLIFESAVERSTUDYGUIDE TheCalculusLifesaver:AlltheToolsYouNeedtoExcelatCalculusbyAdrianBanner TheRealAnalysisLifesaver:AlltheToolsYouNeedtoUnderstandProofsbyRaffiGrinberg TheProbabilityLifesaver:AlltheToolsYouNeedtoUnderstandChancebyStevenJ.Miller b a b o i r l i p t y r l e i v f a es All the tools you need to understand chance Steven J. Miller PRINCETON UNIVERSITY PRESS Princeton and Oxford Copyright(cid:2)c 2017byPrincetonUniversityPress PublishedbyPrincetonUniversityPress,41WilliamStreet, Princeton,NewJersey08540 IntheUnitedKingdom:PrincetonUniversityPress,6OxfordStreet, Woodstock,OxfordshireOX201TR press.princeton.edu CoverillustrationbyDimitriKaretnikov; backgroundgraphicscourtesyofShutterstock; coverdesignbyLorraineBetzDoneker AllRightsReserved (cid:2) MATLABR isaregisteredtrademarkofTheMathWorksInc.andisusedwith permission.TheMathWorksdoesnotwarranttheaccuracyofthetextin (cid:2) thisbook.Thisbook’suseofaMATLABR relatedproductsdoesnotconstitute anendorsementorsponsorshipbytheMathWorksofaparticularpedactogical approachoraparticularuseofMATLABsoftware. LibraryofCongressCataloging-in-PublicationData Names:Miller,StevenJ.,1974– Title:Theprobabilitylifesaver:allthetoolsyouneedtounderstand chance/StevenJ.Miller. Description:Princeton:PrincetonUniversityPress,[2017]|Series:A Princetonlifesaverstudyguide|Includesbibliographicalreferencesandindex. Identifiers:LCCN2016040785|ISBN9780691149547(hardcover:alk.paper)| ISBN9780691149554(pbk.:alk.paper) Subjects:LCSH:Probabilities.|Chance.|Gamesofchance(Mathematics)| Randomvariables. Classification:LCCQA273.M551852017|DDC519.2-dc23LCrecord availableathttps://lccn.loc.gov/2016040785 BritishLibraryCataloging-in-PublicationDataisavailable ThisbookhasbeencomposedinTimesNewRomanwithStencilandAvantGarde Printedonacid-freepaper.∞ TypesetbyNovaTechsetPvtLtd,Bangalore,India PrintedintheUnitedStatesofAmerica 13579108642 Contents NotetoReaders xv HowtoUseThisBook xix I GeneralTheory 1 1 Introduction 3 1.1 BirthdayProblem 4 1.1.1 StatingtheProblem 4 1.1.2 SolvingtheProblem 6 1.1.3 GeneralizingtheProblemandSolution:Efficiencies 11 1.1.4 NumericalTest 14 1.2 FromShootingHoopstotheGeometricSeries 16 1.2.1 TheProblemandItsSolution 16 1.2.2 RelatedProblems 21 1.2.3 GeneralProblemSolvingTips 25 1.3 Gambling 27 1.3.1 The2008SuperBowlWager 28 1.3.2 ExpectedReturns 28 1.3.3 TheValueofHedging 29 1.3.4 Consequences 31 1.4 Summary 31 1.5 Exercises 34 2 BasicProbabilityLaws 40 2.1 Paradoxes 41 2.2 SetTheoryReview 43 2.2.1 CodingDigression 47 2.2.2 SizesofInfinityandProbabilities 48 2.2.3 OpenandClosedSets 50 2.3 OutcomeSpaces,Events,andtheAxiomsofProbability 52 2.4 AxiomsofProbability 57 2.5 BasicProbabilityRules 59 2.5.1 LawofTotalProbability 60 2.5.2 ProbabilitiesofUnions 61 2.5.3 ProbabilitiesofInclusions 64 2.6 ProbabilitySpacesandσ-algebras 65 vi • Contents 2.7 Appendix:ExperimentallyFindingFormulas 70 2.7.1 ProductRuleforDerivatives 71 2.7.2 ProbabilityofaUnion 72 2.8 Summary 73 2.9 Exercises 73 3 CountingI:Cards 78 3.1 FactorialsandBinomialCoefficients 79 3.1.1 TheFactorialFunction 79 3.1.2 BinomialCoefficients 82 3.1.3 Summary 87 3.2 Poker 88 3.2.1 Rules 88 3.2.2 Nothing 90 3.2.3 Pair 92 3.2.4 TwoPair 95 3.2.5 ThreeofaKind 96 3.2.6 Straights,Flushes,andStraightFlushes 96 3.2.7 FullHouseandFourofaKind 97 3.2.8 PracticePokerHand:I 98 3.2.9 PracticePokerHand:II 100 3.3 Solitaire 101 3.3.1 Klondike 102 3.3.2 AcesUp 105 3.3.3 FreeCell 107 3.4 Bridge 108 3.4.1 Tic-tac-toe 109 3.4.2 NumberofBridgeDeals 111 3.4.3 TrumpSplits 117 3.5 Appendix:CodingtoComputeProbabilities 120 3.5.1 TrumpSplitandCode 120 3.5.2 PokerHandCodes 121 3.6 Summary 124 3.7 Exercises 124 4 ConditionalProbability,Independence,and Bayes’Theorem 128 4.1 ConditionalProbabilities 129 4.1.1 GuessingtheConditionalProbabilityFormula 131 4.1.2 ExpectedCountsApproach 132 4.1.3 VennDiagramApproach 133 4.1.4 TheMontyHallProblem 135 4.2 TheGeneralMultiplicationRule 136 4.2.1 Statement 136 4.2.2 PokerExample 136 4.2.3 HatProblemandErrorCorrectingCodes 138 4.2.4 AdvancedRemark:DefinitionofConditionalProbability 138 4.3 Independence 139 4.4 Bayes’Theorem 142 Contents • vii 4.5 PartitionsandtheLawofTotalProbability 147 4.6 Bayes’TheoremRevisited 150 4.7 Summary 151 4.8 Exercises 152 5 CountingII:Inclusion-Exclusion 156 5.1 FactorialandBinomialProblems 157 5.1.1 “Howmany”versus“What’stheprobability” 157 5.1.2 ChoosingGroups 159 5.1.3 CircularOrderings 160 5.1.4 ChoosingEnsembles 162 5.2 TheMethodofInclusion-Exclusion 163 5.2.1 SpecialCasesoftheInclusion-ExclusionPrinciple 164 5.2.2 StatementoftheInclusion-ExclusionPrinciple 167 5.2.3 JustificationoftheInclusion-ExclusionFormula 168 5.2.4 UsingInclusion-Exclusion:SuitedHand 171 5.2.5 TheAtLeasttoExactlyMethod 173 5.3 Derangements 176 5.3.1 CountingDerangements 176 5.3.2 TheProbabilityofaDerangement 178 5.3.3 CodingDerangementExperiments 178 5.3.4 ApplicationsofDerangements 179 5.4 Summary 181 5.5 Exercises 182 6 CountingIII:AdvancedCombinatorics 186 6.1 BasicCounting 187 6.1.1 EnumeratingCases:I 187 6.1.2 EnumeratingCases:II 188 6.1.3 SamplingWithandWithoutReplacement 192 6.2 WordOrderings 199 6.2.1 CountingOrderings 200 6.2.2 MultinomialCoefficients 202 6.3 Partitions 205 6.3.1 TheCookieProblem 205 6.3.2 Lotteries 207 6.3.3 AdditionalPartitions 212 6.4 Summary 214 6.5 Exercises 215 II IntroductiontoRandomVariables 219 7 IntroductiontoDiscreteRandomVariables 221 7.1 DiscreteRandomVariables:Definition 221 7.2 DiscreteRandomVariables:PDFs 223 7.3 DiscreteRandomVariables:CDFs 226 viii • Contents 7.4 Summary 233 7.5 Exercises 235 8 IntroductiontoContinuousRandomVariables 238 8.1 FundamentalTheoremofCalculus 239 8.2 PDFsandCDFs:Definitions 241 8.3 PDFsandCDFs:Examples 243 8.4 ProbabilitiesofSingletonEvents 248 8.5 Summary 250 8.6 Exercises 250 9 Tools:Expectation 254 9.1 CalculusMotivation 255 9.2 ExpectedValuesandMoments 257 9.3 MeanandVariance 261 9.4 JointDistributions 265 9.5 LinearityofExpectation 269 9.6 PropertiesoftheMeanandtheVariance 274 9.7 SkewnessandKurtosis 279 9.8 Covariances 280 9.9 Summary 281 9.10 Exercises 281 10 Tools:ConvolutionsandChangingVariables 285 10.1 Convolutions:DefinitionsandProperties 286 10.2 Convolutions:DieExample 289 10.2.1 TheoreticalCalculation 289 10.2.2 ConvolutionCode 290 10.3 ConvolutionsofSeveralVariables 291 10.4 ChangeofVariableFormula:Statement 294 10.5 ChangeofVariablesFormula:Proof 297 10.6 Appendix:ProductsandQuotients ofRandomVariables 302 10.6.1 DensityofaProduct 302 10.6.2 DensityofaQuotient 303 10.6.3 Example:QuotientofExponentials 304 10.7 Summary 305 10.8 Exercises 305 11 Tools:DifferentiatingIdentities 309 11.1 GeometricSeriesExample 310 11.2 MethodofDifferentiatingIdentities 313 11.3 ApplicationstoBinomialRandomVariables 314 11.4 ApplicationstoNormalRandomVariables 317 Contents • ix 11.5 ApplicationstoExponential RandomVariables 320 11.6 Summary 322 11.7 Exercises 323 III SpecialDistributions 325 12 DiscreteDistributions 327 12.1 TheBernoulliDistribution 328 12.2 TheBinomialDistribution 328 12.3 TheMultinomialDistribution 332 12.4 TheGeometricDistribution 335 12.5 TheNegativeBinomialDistribution 336 12.6 ThePoissonDistribution 340 12.7 TheDiscreteUniformDistribution 343 12.8 Exercises 346 13 ContinuousRandomVariables: UniformandExponential 349 13.1 TheUniformDistribution 349 13.1.1 MeanandVariance 350 13.1.2 SumsofUniformRandomVariables 352 13.1.3 Examples 354 13.1.4 GeneratingRandomNumbersUniformly 356 13.2 TheExponentialDistribution 357 13.2.1 MeanandVariance 357 13.2.2 SumsofExponentialRandomVariables 361 13.2.3 ExamplesandApplicationsofExponentialRandom Variables 364 13.2.4 GeneratingRandomNumbersfrom ExponentialDistributions 365 13.3 Exercises 367 14 ContinuousRandomVariables:TheNormalDistribution 371 14.1 DeterminingtheNormalizationConstant 372 14.2 MeanandVariance 375 14.3 SumsofNormalRandomVariables 379 14.3.1 Case1:μ =μ =0andσ2 =σ2 =1 380 X Y X Y 14.3.2 Case2:Generalμ ,μ andσ2,σ2 383 X Y X Y 14.3.3 SumsofTwoNormals:FasterAlgebra 385 14.4 GeneratingRandomNumbersfrom NormalDistributions 386 14.5 ExamplesandtheCentralLimitTheorem 392 14.6 Exercises 393

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.