ebook img

The Princeton Companion to Applied Mathematics PDF

1031 Pages·2015·41.726 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Princeton Companion to Applied Mathematics

The Princeton Companion to Applied Mathematics The Princeton Companion to Applied Mathematics editor Nicholas J. Higham The University of Manchester associate editors Mark R. Dennis University of Bristol Paul Glendinning The University of Manchester Paul A. Martin Colorado School of Mines Fadil Santosa University of Minnesota Jared Tanner University of Oxford PrincetonUniversityPress PrincetonandOxford Copyright©2015byPrincetonUniversityPress PublishedbyPrincetonUniversityPress, 41WilliamStreet,Princeton,NewJersey08540 IntheUnitedKingdom:PrincetonUniversityPress, 6OxfordStreet,Woodstock,OxfordshireOX201TW press.princeton.edu JacketimagecourtesyofiStock AllRightsReserved LibraryofCongressCataloging-in-PublicationData ThePrincetoncompaniontoappliedmathematics/editor, NicholasJ.Higham,TheUniversityofManchester; associateeditors,MarkR.Dennis,UniversityofBristol [andfourothers]. pagescm Includesbibliographicalreferencesandindex. ISBN978-0-691-15039-0(hardcover:alk.paper) 1.Algebra.2.Mathematics.3.Mathematicalmodels. I.Higham,NicholasJ.,1961–editor.II.Dennis,MarkR., editor.III.Title:Companiontoappliedmathematics. IV.Title:Appliedmathematics. QA155.P752015 510—dc23 2015013024 BritishLibraryCataloging-in-PublicationDataisavailable ThisbookhasbeencomposedinLucidaBright Projectmanagement,compositionandcopyediting byT&TProductionsLtd,London Printedonacid-freepaper ∞ PrintedintheUnitedStatesofAmerica 12345678910 Contents Preface ix II.25 MarkovChains 116 Contributors xiii II.26 ModelReduction 117 II.27 MultiscaleModeling 119 II.28 NonlinearEquationsandNewton’sMethod 120 II.29 OrthogonalPolynomials 122 Part I Introduction to Applied II.30 Shocks 122 Mathematics II.31 Singularities 124 II.32 TheSingularValueDecomposition 126 I.1 WhatIsAppliedMathematics? 1 II.33 TensorsandManifolds 127 I.2 TheLanguageofAppliedMathematics 8 II.34 UncertaintyQuantification 131 I.3 MethodsofSolution 27 II.35 VariationalPrinciple 134 I.4 Algorithms 40 II.36 WavePhenomena 134 I.5 GoalsofAppliedMathematicalResearch 48 I.6 TheHistoryofAppliedMathematics 55 Part III Equations, Laws, and Part II Concepts Functions of Applied Mathematics II.1 Asymptotics 81 II.2 BoundaryLayer 82 III.1 Benford’sLaw 135 II.3 ChaosandErgodicity 82 III.2 BesselFunctions 137 II.4 ComplexSystems 83 III.3 TheBlack–ScholesEquation 137 II.5 ConformalMapping 84 III.4 TheBurgersEquation 138 II.6 ConservationLaws 86 III.5 TheCahn–HilliardEquation 138 II.7 Control 88 III.6 TheCauchy–RiemannEquations 139 II.8 Convexity 89 III.7 The Delta Function and Generalized II.9 DimensionalAnalysisandScaling 90 Functions 139 II.10 TheFastFourierTransform 94 III.8 TheDiffusionEquation 142 II.11 FiniteDifferences 95 III.9 TheDiracEquation 142 II.12 TheFinite-ElementMethod 96 III.10 Einstein’sFieldEquations 144 II.13 Floating-PointArithmetic 96 III.11 TheEulerEquations 146 II.14 FunctionsofMatrices 97 III.12 TheEuler–LagrangeEquations 147 II.15 FunctionSpaces 99 III.13 TheGammaFunction 148 II.16 GraphTheory 101 III.14 TheGinzburg–LandauEquation 148 II.17 Homogenization 103 III.15 Hooke’sLaw 149 II.18 HybridSystems 103 III.16 TheKorteweg–deVriesEquation 150 II.19 IntegralTransformsandConvolution 104 III.17 TheLambertW Function 151 II.20 IntervalAnalysis 105 III.18 Laplace’sEquation 155 II.21 InvariantsandConservationLaws 106 III.19 TheLogisticEquation 156 II.22 TheJordanCanonicalForm 112 III.20 TheLorenzEquations 158 II.23 KrylovSubspaces 113 III.21 MathieuFunctions 159 II.24 TheLevelSetMethod 114 III.22 Maxwell’sEquations 160 vi Contents III.23 TheNavier–StokesEquations 162 IV.36 InformationTheory 545 III.24 ThePainlevéEquations 163 IV.37 AppliedCombinatoricsandGraphTheory 552 III.25 TheRiccatiEquation 165 IV.38 CombinatorialOptimization 564 III.26 Schrödinger’sEquation 167 IV.39 AlgebraicGeometry 570 III.27 TheShallow-WaterEquations 167 IV.40 GeneralRelativityandCosmology 579 III.28 TheSylvesterandLyapunovEquations 168 III.29 TheThin-FilmEquation 169 III.30 TheTricomiEquation 170 Part V Modeling III.31 TheWaveEquation 171 V.1 The Mathematics of Adaptation (OrtheTenAvatarsofVishnu) 591 Part IV Areas of Applied V.2 Sport 598 V.3 Inerters 604 Mathematics V.4 MathematicalBiomechanics 609 V.5 MathematicalPhysiology 616 IV.1 ComplexAnalysis 173 V.6 CardiacModeling 623 IV.2 OrdinaryDifferentialEquations 181 V.7 ChemicalReactions 627 IV.3 PartialDifferentialEquations 190 V.8 DivergentSeries:TamingtheTails 634 IV.4 IntegralEquations 200 V.9 FinancialMathematics 640 IV.5 PerturbationTheoryandAsymptotics 208 V.10 PortfolioTheory 648 IV.6 CalculusofVariations 218 V.11 BayesianInferenceinAppliedMathematics 658 IV.7 SpecialFunctions 227 V.12 A Symmetric Framework with Many IV.8 SpectralTheory 236 Applications 661 IV.9 ApproximationTheory 248 V.13 GranularFlows 665 IV.10 Numerical Linear Algebra and Matrix V.14 ModernOptics 673 Analysis 263 V.15 NumericalRelativity 680 IV.11 ContinuousOptimization(Nonlinearand LinearProgramming) 281 V.16 TheSpreadofInfectiousDiseases 687 IV.12 NumericalSolutionofOrdinaryDifferential V.17 TheMathematicsofSeaIce 694 Equations 293 V.18 NumericalWeatherPrediction 705 IV.13 NumericalSolutionofPartialDifferential V.19 TsunamiModeling 712 Equations 306 V.20 ShockWaves 720 IV.14 ApplicationsofStochasticAnalysis 319 V.21 Turbulence 724 IV.15 InverseProblems 327 IV.16 ComputationalScience 335 IV.17 DataMiningandAnalysis 350 Part VI Example Problems IV.18 NetworkAnalysis 360 IV.19 ClassicalMechanics 374 VI.1 Cloaking 733 IV.20 DynamicalSystems 383 VI.2 Bubbles 735 IV.21 BifurcationTheory 393 VI.3 Foams 737 IV.22 SymmetryinAppliedMathematics 402 VI.4 InvertedPendulums 741 IV.23 QuantumMechanics 411 VI.5 InsectFlight 743 IV.24 Random-MatrixTheory 419 VI.6 TheFlightofaGolfBall 746 IV.25 KineticTheory 428 VI.7 AutomaticDifferentiation 749 IV.26 ContinuumMechanics 446 VI.8 KnottingandLinkingofMacromolecules 752 IV.27 PatternFormation 458 VI.9 RankingWebPages 755 IV.28 FluidDynamics 467 VI.10 SearchingaGraph 757 IV.29 Magnetohydrodynamics 476 VI.11 EvaluatingElementaryFunctions 759 IV.30 EarthSystemDynamics 485 VI.12 RandomNumberGeneration 761 IV.31 EffectiveMediumTheories 500 VI.13 OptimalSensorLocationintheControlof IV.32 MechanicsofSolids 505 Energy-EfficientBuildings 763 IV.33 SoftMatter 516 VI.14 Robotics 767 IV.34 ControlTheory 523 VI.15 Slipping,Sliding,Rattling,andImpact: IV.35 SignalProcessing 533 NonsmoothDynamicsandItsApplications 769 Contents vii VI.16 FromtheN-BodyProblemtoAstronomyand VII.19 AirportBaggageScreeningwithX-Ray DarkMatter 771 Tomography 866 VI.17 TheN-BodyProblemandtheFastMultipole VII.20 MathematicalEconomics 868 Method 775 VII.21 MathematicalNeuroscience 873 VI.18 TheTravelingSalesmanProblem 778 VII.22 SystemsBiology 879 VII.23 CommunicationNetworks 883 VII.24 TextMining 887 VII.25 VotingSystems 891 Part VII Application Areas VII.1 AircraftNoise 783 VII.2 AHybridSymbolic–NumericApproachto Part VIII Final Perspectives GeometryProcessingandModeling 787 VII.3 Computer-Aided Proofs via Interval VIII.1 MathematicalWriting 897 Analysis 790 VIII.2 HowtoReadandUnderstandaPaper 903 VII.4 ApplicationsofMax-PlusAlgebra 795 VIII.3 HowtoWriteaGeneralInterestMathematics VII.5 EvolvingSocialNetworks,Attitudes,and Book 906 Beliefs—andCounterterrorism 800 VIII.4 Workflow 912 VII.6 ChipDesign 804 VIII.5 ReproducibleResearchintheMathematical VII.7 ColorSpacesandDigitalImaging 808 Sciences 916 VII.8 MathematicalImageProcessing 813 VIII.6 ExperimentalAppliedMathematics 925 VII.9 MedicalImaging 816 VIII.7 TeachingAppliedMathematics 933 VII.10 CompressedSensing 823 VIII.8 MediatedMathematics:Representations VII.11 Programming Languages: An Applied ofMathematicsinPopularCultureand MathematicsView 828 WhyTheseMatter 943 VII.12 High-PerformanceComputing 839 VIII.9 MathematicsandPolicy 953 VII.13 Visualization 843 VII.14 Electronic Structure Calculations (SolidStatePhysics) 847 Index 963 VII.15 FlamePropagation 852 VII.16 ImagingtheEarthUsingGreen’sTheorem 857 VII.17 RadarImaging 860 VII.18 ModelingaPregnancyTestingKit 864 Colorplatesfollowpage364 Preface 1 WhatIsTheCompanion? 2 Scope The Princeton Companion to Applied Mathematics de- Itisdifficulttogiveaprecisedefinitionofappliedmath- scribes what applied mathematics is about, why it ematics,asdiscussedinwhatisappliedmathemat- is important, its connections with other disciplines, ics?[I.1]and,fromahistoricalperspective,inthehis- and some of the main areas of current research. It tory of applied mathematics [I.6]. The Companion also explains what applied mathematicians do, which treats applied mathematics in a broad sense, and it includes not only studying the subject itself but also cannot cover all aspects in equal depth. Some parts writingaboutmathematics,teachingit,andinfluencing of mathematical physics are included, though a full policymakers. treatmentofmodernfundamentaltheoriesisnotgiven. TheCompaniondiffersfromanencyclopediainthat Statistics and probability are not explicitly included, itisnotanexhaustivetreatmentofthesubject,andit althoughanumberofarticlesmakeuseofideasfrom differs from a handbook in that it does not cover all thesesubjects,andinparticulartheburgeoningareaof relevant methods and techniques. Instead, the aim is uncertaintyquantification[II.34]bringstogether to offer a broad but selective coverage that conveys many ideas from applied mathematics and statistics. the excitement of modern applied mathematics while Applied mathematics increasingly makes use of algo- also giving an appreciation of its history and the out- rithms and computation, and a number of aspects at standingchallenges.TheCompanionfocusesontopics theinterfacewithcomputerscienceareincluded.Some feltbytheeditorstobeofenduringinterest,andsoit parts of discrete and combinatorial mathematics are shouldremainrelevantformanyyearstocome. alsocovered. Withonlinesourcesofinformationaboutmathemat- 3 Audience ics growing ever more extensive, one might ask what role a printed volume such as this has. Certainly, one The target audience for The Companion is mathe- can use Google to search for almost any topic in the maticians at undergraduate level or above; students, bookandfindrelevantmaterial,perhapsonWikipedia. researchers, and professionals in other subjects who WhatdistinguishesTheCompanion isthatitisaself- use mathematics; and mathematically interested lay contained, structured reference work giving a consis- readers. Some articles will also be accessible to stu- tent treatment of the subject. The content has been dentsstudyingmathematicsatpre-universitylevel. curated by an editorial board of applied mathemati- Prospectiveresearchstudentsmightusethebookto cianswithawiderangeofinterestsandexperience,the obtainsomeideaofthedifferentareasofappliedmath- articleshavebeenwrittenbyleadingexpertsandhave ematicsthattheycouldworkin.Researcherswhoreg- beenrigorouslyeditedandcopyedited,andthewhole ularlyattendseminarsinareasoutsidetheirownspe- volumeisthoroughlycross-referencedandindexed. cialities should find that the articles provide a gentle Withineacharticle,theauthorsandeditorshavetried introductiontosomeoftheseareas,makinggoodpre- hardtoconveythemotivationforeachtopicorconcept orpost-seminarreading. and the basic ideas behind it, while avoiding unnec- Insolicitingandeditingthearticlestheeditorsaimed essary detail. It is hoped that The Companion will be tomaximizeaccessibilitybykeepingdiscussionsatthe seen as a friendly and inspiring reference, containing lowest practical level. A good question is how much both standard material and more unusual, novel, or of the book a reader should expect to understand. unexpectedtopics. Of course “understanding” is an imprecisely defined

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.