ebook img

The Price of Stochastic Anarchy PDF

15 Pages·2008·0.15 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Price of Stochastic Anarchy

The Price of Stochastic Anarchy ChristineChung1,KatrinaLigett2?,KirkPruhs1??,andAaronRoth2 1 DepartmentofComputerScience UniversityofPittsburgh {chung,kirk}@cs.pitt.edu 2 DepartmentofComputerScience CarnegieMellonUniversity {katrina,alroth}@cs.cmu.edu Abstract. Weconsiderthesolutionconceptofstochasticstability,andpropose thepriceofstochastic anarchy asanalternativetothepriceof (Nash) anarchy for quantifying the cost of selfishness and lack of coordination in games. As a solutionconcept,theNashequilibriumhasdisadvantagesthatthesetofstochas- ticallystablestatesofagameavoid:unlikeNashequilibria,stochasticallystable statesaretheresultofnaturaldynamicsofcomputationallyboundedanddecen- tralizedagents,andareresilienttosmallperturbationsfromidealplay.Theprice of stochasticanarchycanbeviewed asasmoothed analysisofthepriceofan- archy,distinguishingequilibriathatareresilienttonoisefromthosethatarenot. Toillustratetheutilityofstochasticstability,westudytheloadbalancinggame onunrelatedmachines.ThisgamehasanunboundedlylargepriceofNashanar- chyevenwhenrestrictedtotwoplayersandtwomachines.Weshowthatinthe twoplayercase,thepriceofstochasticanarchyis2,andthateveninthegeneral case,thepriceofstochasticanarchyisbounded.Weconjecturethatthepriceof stochasticanarchyisO(m),matchingthepriceofstrongNashanarchywithout requiringplayercoordination.Weexpectthatstochasticstabilitywillbeusefulin understanding therelativestabilityofNashequilibriainothergameswherethe worstequilibriaseemtobeinherentlybrittle. ?Partiallysupported byan AT&TLabsGraduate Fellowshipand anNSFGraduate Research Fellowship. ??Supported in part by NSF grants CNS-0325353, CCF-0448196, CCF-0514058 and IIS- 0534531. 1 Introduction Quantifyingthepriceof(Nash)anarchyisoneofthemajorlinesofresearchinalgorith- micgametheory.Indeed,onefourthoftheauthoritativealgorithmicgametheorytext editedbyNisanetal.[20]iswhollydedicatedtothistopic.ButtheNashequilibrium solutionconcepthasbeenwidelycriticized[15,4,9,10].First, itis a solutioncharac- terizationwithoutaroadmapforhowplayersmightarriveatsuchasolution.Second, at Nash equilibria, players are unrealistically assumed to be perfectly rational, fully informed, and infallible. Third, computing Nash equilibria is PPAD-hard for even 2- player,n-actiongames[6],anditisthereforeconsideredveryunlikelythatthereexists apolynomialtimealgorithmtocomputeaNashequilibriumeveninacentralizedman- ner.Thus,itisunrealistictoassumethatselfishagentsingeneralgameswillconverge precisely to the Nash equilibriaof the game,or thatthey will necessarilyconvergeto anythingatall.Inaddition,thepriceofNashanarchymetriccomeswithitsownweak- nesses;itblindlyusestheworstcaseoverallNashequilibria,despitethefactthatsome equilibriaaremoreresilientthanotherstoperturbationsinplay. Consideringthese drawbacks, computerscientists have paid relatively little atten- tiontoiforhowNashequilibriawillinfactbereached,andevenlesstothequestionof whichNashequilibriaaremorelikelytobeplayedintheeventplayersdoconvergeto Nashequilibria.Toaddresstheseissues,weemploythestochasticstabilityframework fromevolutionarygametheorytostudysimpledynamicsofcomputationallyefficient, imperfect agents. Rather than defining a-priori states such as Nash equilibria, which mightnotbereachablebynaturaldynamics,thestochasticstabilityframeworkallows ustodefineanaturaldynamic,andfromitderivethestablestates.Wedefinetheprice of stochastic anarchy to be the ratio of the worst stochastically stable solution to the optimalsolution.The stochastically stable states of a gamemay, butdo notnecessar- ily,containallNashequilibriaofthegame,andsothepriceofstochasticanarchymay bestrictlybetterthanthepriceofNashanarchy.Ingamesforwhichthestochastically stablestatesareasubsetoftheNashequilibria,studyingtheratiooftheworststochas- tically stable state to the optimal state can be viewed as a smoothed analysis of the priceofanarchy,distinguishingNashequilibriathatarebrittletosmallperturbationsin perfectplayfromthosethatareresilienttonoise. The evolutionary game theory literature on stochastic stability studies n-player gamesthatareplayedrepeatedly.Ineachround,eachplayerobservesheractionandits outcome,andthenusessimplerulestoselectheractionforthenextroundbasedonly on her size-restricted memory of the past rounds. In any round, players have a small probabilityof deviatingfromtheir prescribeddecision rules. The state of the game is thecontentsofthememoriesofalltheplayers.Thestochasticallystablestatesinsucha gamearethestateswithnon-zeroprobabilityinthelimitofthisrandomprocess,asthe probabilityof errorapproacheszero. The play dynamicswe employ in this paper are theimitationdynamicsstudiedbyJosephsonandMatros[16].Underthesedynamics, eachplayerimitatesthestrategythatwasmostsuccessfulforherinrecentmemory. Toillustratetheutilityofstochasticstability,westudythepriceofstochasticanar- chyoftheunrelatedloadbalancinggame[2,1,11].Toourknowledge,wearethefirst to quantifythe loss of efficiencyin anysystem when the playersare in stochastically stableequilibria.Intheloadbalancinggameonunrelatedmachines,evenwithonlytwo playersand two machines,there are Nash equilibriawith arbitrarilyhigh cost, andso the price of Nash anarchyis unbounded.We show thatthese equilibriaare inherently 1 brittle, and that for two players and two machines, the price of stochastic anarchy is 2. This result matches the strong price of anarchy [1] without requiring coordination (atstrongNashequilibria,playershavetheabilitytocoordinatebyformingcoalitions). Wefurthershowthatinthegeneraln-player,m-machinegame,thepriceofstochastic anarchyisbounded.Morepreciselythepriceofstochasticanarchyisupperboundedby thenmthn-stepFibonaccinumber.We alsoshowthatthepriceofstochasticanarchy isatleastm+1. Ourworkprovidesnewinsightintotheequilibriaoftheloadbalancinggame.Un- like some previouswork on dynamics for games, our work does not seek to propose practicaldynamicswithfastconvergence;rather,weusesimpledynamicsasatoolfor understandingthe inherentrelativestability of equilibria.Insteadof relyingonplayer coordinationtoavoidtheNashequilibriawithunboundedcost(asisdoneinthestudy of strong equilibria), we show that these bad equilibria are inherently unstable in the face of occasionaluncoordinatedmistakes. We conjecture that the price of stochastic anarchyisclosertothelinearlowerbound,parallelingthepriceofstronganarchy. In light of our results, we believe the techniques in this paper will be useful for understandingtherelativestabilityofNashequilibriainothergamesforwhichtheworst equilibria are brittle. Indeed,for a variety of gamesin the price of anarchyliterature, theworstNashequilibriaofthelowerboundinstancesarenotstochasticallystable. 1.1 RelatedWork Wegiveabriefsurveyofrelatedworkinthreeareas:alternativestoNashequilibriaas asolutionconcept,stochasticstability,andtheunrelatedloadbalancinggame. Recently,severalpapershavenotedthattheNashequilibriumisnotalwaysasuit- ablesolutionconceptforcomputationallyboundedagentsplayinginarepeatedgame, and have proposed alternatives. Goemans et al. [15] study players who sequentially play myopic best responses, and quantify the price of sinking that results from such play.FabrikantandPapadimitriou[9]proposeamodelinwhichagentsplayrestricted finite automata. Blum et al. [4,3] assume only that players’ action histories satisfy a propertycallednoregret,andshowthatformanygames,theresultingsocialcostsare noworsethanthoseguaranteedbypriceofanarchyresults. Although we believe this to be the first work studying stochastic stability in the computer science literature, computer scientists have recently employed other tools from evolutionary game theory. Fisher and Vo¨cking [13] show that under replicator dynamicsin the routinggame studied by Roughgardenand Tardos[22], playerscon- verge to Nash. Fisher et al. [12] went on to show that using a simultaneous adaptive samplingmethod,playconvergesquicklytoaNashequilibrium.Forathoroughsurvey of algorithmic results that have employed or studied other evolutionary game theory techniquesandconcepts,seeSuri[23]. Stochasticstabilityanditsadaptivelearningmodelasstudiedinthispaperwerefirst defined by Foster and Young [14], and differ from the standard game theorysolution conceptofevolutionarilystablestrategies(ESS).ESSarearefinementofNashequilib- ria, and so do notalways exist, and are notnecessarily associated with a naturalplay dynamic.Incontrast,agamealwayshasstochasticallystablestatesthatresult(bycon- struction)fromnaturaldynamics.Inaddition,ESSare resilientonlyto singleshocks, whereasstochasticallystablestatesareresilienttopersistentnoise. 2 Stochastic stability has been widely studied in the economics literature (see, for example, [24,17,19,5,7,21,16]). We discuss in Sect. 2 concepts from this body of literaturethatarerelevanttoourresults.WerecommendYoung[25]foraninformative andreadableintroductiontostochasticstability,itsadaptivelearningmodel,andsome relatedresults.Ourworkdiffersfrompriorworkinstochasticstabilityinthatitisthe first to quantifythe socialutility ofstochasticallystable states, the price ofstochastic anarchy. Wealsonoteaconnectionbetweenthestochasticallystablestatesofthegameand thesinksofagame,recentlyintroducedbyGoemansetal.asanotherwayofstudying thedynamicsofcomputationallyboundedagents.Inparticular,thestochasticallystable states of a game under the play dynamics we consider correspond to a subset of the sink equilibria, and so provide a frameworkfor identifying the stable sink equilibria. In potential games, the stochastically stable states of the play dynamics we consider correspondtoasubsetoftheNashequilibria,thusprovidingamethodforidentifying whichoftheseequilibriaarestable. Inthispaper,westudythepriceofstochasticanarchyinloadbalancing.Even-Dar etal.[8]showthatwhenplayingtheloadbalancinggameonunrelatedmachines,any turn-takingimprovementdynamicsconvergetoNash.Andelmanetal.[1]observethat thepriceofNashanarchyinthisgameisunboundedandtheyshowthatthestrongprice ofanarchyislinearinthenumberofmachines.Fiatetal.[11]tightentheirupperbound tomatchtheirlowerboundatastrongpriceofanarchyofexactlym. 2 Model andBackground We now formalize (from Young [24]) the adaptive play model and the definition of stochastic stability. We then formalize the play dynamics that we consider. We also provide in this section the results from the stochastic stability literature that we will lateruseforourresults. 2.1 AdaptivePlayandStochasticStability LetG=(X,π)beagamewithnplayers,whereX = n X representsthestrategy j=1 i setsX foreachplayeri,andπ = n π representsthepayofffunctionsπ :X →R i j=1 i Q i foreachplayer.Gisplayedrepeatedlyforsuccessivetimeperiodst = 1,2,...,andat each time step t, player i plays soQme action st ∈ X . The collection of all players’ i i actionsattimetdefinesaplayprofileSt = (St,St,...,St).Wewishtomodelcom- 1 2 n putationallyefficientagents,andsoweimaginethateachagenthassomefinitememory ofsize z,andthataftertime stept, allplayersremembera historyconsistingofa se- quenceofplayprofilesht =(St−z+1,St−z+2,...,St)∈(X)z. Weassumethateachplayerihassomeefficientlycomputablefunctionp :(X)z× i X → Rthat,givenaparticularhistory,inducesa sampleableprobabilitydistribution i over actions (for all players i and histories h, p (h,a) = 1). We write p for a∈Xi i p .Wewishtomodelimperfectagentswhomakemistakes,andsoweimaginethat i i P attimeteachplayeriplaysaccordingtop withprobability1−(cid:15),andwithprobability i (cid:15)QplayssomeactioninX uniformlyatrandom.3Thatis,forallplayersi,forallactions i 3Themistakeprobabilitiesneednotbeuniformrandom—allthatwerequireisthatthedistri- butionhassupportonallactionsinX . i 3 a∈X ,Pr[st =a]=(1−(cid:15))p (ht,a)+ (cid:15) .Thedynamicswehavedescribeddefine i i i |Xi| aMarkovprocessPG,p,(cid:15) withfinitestatespaceH = (X)z correspondingtothefinite histories.Fornotationalsimplicity,wewillwritetheMarkovprocessasP(cid:15) whenthere isnoambiguity. Thepotentialsuccessorsofahistorycanbeobtainedbyobservinganewplaypro- file,and“forgetting”theleastrecentplayprofileinthecurrenthistory. Definition2.1. For any S0 ∈ X, A history h0 = (St−z+2,St−z+3,...,St,S0) is a successorofhistoryht =(St−z+1,St−z+2,...,St). TheMarkovprocessP(cid:15) hastransitionprobabilityp(cid:15) ofmovingfromstateh = h,h0 (S1,...,Sz)tostateh0 =(T1,...,Tz): n (1−(cid:15))p (h,Tz)+ (cid:15) ifh0isasuccessorofh; p(cid:15)h,h0 =(0Qi=1 i i |Xi| otherwise. We will refer to P0 as the unperturbed Markov process. Note that for (cid:15) > 0, p(cid:15) > 0 for every history h and successor h0, and that for any two histories h and h,h0 hˆ notnecessarilyasuccessorofh,thereisaseriesofz historiesh ,...,h suchthat 1 z h =h,h =hˆ,andforall1<i≤z,h isasuccessorofh .Thusthereispositive 1 z i i−1 probability of moving between any h and any hˆ in z steps, and so P(cid:15) is irreducible. Similarly,thereisapositiveprobabilityofmovingbetweenanyh andanyhˆ inz +1 steps,andsoP(cid:15)isaperiodic.Therefore,P(cid:15)hasauniquestationarydistributionµ(cid:15). The stochastically stable states of a particular game and player dynamics are the stateswithnonzeroprobabilityinthelimitofthestationarydistribution. Definition2.2 (Foster and Young [14]).A state h is stochastically stable relative to P(cid:15)iflim µ(cid:15)(h)>0. (cid:15)→0 Intuitively,weshouldexpectaprocessP(cid:15) tospendalmostallofitstimeatitsstochas- ticallystablestateswhen(cid:15)issmall. Whenaplayeriplaysatrandomratherthanaccordingtop ,wecallthisamistake. i Definition2.3 (Young [24]). Suppose h0 = (St−z+1,...,St) is a successor of h. A mistakeinthetransitionbetweenhandh0 isanyelementSt suchthatp (h,St) = 0. i i i Notethatmistakesoccurwithprobability≤(cid:15). We can characterize the number of mistakes required to get from one history to another. Definition2.4 (Young [24]). For any two states h,h0, the resistance r(h,h0) is the minimumtotalnumberofmistakesinvolvedinthetransitionh→h0ifh0isasuccessor ofh.Ifh0isnotasuccessorofh,thenr(h,h0)=∞. Notethatthetransitionsofzeroresistanceareexactlythosethatoccurwithpositive probabilityintheunperturbedMarkovprocessP0. Definition2.5. WerefertothesinksofP0asrecurrentclasses.Inotherwords,arecur- rentclassofP0isasetofstatesC ⊆H suchthatanystateinC isreachablefromany otherstateinC andnostateoutsideC isaccessiblefromanystateinsideC. 4 WemayviewthestatespaceH asthevertexsetofadirectedgraph,withanedge fromhtoh0ifh0isasuccessorofh,withedgeweightr(h,h0). Observation2.6. WeobservethattherecurrentclassesH ,H ,...,whereeachH ⊆ 1 2 i H,havethefollowingproperties: 1. Fromeveryvertexh∈H,thereisapathofcost0tooneoftherecurrentclasses. 2. For each H and for every pair of vertices h,h0 ∈ H , there is a path of cost 0 i i betweenhandh0. 3. ForeachH ,everyedge(h,h0)withh∈H ,h0 6∈H haspositivecost. i i i Let r denote the cost of the shortest path between H and H in the graph de- i,j i j scribedabove.WenowconsiderthecompletedirectedgraphGwithvertexset{H ,H ,...} 1 2 inwhichtheedge(H ,H )hasweightr .LetT beadirectedminimum-weightspan- i j i,j i ningin-treeofG rootedatvertexH .(Anin-treeisadirectedtreewhereeachedgeis i orientedtowardtheroot.)ThestochasticpotentialofH isdefinedtobethesumofthe i edgeweightsinT . i Youngprovesthefollowingtheoremcharacterizingstochasticallystablestates: Theorem2.7 (Young[24]).Inanyn-playergameGwith finitestrategysetsandany setofactiondistributionsp,thestochasticallystablestatesofPG,p,(cid:15) aretherecurrent classesofminimumstochasticpotential. 2.2 ImitationDynamics In this paper, we study agents who behave according to a slight modification of the imitationdynamicsintroducedbyJosephsonandMatros[16].(Wenotethatthismodi- ficationisofnoconsequencetotheresultsofJosephsonandMatros[16]thatwepresent below.)Playeriusingimitationdynamicsparameterizedbyσ ∈ Nchooseshisaction attimet+1accordingtothefollowingmechanism: 1. PlayeriselectsasetY ofσ playprofilesuniformlyatrandomfromthez profiles inhistoryh . t 2. ForeachplayprofileS ∈ Y,i recallsthepayoffπ (S)he obtainedfromplaying i actionS . i 3. Player i playsthe actionamongthese that correspondsto hishighestpayoff;that is,heplaystheith componentofargmax π (S).Inthecaseofties,heplaysa S∈Y i highest-payoffactionatrandom. The value σ is a parameterof the dynamicsthat is taken to be n < σ ≤ z/2. These dynamicscanbeinterpretedasmodelingasituationinwhichateachtimestep,players arechosenatrandomfromapoolofidenticalplayers,whoeachplayedinasubsetofthe lastz rounds.Theplayersarecomputationallysimple,andsodonotcounterspeculate the actionsof their opponents,instead playingthe actionthathas workedthe bestfor theminrecentmemory. WewillsaythatahistoryhismonomorphicifthesameactionprofileS hasbeen repeatedforthelastzrounds:h=(S,S,...,S).JosephsonandMatros[16]provethe followingusefulfact: Proposition2.8. A set of states is a recurrent class of the imitation dynamics if and onlyifitisasingletonsetconsistingofamonomorphicstate. 5 Since the stochastically stable states are a subset of the recurrent classes, we can associatewitheachstochasticallystablestateh =(S,...,S)theuniqueactionprofile S itcontains.Thisallowsustonowdefinethepriceofstochasticanarchywithrespect toimitationdynamics.Forbrevity,wewillrefertothisthroughoutthepaperassimply thepriceofstochasticanarchy. Definition2.9. GivenagameG = (X,π)withasocialcostfunctionγ : X → R,the priceofstochasticanarchyofGisequaltomax γ(S) ,whereOPTistheplayprofile γ(OPT) thatminimizesγandthemaxistakenoverallplayprofilesSsuchthath=(S,...,S) isstochasticallystable. Given a game G, we define the better response graph of G: The set of vertices correspondstothesetofactionprofilesofG,andthereisanedgebetweentwoaction profilesS andS0 ifandonlyifthereexistsaplayerisuchthatS0 differsfromS only inplayeri’saction,andplayeridoesnotdecreasehisutilitybyunilaterallydeviating fromS toS0.JosephsonandMatros[16]provethefollowingrelationshipbetweenthis i i betterresponsegraphandthestochasticallystablestatesofagame: Theorem2.10. IfVisthesetofstochasticallystablestatesunderimitationdynamics, thenV ={S :(S,...,S)∈V}iseitherastronglyconnectedcomponentofthebetter responsegraphofG,oraunionofstronglyconnectedcomponents. Goemans et al. [15] introduce the notion of sink equilibria and a corresponding notion of the “price of sinking”, which is the ratio of the social welfare of the worst sink equilibrium to that of the social optimum. We note that the strongly connected componentsofthebetterresponsegraphofGcorrespondtothesinkequilibria(under sequentialbetter-responseplay)ofG,andsoTheorem2.10impliesthatthestochasti- callystablestates underimitationdynamicscorrespondto asubsetofthesinksofthe betterresponsegraphofG,andwegetthefollowingcorollary: Corollary2.11. ThepriceofstochasticanarchyofagameGunderimitationdynamics isatmostthepriceofsinkingofG. 3 Load Balancing:GameDefinitionand PriceofNashAnarchy The load balancing game on unrelated machines models a set of agents who wish to schedulecomputingjobsona setof machines.Themachineshavedifferentstrengths andweaknesses(forexample,theymayhavedifferenttypesofprocessorsordiffering amounts of memory), and so each job will take a differentamount of time to run on each machine.Jobs on a single machineare executedin parallelsuch thatall jobs on anygivenmachinefinishatthesametime.Thus,eachagentwhoscheduleshisjobon machineM endurestheloadonmachineM ,wheretheloadisdefinedtobethesumof i i therunningtimesofalljobsscheduledonM .Agentswishtominimizethecompletion i timefortheirjobs,andsocialcostisdefinedtobethemakespan:themaximumloadon anymachine. Formally,aninstanceoftheloadbalancinggameonunrelatedmachinesisdefined byasetofnplayersandmmachinesM ={M ,...,M }.Theactionspaceforeach 1 m player is X = M. Each player i has some cost c on machine j. Denote the cost i i,j 6 of machine Mj for action profile S by Cj(S) = is.t.Si=jci,j. Each player i has utility function π (S) = −C (S). The social cost of an action profile S is γ(S) = max C (S). iWe define OsPi T to be the actionPprofile that minimizes social cost: j∈M j OPT = argmin γ(S). Without loss of generality, we will always normalize so S∈X thatγ(OPT)=1. The coordinationratio of a game (also known as the price of anarchy)was intro- ducedby KoutsoupiasandPapadimitriou[18],and is intendedto quantifythe loss of efficiencyduetoselfishnessandthelackofcoordinationamongrationalagents.Given agameGandasocialcostfunctionγ,itissimpletoquantifytheOPTgamestateS: OPT=argminγ(S).Itislessclearhowtomodelrationalselfishagents.Inmostprior workithasbeenassumedthatselfishagentsplayaccordingtoaNashequilibrium,and thepriceofanarchyhasbeendefinedastheratioofthecostoftheworst(purestrategy) NashstatetoOPT.Inthispaper,werefertothismeasureasthepriceofNashanarchy, todistinguishitfromthepriceofstochasticanarchy,whichwedefinedinSect.2.2. Definition3.1. For a game G with a set of Nash equilibrium states E, the price of (Nash)anarchyismax γ(S) . S∈E γ(OPT) Weshowherethatevenwithonlytwoplayersandtwomachines,theloadbalancing game on unrelated machines has a price of Nash anarchy that is unbounded by any functionofmandn.Considerthetwo-player,two-machinegamewithc =c =1 1,1 2,2 andc = c = 1/δ,forsome0 < δ < 1.ThentheplayprofileOPT = (M ,M ) 1,2 2,1 1 2 is a Nash equilibriumwith cost1. However,observethatthe profile S∗ = (M ,M ) 2 1 isalsoaNashequilibrium,withcost1/δ(sincebydeviating,playerscanonlyincrease their cost from 1/δ to 1/δ +1). The price of anarchy of the load balancing game is therefore1/δ,whichcanbeunboundedlylarge,althoughm=n=2. 4 Upper Bound onPriceofStochastic Anarchy Theloadbalancinggameisanordinalpotentialgame[8],andsothesinksofthebetter- responsegraphcorrespondto the purestrategyNash equilibria.We thereforehaveby Corollary2.11thatthestochasticallystablestatesareasubsetofthepurestrategyNash equilibriaofthegame,andthepriceofstochasticanarchyisatmostthepriceofanarchy. Wehavenotedthateveninthetwo-person,two-machineloadbalancinggame,theprice ofanarchyisunbounded(evenforpurestrategyequilibria).Therefore,asawarmup,we boundthepriceofstochasticanarchyofthetwo-player,two-machinecase. 4.1 TwoPlayers,TwoMachines Theorem4.1. Inthetwo-player,two-machineloadbalancinggameonunrelatedma- chines,thepriceofstochasticanarchyis2. Notethatthetwo-player,two-machineloadbalancinggamecan haveatmosttwo strictpurestrategyNashequilibria.(Forbrevityweconsiderthecaseofstrictequilibria. The argument for weak equilibria is similar). Note also that either there is a unique Nashequilibriumat(M ,M )or(M ,M ),ortherearetwoatN = (M ,M )and 1 1 2 2 1 1 2 N =(M ,M ). 2 2 1 AnactionprofileN ParetodominatesN0ifforeachplayeri,CNi(N)≤CNi0(N0). 7 Lemma4.2. IftherearetwoNashequilibria,andN ParetodominatesN ,thenonly 1 2 N isstochasticallystable(andviceversa). 1 Proof. Note thatif N ParetodominatesN , then italso Paretodominates(M ,M ) 1 2 1 1 and (M ,M ), since each is a unilateral deviation from a Nash equilibrium for both 2 2 players.Considerthemonomorphicstate(N ,...,N ).Ifbothplayersmakesimulta- 2 2 neous mistakes at time t to N , then by assumption, N will be the action profile in 1 1 h = (N ,...,N ,N ) with lowest cost for both players.Therefore,with positive t+1 2 2 1 probability,bothplayerswilldrawsamplesoftheirhistoriescontainingtheactionpro- fileN ,andthereforeplayit,untilh =(N ,...,N ).Therefore,thereisanedgein 1 t+z 1 1 G fromh={N ,...,N }toh0 ={N ,...,N }ofresistance2.However,thereisno 2 2 1 1 edgefromh0 toanyotherstateinG withresistance< σ.Recallourinitialobservation thatinfact,N Paretodominatesallotheractionprofiles.Therefore,nosetofmistakes 1 willyieldanactionprofilewithhigherpayoffthanN foreitherplayer,andsotoleave 1 state h0 willrequireatleastσ mistakes(sothatsomeplayermaydrawa samplefrom theirhistorythatcontainsnoinstanceofactionprofileN ).Therefore,givenanymin- 1 imumspanningin-treeofG rootedath,wemayaddanedge(h,h0)ofweight2,and removetheoutgoingedgefromh0,whichwehaveshownmusthavecost≥σ.Thisisa minimumspanningtreerootedath0 withstrictlylowercost.Wehavethereforeshown that h0 has strictly lower stochastic potentialthan h, and so by Theorem2.7,h is not stochasticallystable.SinceatleastoneNashequilibriummustbestochasticallystable, h0 =(N ,...,N )istheuniquestochasticallystablestate. ut 1 1 Proof (ofTheorem4.1).IfthereisonlyoneNashequilibrium(M ,M )or(M ,M ), 1 1 2 2 thenitmustbetheonlystochasticallystablestate(sinceinpotentialgamesthesearea nonemptysubsetofthepurestrategyNashequilibria),andmustalsobeOPT.Inthis case,thepriceofanarchyisequaltothepriceofstochasticanarchy,andis1.Therefore, wemayassumethattherearetwoNashequilibria,N andN .IfN Paretodominates 1 2 1 N ,thenN mustbeOPT(sinceloadbalancingisapotentialgame),andbyLemma 2 1 4.2,N istheonlystochasticallystablestate.Inthiscase,thepriceofstochasticanarchy 1 is1(strictlylessthanthe(possiblyunbounded)priceofanarchy).Asimilarargument holdsif N Pareto dominatesN . Therefore,we may assume that neitherN nor N 2 1 1 2 Paretodominatetheother. Withoutlossofgenerality,assumethatN isOPT, andthatinN = (M ,M ), 1 1 1 2 M is the maximallyloadedmachine.Suppose thatM is also the maximally loaded 2 2 machine in N . (The other case is similar.) Together with the fact that N does not 2 1 ParetodominateN ,thisgivesusthefollowing: 2 c ≤c 1,1 2,2 c ≤c 2,1 2,2 c ≥c 1,2 2,2 FromthefactthatbothN andN areNashequilibria,weget: 1 2 c +c ≥c 1,1 2,1 2,2 c +c ≥c 1,1 2,1 1,2 Inthiscase,thepriceofanarchyamongpurestrategyNashequilibriais: c c +c c +c c 1,2 1,1 2,1 1,1 2,1 2,1 ≤ ≤ =1+ c c c c 2,2 2,2 1,1 1,1 8 Similarly,wehave: c c +c c +c c 1,2 1,1 2,1 1,1 2,1 1,1 ≤ ≤ =1+ c c c c 2,2 2,2 2,1 2,1 Combining these two inequalities, we get that the price of Nash anarchy is at most 1+min(c /c ,c /c ) ≤ 2.Sincethepriceofstochasticanarchyisatmostthe 1,1 2,1 2,1 1,1 priceofanarchyoverpurestrategies,thiscompletestheproof. ut 4.2 GeneralCase:nPlayers,mMachines Theorem4.3. The general load balancing game on unrelated machines has price of stochasticanarchyboundedbyafunctionΨ dependingonlyonnandm,and Ψ(n,m)≤m·F (nm+1), (n) whereF (i)denotestheithn-stepFibonaccinumber.4 (n) Toprovethisupperbound,weshowthatanysolutionworsethanourupperbound cannotbestochasticallystable.Toshowthisimpossibility,wetakeanyarbitrarysolu- tionworsethanourupperboundandshowthattheremustalwaysbeaminimumcost in-tree in G rootedat a differentsolution that has strictly less cost than the minimum costin-treerootedatthatsolution.WethenapplyProposition2.8andTheorem2.7.The proofproceedsbyaseriesoflemmas. Definition4.4. ForanymonomorphicNashstateh = (S,...,S),lettheNashGraph ofhbeadirectedgraphwithvertexsetM anddirectededges(M ,M )ifthereissome i j playeriwithS =M andOPT =M .LettheclosureM¯ ofmachineM ,betheset i i i j i i ofstatesreachablefromM byfollowing0ormoreedgesoftheNashgraph. i Lemma4.5. InanymonomorphicNashstateh=(S,...,S),ifthereisamachineM i suchthatC (S)>m,theneverymachineM ∈M¯ hascostC (S)>1. i j i j Proof. Supposethiswerenotthecase,andthereexistsanM ∈ M¯ withC (S) ≤ 1. j i j Since M ∈ M¯ , there exists a simple path (M = M ,M ,...,M = M ) with j i i 1 2 k j k ≤ m.SinceS isaNashequilibrium,itmustbethecasethatC (S) ≤ 2because k−1 bythe definitionofthe Nash graph,the directededgefromM to M impliesthat k−1 k there is some player i with S = M , but OPT = M . Since 1 = γ(OPT) ≥ i k−1 i k C (OPT) ≥ c ,ifplayerideviatedfromhisactioninNashprofileS toS0 = M , k i,k i k he would experience cost C (S)+c ≤ 1+1 = 2. Since he cannot benefit from k i,k deviating(by definitionof Nash),it mustbe thathiscostin S, C (S) ≤ 2. By the k−1 sameargument,itmustbethatC (S)≤3,andbyinduction,C (S)≤k ≤m. ut k−2 1 Lemma4.6. ForanymonomorphicNash stateh = (S,...,S) ∈ G with γ(S) > m, thereisanedgefromhtosomeg = (T,...,T)whereγ(T) ≤ mwithedgecost≤ n inG. 1 ifi≤n; 4F (i)= F (i)∈o(2i)foranyfixedn. (n) ( ij=i−nF(n)(j) otherwise. (n) P 9

Description:
We consider the solution concept of stochastic stability, and propose Avrim Blum, MohammadTaghi Hajiaghayi, Katrina Ligett, and Aaron Roth.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.