ebook img

The prediction of student success in the study of elementary business statistics PDF

160 Pages·05.471 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The prediction of student success in the study of elementary business statistics

THE PREDICTION OF STUDENT SUCCESS IN THE STUDY OF ELEMENTARY BUSINESS STATISTICS A Thesis Presented to the F aculty of the School o f Commerce U n iversity o f Southern C aliforn ia In P a rtia l F ulfillm ent o f the Requirements for the Degree M aster of B usiness A dm inistration by James Harold R oberts, Jr August 1950 UMI Number: EP43309 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI EP43309 Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 cam This thesis, ‘written by JME3_MR0LD_.^BEHT3.a..JR., under the guidance of h..XSi. Faculty Committee, and approved by all its members, has been presented to and accepted by the Council on Graduate Study and Research in partial fulfill­ ment of the requirements for the degree of MASTER OF BUSINESS ADMINISTRATION AUG 195Q. Date... Faculty Committee Chairman i TABLE OF CONTENTS CHAPTER PAGE I . THE PROBLEM AND PROCEDURE OF THE STUDY . . . . 1 The problem ........................................................................ 1 Statement of the problem ......................... 1 Importance of the study ......................... 1 D elim itation s o f the study . .......................... 2 D efin ition s o f terms . . . . . . . . . . . . 3 S ta tistic s . . . . . . . . . . .......................... 3 Elementary business s t a t i s t i c s ......................... 3 Procedure o f the s tu d y ............................................. . 3 s. O rganization o f the s t u d y ......................... A II. THE PREDICTION OF SCHOLASTIC ACHIEVEMENT . . . 5 P rognosticating achievement in the foreign languages 5 A study o f the p red ictive values o f certain te s t elem ents for freshman chem istry • * 6 -Prediction equation for su ccess in co lleg e mathematics ......................... ? Summary . . . . . . . . . . . . . . . . . 8 II I. THE COURSE OF STUDY .......................... 9 S election of tex ts . . . . . . . 9 Method of tabulation ......................... 10 Typical course o f study .......................... 11 l i CHAPTER PACE IV. MATHEMATICS USER IN THE COMPUTATION OF THE MEASURES OF CENTRAL TENDENCY . . . . . . . . 13 A rithm etic mean ......................... 13 The arithm etic mean from ungrouped data . 13 The arithm etic mean from grouped data . . 1^ M athematics used to compute th e arithm e- t ic mean . ........................................................ 16 Median • « . » » » * • » ■ » . . . . . . . . . 16 The median from ungrouped data ..................... 16 The median from grouped d a t a ............................. 17 M athematics used to compute the median . . 18 The mode .................................................................................. 18 The mode from ungrouped d a t a ............................. 18 The mode from grouped d a t a .................................. 18 Mathematics used in the computation of the mode . . * ......................... . 19 The geom etric mean . . . . . . . . . . . . . 19 Geometric mean from ungrouped data . . . . 20 Geometric mean from grouped data . . . . . 21 M athematics used in the computation o f the geom etric mean . . . . . . . . . . . . . 21 The harmonic m e a n ......................................... 22 The harmonic mean from ungrouped data . . 22 The harmonic mean from grouped data . . . 23 i l l CHAPTER PAGE M athematics used in the computation of the harmonic m e a n .......................... . . . . . 23 M athematics used in the com putations o f measures of cen tral ten d en cy ......................... . 24 V. MATHEMATICS USED IN THE COMPUTATION OF THE Measurement of absolute disp ersion —the range . . . . . . . . . . . . . ..................... 26 Measurement o f absolute d ispersion— q u artlie d eviation . . . . . . . . . . . 26 Q uartlle d eviation o f ungrouped data . . . .2 ? Q uartlie deviation o f grouped data . . . . 28 M athematics used In the computation of the q u artlle deviation ............................................... 29 Measurement o f absolute d isp ersion — average d e v ia t io n ................................... 29 Average .deviation from ungrouped data . . 30 Average d eviation from grouped data . . . 31 M athematics used in the computation of the average d e v ia t io n ......................... 3k Measurement o f absolute d isp ersion — standard d eviation . . . . . . . . . . . . . . . . 3k The standard d eviation from ungrouped data ................................... 34 Standard d eviation from grouped data . . . 35 iv CHAPTER PAGE M athematics used in the computation of the standard d e v ia tio n .......................................... 37 Measurement o f r e la tiv e disp ersion — c o e ffic ie n t o f variation ......................... 38 M athematics used in the computation o f the c o e ffic ie n t o f v a r ia tio n ..................................... 39 Measurement o f r e la tiv e d isp ersion — c o e ffic ie n t o f skewness ..................................... 39 M athematics used in the computation o f the co e ffic ie n t o f skewness . . . . . . . . 40 M athematics used in the com putations of the measures of d isp ersion . . . . . . . . . . 41 VI. MATHEMATICS USED IN THE COMPUTATION AND APPLICATION OF LINEAR CORRELATION..................... 42 C orrelation—rank d ifferen ce method . . . . 43 M athematics used in the computation of the c o efficien t o f correlation — rank d ifferen ce method . . . . . .......................... 44 C orrelation—product moment method . . . . . 45 Product moment method—ungrouped data . . 45 Product moment method—grouped data . . . 47 M athematics used in the com putation"of the c o efficien t o f co rrela t ion— product moment method 49 V CHAPTER PAGE A pplication of lin ea r correlation — the regression equation .................................................... 50 M athematics used in the computation o f the regression equation . . . . .......................... 52 M athematics used in the com putation and ap p lication o f lin ea r correlation . . . . 52 Y II. MATHEMATICS USED IN THE COMPUTATION OF THE MEASURES OF RELIABILITY AND SAMPLING . . . . 53 Standard error of the mean ..................................... 5^ Probable error.of the mean . . . . . . . . . 55 Standard error o f correlation . . . . . . . 56 Probable error o f correlation • ..................... 57 Standard error of e stim a te ...............................1, . 57 Standard error of the d ifferen ce between two m e a n s ......................................................................... 59 M athematics used in the computation o f the measures o f r e lia b ility and sam pling . . . 61 V III. MATHEMATICS USED IN THE ANALYSIS OF TIME SERIES ............................................................................. 63 Secular trend .................................................... 6k Secular trend - free hand in sp ection . . . 6k Secular trend - method of sem i-averages . 6k Secular trend - method o f moving averages 65 Secular trend - method of le a s t squares . 66 Vi CHAPTER PAGE M athematics used in the ca lu la tio n of secu lar trends .............................................................. 72 Seasonal variation . . . . . . . . ..................... 72 Index o f seasonal variation — sim ple average method . . . . . . . . . . . . . 73 Index o f seasonal variation — ra tio s to moving average method .......................................... 76 M athematics used in the calcu lation of seasonal variation .................................................... 79 C yclical flu ctu ation . . . . . . . . . . . . 79 M athematics used in the calcu lation of c y c lic a l flu ctu a tio n ............................................... 81 M athematics used in the an alysis of time se r ie s ......................... 81 IX. MATHEMATICS USED IN THE CONSTRUCTION OF INDEX NUMBERS ........................................ 82 Priee index ........................................................................ 82 Simple aggregative price index . . . . . . 83 Simple average o f r ela tiv e s p rice index . 83 W eighted average o f r ela tiv e s p rice index 8k W eighted aggregative price index ..................... 86 Q uantity index . . . . . . . . . . . . . . . 87 Sim ple aggregative quantity index . . . . 87 v ii CHAPTER PAGE W eighted average o f rela tiv e s quantity index ........................................ 89 W eighted aggregative quantity index . . . 90 M athematics used in the construction of index numbers . . . . . . ..................................... 91 X. THE TEST . ................................................... 92 Test construction ......................................................... 92 Method ........................................................................................ 94 The experim ental group . . . . . . . . . . 94 A dm inistration o f the t e s t ..................................... 94 Sample . . . . . . . . . . . . . . . . . . . 94 The sample as rep resen tative o f a college population . . . . . . . . . . ..................... 94 R e lia b ility and scoring . . . . . . . . . . 95 XI. RESULTS AND INTERPRETATION ......................... 97 X II. SUMMARY AND CONCLUSIONS.................................... 99 Summary ....................................................................... 99 Conclusions . . . . . . . . . . . . . . . . 100 BIBLIOGRAPHY . . . . . . . ............................................................. 102 APPENDIX A. Composite Tabulation o f Subject M atter 104 APPENDIX B. M athematics T e s t .................................... 107 APPENDIX C. R e lia b ility o f the M athematics Test . . 114 APPENDIX D. Adjusted M athematics Test . . . . . . . 130 APPENDIX E. R esults of Individual P redictions . . . 135

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.