Astronomy&Astrophysicsmanuscriptno.Hen2-11 (cid:13)c ESO2014 January8,2014 The post-common-envelope, binary central star of the planetary nebula Hen 2-11 D.Jones1,H.M.J.Boffin1,B.Miszalski2,3,R.Wesson1,R.L.M.Corradi4,5,andA.A.Tyndall1,6 1 EuropeanSouthernObservatory,AlonsodeCo´rdova3107,Casilla19001,Santiago,Chile e-mail:[email protected], [email protected] 2 SouthAfricanAstronomicalObservatory,P.O.Box9,Observatory,7935CapeTown,SouthAfrica 3 SouthernAfricanLargeTelescopeFoundation,P.O.Box9,Observatory,7935CapeTown,SouthAfrica 4 InstitutodeAstrof´ısicadeCanarias,E-38200LaLaguna,Tenerife,Spain 5 DepartamentodeAstrof´ısica,UniversidaddeLaLaguna,E-38206LaLaguna,Tenerife,Spain 4 6 JodrellBankCentreforAstrophysics,SchoolofPhysicsandAstronomy,UniversityofManchester,Manchester,M139PL,UK 1 0 Received4November2013/Accepted2January2014 2 n ABSTRACT a J WepresentadetailedphotometricstudyofthecentralstarsystemoftheplanetarynebulaHen2-11,selectedforstudybecauseof itslow-ionisationfilamentsandbipolarmorphology–traitswhichhavebeenstronglylinkedwithcentralstarbinarity.Photometric 7 monitoringwithNTT-EFOSC2revealsahighlyirradiated,double-eclipsing,post-common-envelope systemwithaperiodof0.609 d.Modellingofthelightcurveindicatesthatthenebularprogenitorisextremelyhot,whilethesecondaryinthesystemisprobably ] R a K-type main sequence star. The chemical composition of the nebula is analysed, showing Hen 2-11 to be a medium-excitation non-Type inebula. A simplephotoionisation model isconstructed determining abundance ratiosof C/O andN/O whichwould be S consistentwiththecommon-envelopecuttingshorttheAGBevolutionofthenebularprogenitor. . h Thedetectionofapost-common-envelopebinarysystemattheheartofHen2-11furtherstrengthensthelinkbetweenbinaryprogeny p and the formation of axisymmetric planetary nebulae with patterns of low-ionisation filaments, clearly demonstrating their use as - morphologicalindicatorsofcentralstarbinarity. o r Keywords.planetarynebulae:individual:Hen2-11-Stars:binaries:close-Stars:binaries:eclipsing-Stars:circumstellarmatter- st Stars:AGBandpost-AGBISM:abundances a [ 1 1. Introduction ery of an eclipsing post-CE central star displaying a strong ir- v radiationeffectthatisreminiscentofAbell63(Pollacco&Bell 8 Itisnowclearthatcommon-envelope(CE)evolutionrepresents 1993) and Abell 46 (Pollacco&Bell 1994). The discovery of 5 an important channel for the formation of planetary nebulae rareeclipsingcentralstarsisakeysteptowardsmeasuringaccu- 3 (PNe), constituting a significant fraction of the total PN pop- rate, model-independentcentral star masses for a large sample 1 ulation (Miszalskietal. 2009a). However, in-depth analysis of ofPNe(Miszalskietal.2008). 1. thispopulation,aswellastheirinfluenceonthehostnebulae,is The paper is structured as follows. Sect. 2 outlines the ob- 0 stillhamperedbythesmallsampleandlackofdetailedstudyfor servations and data reduction,Sect. 3 describes the light curve 4 individualobjects.Itis,therefore,criticaltothefieldthatfurther analysisandmodelling,andtheanalysisofthestellarandnebu- 1 binarycentralstarsarediscoveredandcharacterised. larspectroscopy.Finally,Sect.4discussestheresults. : v RecentworkhasshownthatPNewithpost-CE,binarycen- i tral stars show a penchantfor low-ionisation filaments and ax- X isymmetricalstructures(Miszalskietal.2009b,2011b),assuch 2. Observationsanddatareduction r PNe displaying these traits should offer the greatest chance of a 2.1.Photometry binarydiscovery.Whilespectroscopicmonitoringforradialve- locity variables has shown promising results (e.g. Boffinetal. The central star of Hen 2-11 was monitored photometrically 2012b), the most efficient methodology remains photometric with EFOSC2 on the 3.6-m ESO-NTT (Buzzonietal. 1984; monitoring(Miszalskietal.2009a,2011a). Snodgrassetal. 2008) on the nights of 27-29 February, 1-2 Hen 2-11 (PN G259.1+00.9; α = 08h37m08.3s, δ = March2012,and14,15and17January2013.Theobservations −39◦25′08′′) is a southern PN first detected by Henize (1967). employedthe i#705(Gunn i) filter and E2V CCD with a pixel ThenebulawasshownbyGo´rnyetal.(1999)todisplayanelon- scaleof0.24′′×0.24′′pixel−1.Atotalof200I-bandobservations gated morphology with low-ionisation filaments. Based on its weretakenwith60-sexposuretime.Furtherindividualobserva- similar appearance in this image to two other post-CE PNe, tions of 240-s were acquired with narrowband [Oiii] λ5007Å NGC 6326 and NGC 6778 (Miszalskietal. 2011b), we se- (#687), Hα+[N ii] (#692) and [Sii] λ6716+6731Å (#700) fil- lected it as a promising candidate for photometric monitoring ters, two exposuresof 20secondswith a Bessel B filter (#639) aspartofongoingeffortsbyourteamtodiscoverbinarycentral andfiveof180-sinHβ-continuum(#743).Athree-colourcom- stars(Corradietal.2011;Miszalskietal.2011a,b;Tyndalletal. positeimageofthenebulaispresentedinFig.1,alongwiththe 2013; Miszalskietal. 2013b). Here, we report on the discov- individualimagestakeninthenarrowbandemissionlinefilters. 1 D.Jonesetal.:Thepost-CEbinarycentralstarofPNHen2-11 (a) (b) (c) (d) Fig.1.NTT-EFOSC2imagesofHen2-11.(a)Colourcompositemadefrom[Sii]λ6716+6731Å(red),Hα+[Nii](green)and[Oiii] λ5007Å(blue),(b)[Sii]λ6716+6731Åwiththecentralstarmarked,(c)Hα+[Nii]and(d)[Oiii]λ5007Å.Northisup,Easttothe leftandeachimagemeasures2′×3′. Alldataweredebiasedandflat-fieldedusingstandardstar- magofthecentralstarmeasuredagainstnon-variablefieldstars. linkroutines1.Photometrywasextractedusingsextractorwith An absolute scale, with an approximate precision of 0.05 mag anaperturetailoredtoadiameterof3×theseeingoneachframe (derived from the dispersion in detector zero points calculated (Bertin&Arnouts1996;Jones2011),andthedifferentialI-band for each field star), was applied to the data via the methodol- 1 http://starlink.jach.hawaii.edu/ 2 D.Jonesetal.:Thepost-CEbinarycentralstarofPNHen2-11 ogydescribedinBoffinetal.(2012a)usingcataloguephotome- 3.2.Lightcurve tryfromDENIS(Epchteinetal.1999). A Lomb-Scargleanalysis was performedin orderto determine the periodicity of the variability displayed by the central star 2.2.Spectroscopy of Hen 2-11using the period packageof the starlink software suite (Dhillonetal. 2001). Fig. 2 shows the data folded on the Table 1 outlines the spectroscopic observations of Hen 2-11 ephemerisdeterminedbytheanalysis, made with the Robert Stobie Spectrograph (RSS; Burghetal. 2003; Kobulnickyetal. 2003) of the Southern African Large min I =2455988.1617(±0.0005)+0.6093(±0.0003)E. Telescope (SALT; Buckleyetal. 2006; O’Donoghueetal. The lightcurve shows smooth sinusoidal variation of peak- 2006). The position angle (PA) of the slit was selected to be 71.5◦,toincludethebrighterstartotheSouthwestofthecentral to-peak amplitude ∼1.1 mag, with eclipses at phase 0 and 0.5. star.BasicreductionswereappliedusingthePySALT2 package Theprimaryeclipse,atphase0,isapproximately1.5magdeep, indicating that even in the I-band much of the flux originates (Crawfordetal. 2010). Contemporaneous spectroscopic flat- from the hot nebular progenitor. As such, the sinusoidal vari- fields were taken with each PG900 spectrum and were applied abilitycanbeattributedtotheprimaryirradiatingthenearface tothescienceexposuresaftereachflatwasdividedbya50pixel of the secondary,and the changingprojectionof this face with medianofitselftoreducetheamplitudeoffringingonthedetec- the binary orbit (often referred to as a reflection or irradiation tors and to correctbad pixels. Cosmic ray eventswere cleaned using the lacosmic package (vanDokkum 2001). Wavelength effect).Thestrengthofthisreflectioneffect,aswellasthepro- nounced secondary eclipse, indicate that the inclination of the calibration of arc lamp exposures was performed using stan- dard iraf3 tasks identify, reidentify, fitcoords and transform systemmustalsobecloseto90◦. Thesystemwasmodelledusingthenightfallcode4.Allpa- byidentfyingthearclinesineachrowandapplyingageometric rameters were varied over a wide range of physical solutions, transformationtothedataframes.Onedimensionalspectrawere with the final model being selected for having the lowest χ2 extracted for the central star and the nebula, keeping the same fit. A “third light” component (of 9.5% at mean mag in the I- apertureintheseparateexposures.Spectrophotometricstandard band) was incorporatedinto the model. This value is based on starswereusedtofluxcalibratethespectraintheusualfashion. anestimationoftheremainingnebularcontaminationfollowing Due to the moving pupil design of SALT only a relative (not thebackgroundfittingandsubtractionperformedbysextractor. absolute)spectrophotometricsolutioncanbeobtained. Theestimationwascarriedoutbymeasuringtheflux,onaselec- tionofbackgroundsubtractedimagesproducedbysextractor, in an annulus surrounding the central star and comparing that to the flux in an aperture centred on the sky backgroundaway 3. Analysis fromthe nebula,andthenscalingthisfluxtothatwhichwould 3.1.Morphology contaminateanapertureofradius1.5×themedianseeingofthe observations. Given the obviously large reflection effect in the The narrowband images presented in Fig. 1 show Hen 2-11 to system,detailedreflectionwasemployedinthemodelling(with comprisea brightcentralregionroughly1′ indiameterwithan 5iterations)inordertoproperlytreattheirradiationofthesec- irregularpattenoflow-ionisationfilamentarystructuresextend- ondary by the primary. A model atmosphere was used for the ing out to the Northwest and Southeast. As commented on in lowertemperature(secondary)componentwithsolarmetallicity Sect. 1, the nebula bears a striking resemblance to two other and log g of 4.5 (Kurucz 1993). The final model lightcurve is PNe previously shown to host binary nuclei, NGC 6326 and shown,alongwiththeresidualstothebinneddata,inFig.2and NGC 6778 (Miszalskietal. 2011b). The central region of the themodelparametersoutlinedinTab.2. nebula is bright and relatively uniform in [Oiii] λ5007Å (Fig. In general, the model fits well, with residuals of less than 1(d)), while in the light of [Sii] λ6716+6731Å and Hα+[N 0.05magatmostphases(reasonableconsideringtheerrorsplot- ii] the central structure appears far more filamentary (low- ted are solely from the photometry and do not account for the ionisation filaments like these are found in both NGC 6326 variablenebularcontamination).Theworstfitisattainedaround and NGC 6778; Miszalskietal. 2011b). Away from the cen- primaryeclipse,wherethepercentagecontributionfromtheneb- tral region, there is little emission in [Oiii] λ5007Å, but the ulaisatamaximumandthedataisoflowestsignal-to-noise,due [Sii] λ6716+6731Å and Hα+[N ii] images reveal bipolar ex- totheintrinsicfaintnessofthesecondary.Theadditionalscatter tensions upto 80′′ from the central star to both the Northwest inthedataaroundthisphasecouldalsobeduetostarspots,how- everthisisimpossibletoascertaingiventhesignal-to-noiseand and Southeast. A particularly bright filament is found at the timecoverageofourdata.Inordertofullyassessthevalidityof tip of the Southeastern lobe, running perpendicular to the ma- the model, it is important to compare the model parameters to jor axis of the nebula, while the Northwestern projection has the observations(aswellas theory,wherepossible)and ensure a more floccular appearance. These structures may perhaps be thetwoareconsistent. high velocity outflows/jets similar to those seen in NGC 6778 The model parameters (namely temperature and radius) (Guerrero&Miranda2012),featureswhicharehypothesisedto for the secondary indicate that it has an absolute bolomet- beformedbymasstransferin a binarysystem (Miszalskietal. ric mag, M , equal to 6.7 and is roughly of spectral type 2013a;Tocknelletal.2013). bol K5V (Boyajianetal. 2012). Adopting a bolometric correction of −0.66 (Kaler 1989), a (V − I) colour of 1.54 (Ducatietal. 0 2 http://pysalt.salt.ac.za 2001) and an extinction, c(Hβ), of 2.41 (determined from our 3 irafisdistributedbytheNationalOpticalAstronomyObservatory, SALT spectroscopy,see Sec.3.3), andusingthe reddeninglaw which is operated by the Association of Universities for Research in of Howarth (1983), we calculate the distance to be roughly Astronomy (AURA) under cooperative agreement with the National ScienceFoundation. 4 http://www.hs.uni-hamburg.de/DE/Ins/Per/Wichmann/Nightfall.html 3 D.Jonesetal.:Thepost-CEbinarycentralstarofPNHen2-11 Table1.LogoftheSALTRSSobservations. Date JD φ Grating Exptime λ ∆λ Dispersion (DD/MM/YY) (s) (′′) (FWHM,Å) (Åpix−1) 22/12/12 2456282.412835 0.93 PG900 2350 3907-7004 6.0 0.98 21/03/13 2456373.421354 0.30 PG900 2350 6300–9290 5.5 0.95 13/04/13 2456396.353935 0.94 PG1300 2500 4082–6178 4.3 0.66 Notes.Theslit-widthforallobservationswas1.50Å. 16 16.5 e d nitu 17 g a m d 17.5 n a b ntal I- 18 e m u str 18.5 n I -0.2 0 0.2 -1 -0.5 0 0.5 1 Phase Fig.2. Folded NTT-EFOSC2 I-band photometryof the central star of Hen 2-11 with the nightfall model overlaid in red (upper panel).Binnedresidualsbetweentheobservedphotometryandmodelareshowninthelowerpanel.Notethatthesizeofthepoints representsthephotometricuncertaintyandcontainnoestimateoftheuncertaintyduetovariablenebularcontamination(whichcan besignificant,seetextfordetails). Table2.Modelledandobservedbinaryparameters Primary Secondary T (K) 140000±30000 4500±500 eff Radius(R ) 0.13±0.02 0.68±0.03 ⊙ Logg – 4.5a Inclination 90◦±0.5◦ M1/M2 0.91−+00..1141 Period(d) 0.6093±0.0003 Peak-to-peakI-magamplitudeofirradiationeffect 1.12±0.07 Min.I-magofsinusoidalregionoflightcurve 16.80±0.05b EclipseI-mag 18.40±0.05c Extinction-correctedmin.V-magofsinusoidalregion 13.82±0.08d Extinction-correctedeclipseV-mag 17.36±0.08e Notes. (a) A fixed parameter in the modelling (b) Measured value, not accounting for nebular contamination of roughly 10% at this phase (c) Measuredvalue,notaccountingfornebularcontaminationofroughly25%atthisphase(d) Correctedusingthemeasuredc(Hβ)=2.42±0.04, andarepresentative(V −I) = −0.4forthenebularprogenitor (Ciardulloetal.1999)(e) Correctedusingthemeasuredc(Hβ)=2.42±0.04,and 0 assumingthatthemodelledtemperatureisrepresentativeofthespectraltypeofthesecondary(seetextfordetails). 4 D.Jonesetal.:Thepost-CEbinarycentralstarofPNHen2-11 44..55 44 ))olol 33..55 LLss L (L ( g g oo 33 LL 22..55 22 55..55 55..2255 55 44..7755 44..55 44..2255 44 LLoogg TT ((KK)) eeffff Fig.3. Helium-burning evolutionary track for M = 2.5M , i ⊙ M = 0.67M from Vassiliadis&Wood (1994), with the loca- f ⊙ tionofthemodelcentralstarofHen2-11marked(corresponding toanageofapproximately7000years). Fig.4. Low-resolution SALT spectrum of the central star of 700pc (assuming the I-mag at eclipse is that of the secondary Hen 2-11taken ata phase ofφ = 0.93.The zoomdisplaysthe and accounting for the nebular contamination at this phase of regionaroundtheHeiiλ5412Åabsorptionfeature. ∼0.3 mag). While this distance is a little on the low side, it is still within the error margins of the statistical distance calcu- lated by Stanghellinietal. (2008, of 890 pc) and the distance minethelogarithmicextinctionatHβ,c(Hβ),tobe2.41±0.01. by trigonometric parallax of ∼780pc (Gutie´rrez-Morenoetal. Thisis almost0.2dexgreaterthanthatfoundby Shaw&Kaler 1999).WerecalculatedthedistanceusingtheStanghellinietal. (1989), howevertheir value is derivedfrom emission-linepho- (2008) method, our extinction value, a radius of 32′′and log tometrywith appreciablecontaminationfrom[N ii] λ6583Åin F(Hβ)=−12.14 (Ackeretal. 1992). This yields 817pc, more in theirmeasurementoftheHαflux.Hence,weconcludethatour linewiththeproper-motionbaseddistanceandofferingabetter measurement(derivedusingentirelynon-blendedspectrallines) agreementwithourdistance. is a more reliable determination. Furthermore,the galactic lat- Thespectraltypeofthesecondaryandthemodelledmassra- itude of Hen 2-11 (+0.9degrees) meansthat high extinctionis tioimplyamassfortheprimaryofroughly0.67M .However, entirely consistent with purely foregroundreddening, although ⊙ determinationsofspectraltypebasedsolelyonmodellingofthe somecomponentmaybeinternaltotheobjectaswell. lightcurvearenotoriouslyunreliableinthesesystems(seeSect. The nebular spectrum taken with the higher resolution 4). Itisinterestingto notethatin spiteofthesignificantuncer- PG1300gratingwasusedtomeasuretheheliocentricradialve- tainties, the modelled effective temperature and luminosity lie locityofthenebula,whichwedeterminetobe22.1±2.6kms−1 on the evolutionarytrack for a 0.67 M remnant(formedfrom withtheemsaoprogram(Kurtz&Mink1998). ⊙ a2.5M progenitor)withanageof∼7000years(Fig.3).This ⊙ is a reasonableage fora planetarynebula,and wouldimplyan 3.3.1. Plasmadiagnostics expansionvelocity,v ,ofroughly30–40kms−1(giventhedis- exp tancetoandangularsizeoftheobservednebula),whichisfairly Using the neat code (for full details of the analytic processes typicalforaPNwithabinarycentralstar(e.g. Jonesetal.2010, andatomicdataemployed,seeWessonetal.2012),wemeasure thoughgreaterthantheaverageforPNeingeneral).Collectively, an electron density of 570±90 cm−3 from the [Sii] lines, and thisshowsthatourmodelprovidesareasonablesolutiontothe 1800±1600cm−3fromthe[Ariv]λ4711/4740Ålines.Although systemicparameters,inspiteofthelackofradialvelocitystudy the uncertainty on the [Ar iv] density is large, the discrepancy whichwouldberequiredinordertoprovidestrongerconstraints between these two values may be due to the presence of high (SeeSect.4). density clumps (Zhangetal. 2004); the critical densities of the [Sii]linesare3.625×103and1.419×103cm−3,whilethoseof the [Ar iv]lines are1.012×105 and 1.630×104 cm−3, and so 3.3.Stellarandnebularspectra anymaterialatdensitiesof1×105cm−3wouldemit[Ariv]but Figure4showsthelow-resolutionPG900spectrumofthecentral not[Sii]. starwithweakabsorptionfromHeiiλ5412Ådetectedontopof The temperatures derived from [O iii] and [N ii] are in ex- a heavily reddenedcontinuum,confirmingit to be the ionising cellentagreementat11500±250Kand11850±450K,respec- source of the PN. The lack of emission linesis consistentwith tively. The [S iii] λ9069/6312Å line ratio implies a very high theirradiatedzoneofthesecondaryfacingawayfromusatthe temperature, but the λ9069Å line lies in a vignetted region of phaseobserved. thespectrumanditsfluxisprobablyunderestimated.Afactorof The extracted nebular spectra were combined to produce a 2 increasein its measuredflux wouldbringthe [Siii] tempera- singlespectrumwith wavelengthcoveragefrom∼4000–9000Å tureintolinewiththeotherdiagnostics. (showninFig.5).FromtheratiosofHα,HγandHδtoHβ,and Usingthe“crossover”methodofKaler&Jacoby(1989),we usingthe Galactic extinctionlaw of Howarth(1983), we deter- wereabletoestimatethecentralstartemperature,giventhemea- 5 D.Jonesetal.:Thepost-CEbinarycentralstarofPNHen2-11 suredHeii/Hβdereddenedfluxratio,tobe∼108000K–inrea- sonable agreement with the temperature derived by modelling thelightcurve,140000±30000K5. 3.3.2. Empiricalanalysis We first carry out an empirical analysis using the neat code (Wessonetal.2012),whichpropagatestheobservationaluncer- tainties into the final quantities using a monte carlo technique. Ionicabundanceswerederivedusingatemperatureof11800K andadensityof500cm−3forsinglyionisedspecies,and11500 K and1800cm−3 formorehighlyionisedspecies.Ourspectra donotextendasfarbluewardsastheOiilinesatλ3727/3729Å, and the lines at λ7320/7330Å lie in a gap in our spectral cov- erage. Without an O+/O2+ ratio, we are unable to estimate the necessary ionisation correction factors to derive total elemen- tal abundancesfor any heavy elements. However,the presence of He2+ (while still only comprising a relatively small amount ofthe totalHe 6) impliesthatO2+ willbethe dominantionisa- tionstageofoxygen.TheabsenceofO+ linesintroducesarela- tivelysmalluncertaintyintotheO/Habundance,whichwefind tobe(3.3±0.3)×10−4,asO+/O2+ willbelow..TheN/Habun- Fig.5. A combinednebular spectrumof Hen 2-11, composited dance, on the other hand, is essentially unconstrained as only fromthethreeexposureslistedinTable1. N+ is observable; the fraction of N+ is very small and is im- possible to estimate from the currentdata. We find He/H to be 0.104±0.007; this indicates that Hen 2-11 is not a Type i PN Table 4. Abundances used in the photoionisation model of Hen2-11. (Peimbert 1978). Table 3 gives the measured and de-reddened line intensities, as well as the ionic abundances calculated us- Element Abundance ingtheneatcode(Wessonetal.2012),derivedfromthenebular H 1.0 spectrashowninFig.5. He 0.104 C 0.8×10−4 N 3.0×10−5 3.3.3. Photoionisationmodelling O 5.5×10−4 Ne 7.5×10−5 Given that we are unable to estimate the ionisation correc- S 1.1×10−6 tion factors needed to empirically derive heavy element abun- dances,weconstructedaphotoionisationmodelusingmocassin Ar 1.8×10−6 (Ercolanoetal.2003)totryconstraintheNabundance(andfur- therconfirmthenon-TypeinatureofHen2-11). nebularabundancesandthecentralstartemperaturetoachievea Fromtheimagesofthenebula(Fig.1)itisclearthattheneb- goodmatchtoourobservedlinefluxes. ulaisirregularandfilamentary.However,ourlongslitspectrum does notprovidesufficient observationalconstraints to realisti- Ourbestfittingmodelhasastellarluminosityof5140L⊙and callymodelthenebularmorphology,nordowehaveanyinfor- atemperatureof115000K,ingoodagreementwiththevalues mation about the surface abundances of the central star which derivedinSection3.3.1althoughslightlylowerthanthetemper- would allow us to realistically estimate the ionising spectrum. aturederivedfromthelightcurvemodelling(butstillwithinthe Our modelis, therefore,highly simplified and is intended only uncertainty).Theemissionlinefluxespredictedbythemodelare as a first approximation, a more rigorous modelling would re- givenalongsidetheobservedvaluesinTab.3. quirespatiallyresolvedspectroscopyofthenebula. Themodelreproducesmostlineintensitieswell,inparticular Wemodelledthenebulaasaspherewitharadiusof1018cm, the strengthsof He i and He ii, and the O iii nebularto auroral line ratio. The observed [N ii] temperature diagnostic ratio is estimated from our images and the distance of 700 pc derived lowerthanthatpredictedbythemodel,indicatingthattheactual inSection3.2.Ourmodelhadauniformhydrogendensity,with N+temperatureishigher,andtheN+abundanceevenlowerthan thecentralstarapproximatedbyablackbody.Wethenvariedthe predictedbythemodel.Thismayindicatethepresenceofhigh- temperaturelow-ionisationregionsof the nebula whichare not 5 Unlike the Zanstra method, this technique does not depend on capturedbyoursimplemodel(seeSec.4forfurtherdiscussion). themagof thecentral star,themeasurement of whichcan beheavily ThetotalabundancesusedinourmodelaregiveninTab.4. skewedforbinarysystemswhereasignificantproportionoftheoptical Thesestrengthentheindicationfromtheempiricalanalysisthat fluxoriginatesfromthesecondary. EvenforHen2-11,wherethepri- Hen 2-11 does not have Type i abundances. In particular, the maryisintrinsicallymuchbrighterthanthesecondary,thecontribution nitrogen abundance in the model is very low, with N/O∼0.05; fromthesecondaryissignificantatmostphasesduetothestrengthof Galactic Type i PNe have N/O>0.8 (Kingsburgh&Barlow theirradiationeffect.This,alongwiththenebula’sopticaldepth,may accountforthediscrepancybetweenourtemperatureandtheHydrogen 1994).Whilethiscannotbeconsideredarigorousdetermination Zanstratemperatureof89000±11000K(Shaw&Kaler1989). ofthetruetotalabundances,andthereforethetrueN/Oratio,it 6 AgreaterfractionofHeinHe2+wouldimplythatO3+wouldbethe doesprovideastrongindicationthatthetrueN/Ovaluewillbe dominantionisationstage. muchlowerthanforatypicalTypeiPN. 6 D.Jonesetal.:Thepost-CEbinarycentralstarofPNHen2-11 Table3.Observed,F(λ),anddereddenedI(λ),nebularemissionlinefluxesrelativetoHβ=100,andthefractionalionicabundance inthatlinerelativetothatofHydrogen, X(line).Thefinalcolumnshowsthefluxespredictedbyourmocassinphotoionisationmodel. H Thelowerpartofthetablelistsaseriesofemissionlinediagnosticratiosandtheirmeasuredandmodelledvalues. λ Ion F(λ) I(λ) X(line) I (λ) H model 3967.46+3970.07a [Neiii]+Hi 14.63 ±1.07 47.10 ±3.46 - - Ne=29.99 4340.47 Hi 23.64 ±0.40 47.77 ±0.92 - - 4H=71.05.908 4363.21 [Oiii] 7.09 ±0.40 13.91 ±0.82 4.23×10−4 +8.89×10−5 14.08 4471.50 Hei 3.00 ±0.39 5.09 ±0.66 0.098 ±−10.1.30×1102−4 5.41 4685.68 Heii 14.32 ±4.76 13.25 +2.90 0.011 +2.42×10−3 14.24 −3.72 −3.11×10−3 4711.37 [Ariv] 4.25 ±0.22 5.23 ±0.27 1.07×10−6 +1.87×10−7 5.19 −1.92×10−7 4740.17 [Ariv] 4.37 ±0.86 4.87 +0.83 1.07×10−6 ±2.03×10−7 4.30 4861.33 Hi 100.00 ±0.70 100.01 ±−1.000.00 - - 100.00 4958.91 [Oiii] 541.81 ±4.87 474.40 ±5.30 3.51×10−4 ±4.91×10−5 472.30 5006.84 [Oiii] 1696.82 ±4.82 1391.98 ±9.67 3.46×10−4 ±4.82×10−5 1409.35 5412.73 Heii 3.24 ±0.44 1.54 ±0.21 0.013 ±0.002 1.31 5754.60 [Nii] 5.99 ±0.45 2.04 ±0.15 1.06×10−5 +9.79×10−7 1.78 −1.07×10−6 5875.66 Hei 48.16 ±0.46 14.64 ±0.16 0.094 +7.59×10−3 14.82 −4.87×10−3 6300.30 [Oi] 18.31 ±10.94 1.68 +0.59 1.84×10−6 +6.66×10−7 0.76 −0.91 −1.04×10−6 6312.10 [Siii] 12.47 ±11.64 0.58 +0.27 6.65×10−7 +6.65×10−7 0.32 −0.50 −3.57×10−7 6363.77 [Oi] 7.43 ±10.59 0.07 +0.07 2.39×10−7 +2.39×10−7 0.38 −0.14 −4.73×10−7 6548.10 [Nii] 197.20 ±12.59 33.77 ±2.16 1.16×10−5 ±1.38×10−6 36.44 6562.77 Hi 1680.91 ±11.84 284.62 +0.87 - - 283.83 −0.71 6583.50 [Nii] 549.71 ±11.99 91.53 ±2.13 1.03×10−5 ±9.80×10−7 111.30 6678.16 Hei 25.82 ±10.08 2.60 +0.65 0.067 +0.016 4.14 −0.86 −0.022 6716.44 [Sii] 88.57 ±2.06 13.30 ±0.33 4.29×10−7 ±3.62×10−8 13.16 6730.82 [Sii] 85.22 ±2.07 12.66 ±0.33 4.30×10−7 ±3.63×10−8 12.64 7065.25 Hei 21.84 ±2.10 2.54 ±0.25 0.102 ±0.010 2.96 7135.80 [Ariii] 151.84 ±2.02 16.84 ±0.28 1.21×10−6 ±1.23×10−7 12.59 7281.35 Hei 6.09 ±5.95 0.13 +0.06 0.02 +8.09×10−3 0.84 −0.11 −0.02 7751.43 [Ariii] 52.08 ±2.98 3.91 ±0.23 1.17×10−6 ±1.37×10−7 3.02 9068.60 [Siii] 352.73 ±4.24 13.75 ±0.26 1.42×10−6 ±1.25×10−7 8.04 4740/4711 [Ariv] - - 0.93 +0.20 - - 0.83 6731/6717 [Sii] - - 0.95 ±−00.1.603 - - 0.96 (4959+5007)/4363 [Oiii] - - 134.05 ±7.96 - - 133.60 (6584+6548)/5754 [Nii] - - 61.94 ±4.92 - - 82.92 Notes. (a)Thevaluemeasuredinthespectrumisablendofthetwolineslisted,whilethemodelvaluesarefortheindividualcomponents 4. Discussion Forthemodelledsystem,wewouldexpecttoobserveradial velocityvariationsofaround40 kms−1(K ≈ 20 kms−1 about 2 ThecentralstarofHen2-11hasbeenshowntobeaphotomet- our measured nebular heliocentric velocity of ≈21 km s−1). ricvariablewithaperiodof0.61d.Modellingofthelightcurve We,therefore,stronglyencouragefurtherspectroscopicfollow- indicatesthatthesystemisapost-CEbinarywithahotprimary, up of the system in the form of a time-resolved radial ve- alsothenebularprogenitor,oftemperatureof110−140kK,and locity study. Given the extremely large reflection effect in the a K-type main sequence secondary of temperature ≈ 4500 K. system, one would expect the secondary to show very strong These values, as well as the other modelled stellar parameters Ciii andNiiiemissionlinesatalmostallphases(Corradietal. (size/luminosity),areroughlyconsistentwithevolutionarymod- 2011;Miszalskietal.2011b),thusmakingHen2-11particularly elsandthedistancespublishedintheliterature. apt for radial velocity study in spite of its intrinsic faintness. Unfortunately,our two spectra coveringthese lines were taken Itisimportanttopointoutthatgiventhelackofradialveloc- veryclosetoprimaryeclipsesuchthattheirradiatedfaceofthe ity measurements, we can place only very loose constraintson secondarywasnotobserved,andthereforetheselineswerenot themassratioandthereforeonthemassoftheprimary(particu- detected.However,sucharadialvelocitystudywouldallowthe larlyknowingthatthespectraltypeofthesecondary,determined determination of key system parameters such as the mass ra- from its modelled temperature, is often at odds with the mea- tio and individual component masses. The component masses sured mass in these systems; see below for further discussion) are essential, not only to test the model, but also to compare However, our model’s best-fitting value of 0.67 M is a fairly ⊙ thebinaryparameterstothoseofotherpost-CEcentralstars.In typical remnant mass and fits well with a similarly typical PN general,the secondaries,in the few systems thathave been the age(evenaccountingforthefairlylargeuncertaintyintherela- subjectofdetailedstudy,arefoundtodisplayinflatedradiiand tivelyarbitrarystartingtimeoftheevolutionarytracks).Without increased spectral temperatures with respect to those expected furtherobservationswecannotplaceanystrongerconstraintson fromtheirmasses(Pollacco&Bell1993;deMarcoetal.2008; the system parameters, other than to say that all aspects of the Afs¸ar&Ibanogˇlu2008).Assuch,itwouldbeofgreatinterestto modelareconsistentwithcurrentobservationsandthoseofsim- add further statistics in this small sample. If this were the case ilarsystems. 7 D.Jonesetal.:Thepost-CEbinarycentralstarofPNHen2-11 forHen2-11,thesecondarymassmightbeexpectedtobemore similar methodology,knownas the energy balance method,by like that of a late K- or early M-type main sequence star (re- Preite-Martinez&Pottasch1983). ducing the primary mass to possibly be more in line with that In addition to detailed study of their central stars, it is ofAbell46,anothereclipsingpost-CEcentralstardisplayinga important that these objects are subjected to detailed spatio- largereflectioneffect,assumingasimilarmassratiotothatde- kinematical study, in order to ascertain the three-dimensional terminedbythelightcurvemodelling;Pollacco&Bell1994). morphology and velocity structure of the nebula, which can then be related to the evolution and parameters of the central Littledataexistsonthenebularabundancesofpost-CEPNe, star system (particularly the inclination of nebular symmetry unfortunatelyourdatadonotpermitustoperformafullanaly- axiswithrespectto thatofthebinaryorbitalplane;Jonesetal. sisandderivetotalelementalabundances.Wehavederivedionic 2011, 2012; Tyndalletal. 2012). To that end, we strongly en- abundances where possible, and shown that Hen 2-11 is not a PeimbertTypeinebula.Thiscouldbetakenasanindicationof courage the acquisition of high-resolution, spatially-resolved spectroscopy (either longslit or integral field) of the nebulae the common-envelope cutting short the AGB evolution of the Hen 2-11 and NGC 6326 (NGC 6778 has already been the nebularprogenitor,butthisisdifficulttoassesswithoutaccurate subjectofdetailedstudy;Guerrero&Miranda2012).Thisdata C/OandN/Oratios(DeMarco2009).We,therefore,constructed wouldalsoindicatewhetherthestructuresintheNorthwestand aphotoionisationmodelofthenebulatoprovideanestimateof Southeasternpartsofthenebulaareakintothejets/outflowsseen theseratiosandtestthevalidityofthisscenario.Unfortunately, in other binary PNe, and if so whether they were formed con- asclearlyshownbytheimageryinFig.1,thenebulaisfarfrom temporaneouslyto the central regionor before – a strong indi- homogenous and this is borne out in the results of our mod- cation of a phase of pre-CE mass transfer (Boffinetal. 2012b; elling. These inhomogeneities are present throughout the neb- Corradietal.2011;Miszalskietal.2013a). ula not only in density but also in temperature and chemistry, meaningthatthederivedestimatesforC/OandN/Ointheneb- Finally, it is worthwhile to note that Hen 2-11 has been ulaarehighlyuncertain(N/Oparticularlyso,giventhediscrep- observed with the Chandra X-ray Observatory as part of the Chandra Planetary Nebulae Survey (ChanPlaNS; Kastneretal. ancybetweenobservedandmodelledtemperature)meaningthat 2012),and,assuch,representsanimportanttestcaseofaclose thetruevaluesmayindeedbegreater.However,inspiteofthis binarycentralstarinthelocalsample. uncertainty,it remains clear that the nebula is both carbonand nitrogenpoor,consistentwithabinarypartnercuttingshortthe AGBevolutionofthenebularprogenitor. Acknowledgements. Wethanktheanonymousrefereefortheircommentswhich helpedtoimprovetheclarityofthemanuscript. Therecentspateofdiscoveries,ofshortperiodCSPNewith Based on observations made with ESO Telescopes at the La Silla main sequence secondaries (this work; Miszalskietal. 2011b; Paranal Observatory under programme IDs088.D-0573 and 090.D-0693, and the Southern African Large Telescope (SALT) under programme 2012-2- Corradietal.2011),furtherhighlightsthediscrepancybetween RSA-002. This work was co-funded under the Marie Curie Actions of the the observed post-CE period distribution and that predicted by EuropeanCommission(FP7-COFUND).ThisresearchhasmadeuseofNASA’s population synthesis models (even when accounting for obser- AstrophysicsDataSystemBibliographic Services.Thisresearchhasmadeuse vationalbiases, deMarcoetal. 2008; Rebassa-Mansergasetal. oftheSIMBADdatabase,operatedatCDS,Strasbourg,France. 2008;Miszalskietal.2009a).Knowledgeofallsystemparame- ters(onlypossiblethroughradialvelocitystudy)iskeyinfurther constrainingthedownfallsofthesepopulationsynthesismodels. References Morphologically, Hen 2-11 appears remarkably similar to Acker, A., Marcout, J., Ochsenbein, F., et al. 1992, The Strasbourg-ESO twootherPNeproventohostpost-CEcentralstars,NGC6326 CatalogueofGalacticPlanetaryNebulae.PartsI,II. Afs¸ar,M.&Ibanogˇlu,C.2008,MNRAS,391,802 and NGC 6778. However, in spite of the fact that their cen- Bertin,E.&Arnouts,S.1996,A&AS,117,393 tral binaries have shorter periods (0.372 and 0.1534 d, respec- Boffin,H.M.J.,Miszalski,B.,&Jones,D.2012a,A&A,545,A146 tively), that of Hen 2-11 shows a much more pronounced re- Boffin,H.M.J.,Miszalski,B.,Rauch,T.,etal.2012b,Science,338,773 flection effect. The strength of this effect depends on several Boyajian,T.S.,vonBraun,K.,vanBelle,G.,etal.2012,ApJ,757,112 Buckley, D. A. H., Burgh, E. B., Cottrell, P. L., et al. 2006, in Society of factorsincludinginclination,temperatureandmassratio.Inthe Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. caseofNGC6778(theshortestperiodofthethree),inclination 6269,SocietyofPhoto-OpticalInstrumentationEngineers(SPIE)Conference wouldnotseem to be an adequateexplanationgivenits eclips- Series ing nature and the measured inclination of the nebula (∼78◦; Burgh, E. B., Nordsieck, K. H., Kobulnicky, H. A., et al. 2003, in Society Guerrero&Miranda 2012). Therefore the difference in ampli- ofPhoto-Optical InstrumentationEngineers(SPIE)ConferenceSeries,Vol. 4841,SocietyofPhoto-OpticalInstrumentationEngineers(SPIE)Conference tude could be attributed to a combination of NGC 6778 host- Series,ed.M.Iye&A.F.M.Moorwood,1463–1471 ing a colder white dwarf and a difference in mass ratio be- Buzzoni,B.,Delabre,B.,Dekker,H.,etal.1984,TheMessenger,38,9 tween the two systems. The difference in mass ratio is dif- Ciardullo,R.,Bond,H.E.,Sipior,M.S.,etal.1999,AJ,118,488 ficult to assess without detailed modelling of the central bi- Corradi,R.L.M.,Sabin,L.,Miszalski,B.,etal.2011,MNRAS,410,1349 Crawford,S.M.,Still,M.,Schellart,P.,etal.2010,inSocietyofPhoto-Optical nary of NGC 6778 (however it is estimated to be around 0.5; Instrumentation Engineers(SPIE)ConferenceSeries,Vol.7737,Societyof Guerrero&Miranda 2012), but a colder central star is clearly Photo-OpticalInstrumentationEngineers(SPIE)ConferenceSeries feasiblegiventhatHen2-11isroughlyatthehottestpointofits DeMarco,O.2009,PASP,121,316 evolution (Fig. 3) and the age difference between the systems deMarco,O.,Hillwig,T.C.,&Smith,A.J.2008,AJ,136,323 implies NGC 6778 should be yet to reach that point (around Dhillon, V.S.,Privett, G.J.,&Duffey,K.P.2001, Starlink UserNote167.6 (RutherfordAppletonLaboratory) 2000 yearsc.f. 7000 yearsfor Hen 2-11;Guerrero&Miranda Ducati,J.R.,Bevilacqua,C.M.,Rembold,S.B.,&Ribeiro,D.2001,ApJ,558, 2012). This hypothesis is further supported by the tempera- 309 tures of the central stars, where that of Hen 2-11 is found to Epchtein,N.,Deul,E.,Derriere,S.,etal.1999,A&A,349,236 be ∼108000 K (using our measured He ii/Hβ dereddened flux Ercolano, B.,Barlow, M.J.,Storey, P.J.,&Liu,X.-W.2003,MNRAS,340, 1136 ratio and the relation of Kaler&Jacoby 1989, and in reason- Go´rny, S. K., Schwarz, H. E., Corradi, R. L. M., & Van Winckel, H. 1999, ableagreementwiththeprimarytemperaturein ourbestfitting A&AS,136,145 lightcurvemodel)c.f.∼50000KforNGC6778(derivedusinga Guerrero,M.A.&Miranda,L.F.2012,A&A,539,47 8 D.Jonesetal.:Thepost-CEbinarycentralstarofPNHen2-11 Gutie´rrez-Moreno,A.,Anguita,C.,Loyola,P.,&Moreno,H.1999,PASP,111, 1163 Henize,K.G.1967,ApJS,14,125 Howarth,I.D.1983,MNRAS,203,301 Jones,D.2011,PhDthesis,JodrellBankCentreforAstrophysics,Universityof Manchester,UK Jones,D.,Lloyd,M.,Santander-Garc´ıa,M.,etal.2010,MNRAS,408,2312 Jones,D.,Mitchell,D.L.,Lloyd,M.,etal.2012,MNRAS,420,2261 Jones, D., Tyndall, A. A., Huckvale, L., Prouse, B., & Lloyd, M. 2011, in AstronomicalSocietyofthePacificConferenceSeries,Vol.447,Evolution ofCompactBinaries,ed.L.Schmidtobreick,M.R.Schreiber,&C.Tappert, 165 Kaler,J.B.1989,Starsandtheirspectra.anintroduction tospectralsequence (CambridgeUniversityPress) Kaler,J.B.&Jacoby,G.H.1989,ApJ,345,871 Kastner,J.H.,Montez,Jr.,R.,Balick,B.,etal.2012,AJ,144,58 Kingsburgh,R.L.&Barlow,M.J.1994,MNRAS,271,257 Kobulnicky, H. A., Nordsieck, K. H., Burgh, E. B., et al. 2003, in Society ofPhoto-Optical InstrumentationEngineers(SPIE)ConferenceSeries,Vol. 4841,SocietyofPhoto-OpticalInstrumentationEngineers(SPIE)Conference Series,ed.M.Iye&A.F.M.Moorwood,1634–1644 Kurtz,M.J.&Mink,D.J.1998,PASP,110,934 Kurucz,R.L.1993,VizieROnlineDataCatalog,6039,0 Miszalski, B.,Acker,A.,Moffat,A.F.J.,Parker,Q.A.,&Udalski,A.2008, A&A,488,L79 Miszalski,B.,Acker,A.,Moffat,A.F.J.,Parker,Q.A.,&Udalski,A.2009a, A&A,496,813 Miszalski,B.,Acker,A.,Parker,Q.A.,&Moffat,A.F.J.2009b,A&A,505, 249 Miszalski,B.,Boffin,H.M.J.,&Corradi,R.L.M.2013a,MNRAS,428,L39 Miszalski,B.,Boffin,H.M.J.,Jones,D.,etal.2013b,MNRAS,inpress Miszalski,B.,Corradi,R.L.M.,Boffin,H.M.J.,etal.2011a,MNRAS,413, 1264 Miszalski,B.,Jones,D.,Rodr´ıguez-Gil,P.,etal.2011b,A&A,531,A158 O’Donoghue,D.,Buckley,D.A.H.,Balona,L.A.,etal.2006,MNRAS,372, 151 Peimbert, M. 1978, in IAU Symposium, Vol. 76, Planetary Nebulae, ed. Y.Terzian,215–223 Pollacco,D.&Bell,S.A.1993,MNRAS,262,377 Pollacco,D.&Bell,S.A.1994,MNRAS,267,452 Preite-Martinez,A.&Pottasch,S.R.1983,A&A,126,31 Rebassa-Mansergas,A.,Ga¨nsicke,B.T.,Schreiber,M.R.,etal.2008,MNRAS, 390,1635 Shaw,R.A.&Kaler,J.B.1989,ApJS,69,495 Snodgrass,C.,Saviane, I.,Monaco, L.,&Sinclaire, P.2008, TheMessenger, 132,18 Stanghellini,L.,Shaw,R.A.,&Villaver,E.2008,ApJ,689,194 Tocknell,J.,DeMarco,O.,&Wardle,M.2013,ArXive-prints Tyndall,A.A.,Jones,D.,Boffin,H.M.J.,etal.2013,MNRAS,436,2082 Tyndall, A. A., Jones, D., Lloyd, M., O’Brien, T. J., & Pollacco, D. 2012, MNRAS,422,1804 vanDokkum,P.G.2001,PASP,113,1420 Vassiliadis,E.&Wood,P.R.1994,ApJS,92,125 Wesson,R.,Stock,D.J.,&Scicluna,P.2012,MNRAS,422,3516 Zhang,Y.,Liu,X.-W.,Wesson,R.,etal.2004,MNRAS,351,935 9