ebook img

The Princeton Companion to Mathematics PDF

1057 Pages·2008·8.02 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Princeton Companion to Mathematics

(cid:2) (cid:2) The Princeton Companion to Mathematics (cid:2) This page intentionally left blank (cid:2) The Princeton Companion to Mathematics editor Timothy Gowers University of Cambridge associate editors June Barrow-Green The Open University Imre Leader University of Cambridge PrincetonUniversityPress PrincetonandOxford (cid:2) Copyright©2008byPrincetonUniversityPress PublishedbyPrincetonUniversityPress, 41WilliamStreet,Princeton,NewJersey08540 IntheUnitedKingdom:PrincetonUniversityPress, 6OxfordStreet,Woodstock,OxfordshireOX201TW AllRightsReserved LibraryofCongressCataloging-in-PublicationData ThePrincetoncompaniontomathematics/TimothyGowers,editor; JuneBarrow-Green,ImreLeader,associateeditors. p.cm. Includesbibliographicalreferencesandindex. ISBN978-0-691-11880-2(hardcover:alk.paper) 1.Mathematics—Studyandteaching(Higher)2.PrincetonUniversity. I.Gowers,Timothy.II.Barrow-Green,June,date–III.Leader,Imre. QA11.2.P7452008 510—dc22 2008020450 BritishLibraryCataloging-in-PublicationDataisavailable Gratefulacknowledgmentismadeforpermission toreprintthefollowingillustrationsinpartVI: Page739.PortraitofRenéDescartestakenfromPantheon berühmterMenschenallerZeiten(Zwickau,1830).Courtesyof NiedersächsischeStaats-undUniversitätsbibliothekGöttingen. Page742.PortraitofIsaacNewton.Bypermissionof theMasterandFellows,TrinityCollegeCambridge. Page744.CopyafteraportraitofGottfriedLeibnizbyAndreas Scheits(1703).CourtesyofGottfriedWilhelmLeibniz Bibliothek—NiedersächsischeLandesbibliothekHannover. Page748.PortraitofLeonhardEulerbyJ.F.A.Darbès(inv.no. 1829-8).Copyright:©Muséed’artetd’histoire,VilledeGenève. Page756.PortraitofCarlFriedrichGauss.Courtesyof NiedersächsischeStaats-undUniversitätsbibliothekGöttingen. Page775.PortraitofBernhardRiemann.Courtesyof NiedersächsischeStaats-undUniversitätsbibliothekGöttingen. Page786.PortraitofHenriPoincaré.Courtesyof HenriPoincaréArchives(CNRS,UMR7117,Nancy). Page788.PortraitofDavidHilbert.Courtesyof NiedersächsischeStaats-undUniversitätsbibliothekGöttingen. ThisbookhasbeencomposedinLucidaBright Projectmanagementandcomposition byT&TProductionsLtd,London Printedonacid-freepaper ∞ press.princeton.edu PrintedintheUnitedStatesofAmerica 12345678910 (cid:2) Contents Preface ix III.15 Determinants 174 Contributors xvii III.16 DifferentialFormsandIntegration 175 III.17 Dimension 180 III.18 Distributions 184 III.19 Duality 187 Part I Introduction III.20 DynamicalSystemsandChaos 190 III.21 EllipticCurves 190 I.1 WhatIsMathematicsAbout? 1 I.2 TheLanguageandGrammarofMathematics 8 III.22 The Euclidean Algorithm and ContinuedFractions 191 I.3 SomeFundamentalMathematicalDefinitions 16 III.23 TheEulerandNavier–StokesEquations 193 I.4 TheGeneralGoalsofMathematicalResearch 47 III.24 Expanders 196 III.25 TheExponentialandLogarithmicFunctions 199 III.26 TheFastFourierTransform 202 Part II The Origins of Modern III.27 TheFourierTransform 204 Mathematics III.28 FuchsianGroups 208 III.29 FunctionSpaces 210 II.1 FromNumberstoNumberSystems 77 III.30 GaloisGroups 213 II.2 Geometry 83 III.31 TheGammaFunction 213 II.3 TheDevelopmentofAbstractAlgebra 95 III.32 GeneratingFunctions 214 II.4 Algorithms 106 III.33 Genus 215 II.5 The Development of Rigor in III.34 Graphs 215 MathematicalAnalysis 117 III.35 Hamiltonians 215 II.6 TheDevelopmentoftheIdeaofProof 129 III.36 TheHeatEquation 216 II.7 TheCrisisintheFoundationsofMathematics 142 III.37 HilbertSpaces 219 III.38 HomologyandCohomology 221 III.39 HomotopyGroups 221 Part III Mathematical Concepts III.40 TheIdealClassGroup 221 III.41 IrrationalandTranscendentalNumbers 222 III.1 TheAxiomofChoice 157 III.42 TheIsingModel 223 III.2 TheAxiomofDeterminacy 159 III.43 JordanNormalForm 223 III.3 BayesianAnalysis 159 III.44 KnotPolynomials 225 III.4 BraidGroups 160 III.45 K-Theory 227 III.5 Buildings 161 III.46 TheLeechLattice 227 III.6 Calabi–YauManifolds 163 III.47 L-Functions 228 III.7 Cardinals 165 III.48 LieTheory 229 III.8 Categories 165 III.49 LinearandNonlinearWavesandSolitons 234 III.9 CompactnessandCompactification 167 III.50 LinearOperatorsandTheirProperties 239 III.10 ComputationalComplexityClasses 169 III.51 LocalandGlobalinNumberTheory 241 III.11 CountableandUncountableSets 170 III.52 TheMandelbrotSet 244 III.12 C∗-Algebras 172 III.53 Manifolds 244 III.13 Curvature 172 III.54 Matroids 244 III.14 Designs 172 III.55 Measures 246 (cid:2) vi Contents III.56 MetricSpaces 247 IV.5 ArithmeticGeometry 372 III.57 ModelsofSetTheory 248 IV.6 AlgebraicTopology 383 III.58 ModularArithmetic 249 IV.7 DifferentialTopology 396 III.59 ModularForms 250 IV.8 ModuliSpaces 408 III.60 ModuliSpaces 252 IV.9 RepresentationTheory 419 III.61 TheMonsterGroup 252 IV.10 GeometricandCombinatorialGroupTheory 431 III.62 NormedSpacesandBanachSpaces 252 IV.11 HarmonicAnalysis 448 III.63 NumberFields 254 IV.12 PartialDifferentialEquations 455 III.64 OptimizationandLagrangeMultipliers 255 IV.13 GeneralRelativityandtheEinsteinEquations 483 III.65 Orbifolds 257 IV.14 Dynamics 493 III.66 Ordinals 258 IV.15 OperatorAlgebras 510 III.67 ThePeanoAxioms 258 IV.16 MirrorSymmetry 523 III.68 PermutationGroups 259 IV.17 VertexOperatorAlgebras 539 III.69 PhaseTransitions 261 IV.18 EnumerativeandAlgebraicCombinatorics 550 III.70 π 261 IV.19 ExtremalandProbabilisticCombinatorics 562 III.71 ProbabilityDistributions 263 IV.20 ComputationalComplexity 575 III.72 ProjectiveSpace 267 IV.21 NumericalAnalysis 604 III.73 QuadraticForms 267 IV.22 SetTheory 615 III.74 QuantumComputation 269 IV.23 LogicandModelTheory 635 III.75 QuantumGroups 272 IV.24 StochasticProcesses 647 III.76 Quaternions, Octonions, and Normed IV.25 ProbabilisticModelsofCriticalPhenomena 657 DivisionAlgebras 275 IV.26 High-Dimensional Geometry and Its III.77 Representations 279 ProbabilisticAnalogues 670 III.78 RicciFlow 279 III.79 RiemannSurfaces 282 III.80 TheRiemannZetaFunction 283 Part V Theorems and Problems III.81 Rings,Ideals,andModules 284 III.82 Schemes 285 V.1 TheABCConjecture 681 III.83 TheSchrödingerEquation 285 V.2 TheAtiyah–SingerIndexTheorem 681 III.84 TheSimplexAlgorithm 288 V.3 TheBanach–TarskiParadox 684 III.85 SpecialFunctions 290 V.4 TheBirch–Swinnerton-DyerConjecture 685 III.86 TheSpectrum 294 V.5 Carleson’sTheorem 686 III.87 SphericalHarmonics 295 V.6 TheCentralLimitTheorem 687 III.88 SymplecticManifolds 297 V.7 TheClassificationofFiniteSimpleGroups 687 III.89 TensorProducts 301 V.8 Dirichlet’sTheorem 689 III.90 TopologicalSpaces 301 V.9 ErgodicTheorems 689 III.91 Transforms 303 V.10 Fermat’sLastTheorem 691 III.92 TrigonometricFunctions 307 V.11 FixedPointTheorems 693 III.93 UniversalCovers 309 V.12 TheFour-ColorTheorem 696 III.94 VariationalMethods 310 V.13 TheFundamentalTheoremofAlgebra 698 III.95 Varieties 313 V.14 TheFundamentalTheoremofArithmetic 699 III.96 VectorBundles 313 V.15 Gödel’sTheorem 700 III.97 VonNeumannAlgebras 313 V.16 Gromov’sPolynomial-GrowthTheorem 702 III.98 Wavelets 313 V.17 Hilbert’sNullstellensatz 703 III.99 TheZermelo–FraenkelAxioms 314 V.18 The Independence of the ContinuumHypothesis 703 V.19 Inequalities 703 Part IV Branches of Mathematics V.20 TheInsolubilityoftheHaltingProblem 706 V.21 TheInsolubilityoftheQuintic 708 IV.1 AlgebraicNumbers 315 V.22 Liouville’sTheoremandRoth’sTheorem 710 IV.2 AnalyticNumberTheory 332 V.23 Mostow’sStrongRigidityTheorem 711 IV.3 ComputationalNumberTheory 348 V.24 ThePversusNPProblem 713 IV.4 AlgebraicGeometry 363 V.25 ThePoincaréConjecture 714 (cid:2) Contents vii V.26 The Prime Number Theorem and the VI.34 JánosBolyai(1802–1860) 762 RiemannHypothesis 714 VI.35 CarlGustavJacobJacobi(1804–1851) 762 V.27 Problems and Results in VI.36 PeterGustavLejeuneDirichlet(1805–1859) 764 AdditiveNumberTheory 715 VI.37 WilliamRowanHamilton(1805–1865) 765 V.28 From Quadratic Reciprocity to VI.38 AugustusDeMorgan(1806–1871) 765 ClassFieldTheory 718 VI.39 JosephLiouville(1809–1882) 766 V.29 Rational Points on Curves and VI.40 ErnstEduardKummer(1810–1893) 767 theMordellConjecture 720 VI.41 ÉvaristeGalois(1811–1832) 767 V.30 TheResolutionofSingularities 722 VI.42 JamesJosephSylvester(1814–1897) 768 V.31 TheRiemann–RochTheorem 723 VI.43 GeorgeBoole(1815–1864) 769 V.32 TheRobertson–SeymourTheorem 725 VI.44 KarlWeierstrass(1815–1897) 770 V.33 TheThree-BodyProblem 726 VI.45 PafnutyChebyshev(1821–1894) 771 V.34 TheUniformizationTheorem 728 VI.46 ArthurCayley(1821–1895) 772 V.35 TheWeilConjectures 729 VI.47 CharlesHermite(1822–1901) 773 VI.48 LeopoldKronecker(1823–1891) 773 VI.49 Georg Friedrich Bernhard Riemann Part VI Mathematicians (1826–1866) 774 VI.50 JuliusWilhelmRichardDedekind(1831–1916) 776 VI.1 Pythagoras(ca.569b.c.e.–ca.494b.c.e.) 733 VI.51 ÉmileLéonardMathieu(1835–1890) 776 VI.2 Euclid(ca.325b.c.e.–ca.265b.c.e.) 734 VI.52 CamilleJordan(1838–1922) 777 VI.3 Archimedes(ca.287b.c.e.–212b.c.e.) 734 VI.53 SophusLie(1842–1899) 777 VI.4 Apollonius(ca.262b.c.e.–ca.190b.c.e.) 735 VI.54 GeorgCantor(1845–1918) 778 VI.5 AbuJa’farMuhammadibnMu¯s¯aal-Khw¯arizm¯ı VI.55 WilliamKingdonClifford(1845–1879) 780 (800–847) 736 VI.56 GottlobFrege(1848–1925) 780 VI.6 LeonardoofPisa(knownasFibonacci) VI.57 ChristianFelixKlein(1849–1925) 782 (ca.1170–ca.1250) 737 VI.58 FerdinandGeorgFrobenius(1849–1917) 783 VI.7 GirolamoCardano(1501–1576) 737 VI.59 Sofya(Sonya)Kovalevskaya(1850–1891) 784 VI.8 RafaelBombelli(1526–after1572) 737 VI.60 WilliamBurnside(1852–1927) 785 VI.9 FrançoisViète(1540–1603) 737 VI.61 JulesHenriPoincaré(1854–1912) 785 VI.10 SimonStevin(1548–1620) 738 VI.62 GiuseppePeano(1858–1932) 787 VI.11 RenéDescartes(1596–1650) 739 VI.63 DavidHilbert(1862–1943) 788 VI.12 PierreFermat(160?–1665) 740 VI.64 HermannMinkowski(1864–1909) 789 VI.13 BlaisePascal(1623–1662) 741 VI.65 JacquesHadamard(1865–1963) 790 VI.14 IsaacNewton(1642–1727) 742 VI.66 IvarFredholm(1866–1927) 791 VI.15 GottfriedWilhelmLeibniz(1646–1716) 743 VI.67 Charles-JeandelaValléePoussin(1866–1962) 792 VI.16 BrookTaylor(1685–1731) 745 VI.68 FelixHausdorff(1868–1942) 792 VI.17 ChristianGoldbach(1690–1764) 745 VI.69 ÉlieJosephCartan(1869–1951) 794 VI.18 TheBernoullis(fl.18thcentury) 745 VI.70 EmileBorel(1871–1956) 795 VI.19 LeonhardEuler(1707–1783) 747 VI.71 BertrandArthurWilliamRussell(1872–1970) 795 VI.20 JeanLeRondd’Alembert(1717–1783) 749 VI.72 HenriLebesgue(1875–1941) 796 VI.21 EdwardWaring(ca.1735–1798) 750 VI.73 GodfreyHaroldHardy(1877–1947) 797 VI.22 JosephLouisLagrange(1736–1813) 751 VI.74 Frigyes(Frédéric)Riesz(1880–1956) 798 VI.23 Pierre-SimonLaplace(1749–1827) 752 VI.75 LuitzenEgbertusJanBrouwer(1881–1966) 799 VI.24 Adrien-MarieLegendre(1752–1833) 754 VI.76 EmmyNoether(1882–1935) 800 VI.25 Jean-BaptisteJosephFourier(1768–1830) 755 VI.77 WacławSierpin´ski(1882–1969) 801 VI.26 CarlFriedrichGauss(1777–1855) 755 VI.78 GeorgeBirkhoff(1884–1944) 802 VI.27 Siméon-DenisPoisson(1781–1840) 757 VI.79 JohnEdensorLittlewood(1885–1977) 803 VI.28 BernardBolzano(1781–1848) 757 VI.80 HermannWeyl(1885–1955) 805 VI.29 Augustin-LouisCauchy(1789–1857) 758 VI.81 ThoralfSkolem(1887–1963) 806 VI.30 AugustFerdinandMöbius(1790–1868) 759 VI.82 SrinivasaRamanujan(1887–1920) 807 VI.31 NicolaiIvanovichLobachevskii(1792–1856) 759 VI.83 RichardCourant(1888–1972) 808 VI.32 GeorgeGreen(1793–1841) 760 VI.84 StefanBanach(1892–1945) 809 VI.33 NielsHenrikAbel(1802–1829) 760 VI.85 NorbertWiener(1894–1964) 811 (cid:2) viii Contents VI.86 EmilArtin(1898–1962) 812 VII.8 MathematicsandEconomicReasoning 895 VI.87 AlfredTarski(1901–1983) 813 VII.9 TheMathematicsofMoney 910 VI.88 AndreiNikolaevichKolmogorov(1903–1987) 814 VII.10 MathematicalStatistics 916 VI.89 AlonzoChurch(1903–1995) 816 VII.11 MathematicsandMedicalStatistics 921 VI.90 WilliamVallanceDouglasHodge(1903–1975) 816 VII.12 Analysis,MathematicalandPhilosophical 928 VI.91 JohnvonNeumann(1903–1957) 817 VII.13 MathematicsandMusic 935 VI.92 KurtGödel(1906–1978) 819 VII.14 MathematicsandArt 944 VI.93 AndréWeil(1906–1998) 819 VI.94 AlanTuring(1912–1954) 821 VI.95 AbrahamRobinson(1918–1974) 822 Part VIII Final Perspectives VI.96 NicolasBourbaki(1935–) 823 VIII.1 TheArtofProblemSolving 955 VIII.2 “WhyMathematics?”YouMightAsk 966 Part VII The Influence of Mathematics VIII.3 TheUbiquityofMathematics 977 VIII.4 Numeracy 983 VII.1 MathematicsandChemistry 827 VIII.5 Mathematics:AnExperimentalScience 991 VII.2 MathematicalBiology 837 VIII.6 AdvicetoaYoungMathematician 1000 VII.3 WaveletsandApplications 848 VIII.7 AChronologyofMathematicalEvents 1010 VII.4 TheMathematicsofTrafficinNetworks 862 VII.5 TheMathematicsofAlgorithmDesign 871 VII.6 ReliableTransmissionofInformation 878 VII.7 MathematicsandCryptography 887 Index 1015 (cid:2) Preface 1 WhatIsTheCompanion? togiveapreciseanswertothequestion,“Whatmakesa mathematicalstatementinteresting?”itsimplyaimsto Bertrand Russell, in his book The Principles of Mathe- presentforthereaderalargeandrepresentativesam- matics, proposes the following as a definition of pure pleoftheideasthatmathematiciansaregrapplingwith mathematics. atthebeginningofthetwenty-firstcentury,andtodo soinasattractiveandaccessibleawayaspossible. Pure Mathematics is the class of all propositions of the form “p implies q,” where p and q are proposi- tions containing one or more variables, the same in 2 TheScopeoftheBook thetwopropositions,andneitherpnorqcontainsany constants except logical constants. And logical con- The central focus of this book is modern, pure math- stants are all notions definable in terms of the fol- ematics, a decision about which something needs to lowing: Implication, the relation of a term to a class of which it is a member, the notion ofsuch that, the be said. “Modern” simply means that, as mentioned notionofrelation,andsuchfurthernotionsasmaybe above, the book aims to give an idea of what math- involved in the general notion of propositions of the ematicians are now doing: for example, an area that aboveform.Inadditiontothese,mathematicsuses a developedrapidlyinthemiddleofthelastcenturybut notionwhichisnotaconstituentofthepropositions thathasnowreachedasettledformislikelytobedis- whichitconsiders,namelythenotionoftruth. cussed less than one that is still developing rapidly. ThePrincetonCompaniontoMathematicscouldbesaid However, mathematics carries its history with it: in tobeabouteverythingthatRussell’sdefinitionleaves ordertounderstandapieceofpresent-daymathemat- out. ics,onewillusuallyneedtoknowaboutmanyideasand Russell’s book was published in 1903, and many resultsthatwerediscoveredalongtimeago.Moreover, mathematiciansatthattimewerepreoccupiedwiththe ifonewishestohaveaproperperspectiveontoday’s logicalfoundationsofthesubject.Now,justoveracen- mathematics,itisessentialtohavesomeideaofhowit turylater,itisnolongeranewideathatmathematics cametobeasitis.Sothereisplentyofhistoryinthe can be regarded as a formal system of the kind that book,evenifthemainreasonforourincludingitisto Russell describes, and today’s mathematician is more illuminatethemathematicsoftoday. likely to have other concerns. In particular, in an era Theword“pure”ismoretroublesome.Asmanyhave where so much mathematics is being published that commented, there is no clear dividing line between noindividualcanunderstandmorethanatinyfraction pure and applied mathematics, and, just as a proper ofit,itisusefultoknownotjustwhicharrangements appreciation of modern mathematics requires some of symbols form grammatically correct mathematical knowledge of its history, so a proper appreciation of statements,butalsowhichofthesestatementsdeserve puremathematicsrequiressomeknowledgeofapplied ourattention. mathematics and theoretical physics. Indeed, these Of course, one cannot hope to give a fully objec- areas have provided pure mathematicians with many tive answer to such a question, and different math- fundamental ideas, which have given rise to some of ematicians can legitimately disagree about what they the most interesting, important, and currently active find interesting. For that reason, this book is far less branches of pure mathematics. This book is certainly formal than Russell’s and it has many authors with notblindtotheimpactonpuremathematicsofthese manydifferentpointsofview. Andratherthantrying other disciplines, nor does it ignore the practical and

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.