Astronomy&Astrophysicsmanuscriptno.0931 (cid:13)c ESO2009 January21,2009 The population of barred galaxies in the local universe I. Detection and characterisation of bars J.A.L.Aguerri1,J.Me´ndez-Abreu2,3,4,andE.M.Corsini4 9 0 1 InstitutodeAstrof´ısicadeCanarias,C/V´ıaLa´cteas/n,E-38200LaLaguna,Spain 0 e-mail:[email protected] 2 2 INAF-OsservatorioAstronomicodiPadova,vicolodell’Osservatorio5,I-35122Padova,Italy n e-mail:[email protected] a 3 UniversidaddeLaLaguna,Av.Astrof´ısicoFranciscoSa´nchezs/n,E-38206LaLaguna,Spain J 4 DipartimentodiAstronomia,Universita`diPadova,vicolodell’Osservatorio3,I-35122Padova,Italy e-mail:[email protected] 5 1 Received;accepted ] A ABSTRACT G Context.Barsareverycommoninthecentreofthediscgalaxies,andtheydrivetheevolutionoftheirstructure.Thestate-of-the-art . imagingandredshiftsurveysofgalaxiesallowustostudytherelationshipsbetweenthepropertiesofthebarsandthoseoftheirhosts h instatisticallysignificantsamples. p Aims.Avolume-limitedsampleof2106discgalaxieswasstudiedtoderivethebarfraction,length,andstrengthasafunctionofthe - morphology,size,localgalaxydensity,lightconcentration,andcolourofthehostgalaxy.Thesamplegalaxieswereselectedtonot o bestronglydisturbed/interacting. r t Methods.Thebarandgalaxypropertieswereobtainedbyanalysingther−bandimagesofthesamplegalaxiesavailableintheSloan s DigitalSkySurveyDataRelease5. a [ Results.ThebarsweredetectedusingtheellipsefittingmethodandFourieranalysismethod.Theyweretestedandcalibratedwith extensivesimulationsonartificialimages.Theellipsefittingmethodwasfoundtobemoreefficientindetectingbarsinspiralgalaxies. 1 Thefractionofbarredgalaxiesturnedouttobe45%.Abarwasfoundin29%ofthelenticulargalaxies,in55%and54%oftheearly- v andlate-typespirals,respectively.Thebarlength(normalisedbythegalaxysize)oflate-typespiralsisshorterthaninearly-typeor 6 lenticularones.Acorrelationbetweenthebarlengthandgalaxysizewasfoundwithlongerbarshostedbylargergalaxies.Thebars 4 ofthelenticulargalaxiesareweakerthanthoseinspirals.Moreover,theunimodal distributionofthebarstrengthfoundforallthe 3 galaxytypesarguesagainstaquicktransitionbetweenthebarredandunbarredstatues.Thereisnodifferencebetweenthelocalgalaxy 2 densityofbarredandunbarredgalaxies.Besides,neitherthelengthnorstrengthofthebarsarecorrelatedwiththelocaldensityof . thegalaxyneighbourhoods.Incontrast,astatisticalsignificantdifferencebetweenthecentrallightconcentrationandcolourofbarred 1 andunbarredgalaxieswasfound.Barsaremostlylocatedinlessconcentratedandbluergalaxies. 0 Conclusions.Theseresultsindicatethatthepropertiesofbarsarestronglyrelatedtothoseoftheirhostgalaxies,butdonotdepend 9 onthelocalenvironment. 0 : Keywords.galaxies:evolution—galaxies:fundamentalparameters—galaxies:spiral—galaxies:structure—galaxies:statistics v i X r 1. Introduction Barazzaetal.,2008),althoughtherearesomeclaimsthatthisis a notthecase(Shethetal.,2008). Strongbarsareobservedinopticalimagesofroughlyhalfofall thenearbydiscgalaxies(Marinova&Jogee,2007;Reeseetal., 2007; Barazzaetal., 2008). This fraction rises to about The presence of bars in the centre of lenticular and spiral 70% when near-infrared images are analysed (Knapenetal., galaxies make them ideal probes of the dynamics of the cen- 2000; Eskridgeetal., 2000; Mene´ndez-Delmestreetal., 2007). tral regions of discs. In fact, bars are efficient agents of angu- The presence of a bar can be found by visual inspection lar momentum, energy, and mass redistribution. They act on (e.g., deVaucouleursetal., 1991, hereafterRC3), by analysing both luminous and dark matter components (Weinberg, 1985; the shape and orientation of the galaxy isophotes (e.g., Debattista&Sellwood, 1998, 2000; Athanassoula, 2003) driv- Wozniaketal., 1995; Laineetal., 2002; Marinova&Jogee, ing the evolution of galaxy structure and morphology. In par- 2007; Barazzaetal., 2008), or by studying the Fourier ticular, the amount of angular momentum exchanged is re- modes of the light distribution (e.g., Ohtaetal., 1990; lated to specific properties of the galaxies, such as the bar Elmegreen&Elmegreen, 1985; Aguerrietal., 1998, 2000a). mass,halodensity,andhalovelocitydispersion(Athanassoula, Therefore, bars are a common feature in the central regions 2003;Sellwood,2006;Sellwood&Debattista,2006)Moreover, of disc galaxies of the local universe. But, this is also true at they funnel material towards the galaxy centre building bulge- high redshift. In fact, the bar fraction apparently remains con- like structures (e.g., Kormendy&Kennicutt, 2004), nuclear stant out to z ≈ 1 (Jogeeetal., 2004; Elmegreenetal., 2004; star-forming rings (e.g., Butaetal., 2003), and nuclear bars (e.g., Erwin, 2004), and feeding the central black hole (e.g., Sendoffprintrequeststo:J.A.L.Aguerri Shlosmanetal.,2000). 2 Aguerri,Me´ndez-Abreu,andCorsini:Detectionandcharacterisationbarsinthelocaluniverse Bars play an important role in bulge formation. Major The pattern speed of bars can be indirectly estimated by mergers or monolithic collapse are the classical theories for identifying rings with the location of the Lindblad resonances bulge formation in disc galaxies (e.g., Eggenetal., 1962; (e.g., VegaBeltra´netal., 1997; Jeongetal., 2007), matching Kormendy&Kennicutt, 2004). But bulgescan be built via mi- the observed velocity and density fields with numerical mod- nor mergers (Aguerrietal., 2001a; Eliche-Moraletal., 2006) els of the gas flows (e.g., Lindbladetal., 1996; Aguerrietal., or secular evolution processes produced by bars. In fact, 2001b; Weineretal., 2001; Rautiainenetal., 2008), analysing according with the results of N-body simulations, the in- the offset and shape of the dust lanes, which trace the lo- ner parts of a bar inflate after a few bar rotations be- cation of shocks in the gas flows (e.g., Athanassoula, 1992), cause of large-scale violent bending instabilities and set- looking for colour changes (Aguerrietal., 2000a) and min- tle with an increased thickness and vertical velocity dis- ima in the star formation(Cepa&Beckman, 1990) outside the persion (e.g., Combes&Sanders, 1981; Combesetal., 1990; barregion,orbyadoptingtheTremaine-Weinbergmethod(see Rahaetal., 1991; Athanassoula, 2003; Debattistaetal., 2004; Corsini, 2008, for a review). The last is a model-independent Athanassoula, 2005; Martinez-Valpuestaetal., 2006). This waytomeasurethepatternspeed(Tremaine&Weinberg,1984), leads to the establishment of the connection between the whichwassuccessfullyappliedtosingle(Merrifield&Kuijken, bar-buckling mechanism and the formation of boxy/peanut 1995; Debattistaetal., 2002; Aguerrietal., 2003), double bulges (Bureau&Athanassoula, 1999; Bureau&Freeman, (Corsinietal., 2003) and dwarf barred galaxies (Corsinietal., 1999; Chung&Bureau, 2004). The buckling instability does 2007) too. Observed pattern speeds imply that barred galax- not destroy the bar and forms a central stellar condensation ies host maximal discs (Debattista&Sellwood, 1998, 2000), reminiscent of the bulges of late-type spirals (Debattistaetal., since bars in dense dark matter halos are rapidly deceler- 2004; Athanassoula, 2005), in agreement with early find- ated by dynamical friction (Weinberg, 1985; Sellwood, 2006; ings by Hohl (1971). Observational evidences of secu- Sellwood&Debattista,2006). lar bulge formation includes the near-exponential surface Nowadays, the large galaxy surveys, such as the Sloan brightness profiles of some bulges (Andredakisetal., 1995; DigitalSkySurvey(Yorketal.,2000,hereafterSDSS)allowus Courteauetal., 1996; deJong, 1996; Carolloetal., 2001; to study the bar properties in samples of thousands of galax- Prietoetal., 2001;MacArthuretal.,2003;Aguerrietal.,2005; ies,obtainingforthefirsttimestatisticallysignificantresults.By Me´ndez-Abreuetal., 2008a; Fisher&Drory, 2008), a corre- studyingavolume-limitedsampleof∼3000galaxiesinthelocal lation between bulge and disc scale length (MacArthuretal., universeextractedfromtheSDSS,weplantoaddressthreemain 2003; Aguerrietal., 2005; Me´ndez-Abreuetal., 2008a), the issues:thefirstistoassess,bymeansofextensivetestsonsim- similar colours of bulges and inner discs (Peletier&Balcells, ulatedgalaxies,the advantagesanddrawbacksofthetwo more 1996;Courteauetal.,1996;Carolloetal.,2007),substantialro- commonmethodsuseddetectingbars:theellipsefittingandthe tation(Kormendy&Kennicutt,2004),andthepresenceofB/P- Fourieranalysis.Thesecondistoinvestigatethepossiblediffer- shaped bulges in ≈ 45% of edge-on galaxies (Lu¨ttickeetal., encesofthebarfractionandbarproperties(lengthandstrength) 2000). Recently, the connection between B/P-shaped bulges with the morphologicaltype, ranging from S0 to late-type spi- and bars has also been confirmed in face-on barred galaxies rals. The third is to understand how the properties of the host (Me´ndez-Abreuetal.,2008c). galaxiesaffectstheformationofthebaranditsproperties. The most important parameters of bars are the length, Thepaperisorganisedasfollows.Thegalaxysampleispre- strength,and patternspeed. Their evolutiondependson the ef- sented in Sect. 2; the methodswe adoptedto detectthe barsin fectiveness of the angular momentum exchangebetween lumi- thesamplegalaxiesareexplainedinSect.3;theyaretestedusing nousanddarkmatter.Differentmethodshavebeenproposedto artificialgalaxyimagesinSect.4;thefractionofbarsaregiven measurebarproperties. inSect.5;thebarsproperties(length,andstrength)arereported The bar length can be obtained by eye estimates on galaxy in Sect. 6 and compared to galaxy properties in Sect. 7; con- images (Kormendy, 1979; Martin, 1995), locating the maxi- clusionsaregiveninSect.8.Throughoutthispaperweassume mum ellipticity of the galaxy isophotes (Wozniaketal., 1995; H0=100kms−1Mpc−1. Laineetal., 2002;Marinova&Jogee, 2007),lookingforvaria- tionsof the isophotalpositionangle (Shethetal., 2003; Erwin, 2. Sampleselectionanddatareduction 2005) or of the phase angle of the Fourier modes of the galaxy light distribution (Quillenetal., 1994; Aguerrietal., The sample galaxies were selected in the spectroscopic 2003),analysingthebar-interbarcontrast(Aguerrietal.,2000a, catalogue of the SDSS Data Release 5 (SDSS-DR5, 2003), or by photometric decomposition of the surface Adelman-McCarthyetal., 2007). From the ∼675,000 galaxies brightnessdistribution (Prietoetal., 1997; Aguerrietal., 2005; availableinthecatalogue,wetookallthegalaxiesintheredshift Laurikainenetal.,2005).Theprevioustechniquesreportedthat range 0.01 < z < 0.04 and down to an absolute magnitude the typical bar length is about 3-4 kpc, and is correlated with M < −20 (≈ M∗, Blantonetal., 2005). This represents a r r the disc scale, suggesting that the two components are affect- volume-limited sample, because the apparent magnitude of a ing each other (Aguerrietal., 2005; Marinova&Jogee, 2007; galaxywithM =−20atz=0.04(m ∼15.5)iswithinthecom- r r Laurikainenetal.,2007). pleteness limit (m = 17.77) of the SDSS-DR5 spectroscopic r Thebarstrengthcanbederivedbymeasuringthebartorques catalogue. (Buta&Block, 2001), isophotal ellipticity (Martinet&Friedli, In order to deal with projection effects, we restricted our 1997; Aguerri, 1999; Whyteetal., 2002; Marinova&Jogee, sampletogalaxieswithb/a>0.5,aandbbeingthesemi-major 2007), the maximum amplitude of the m = 2 Fourier mode and semi-minor axis lengths of the galaxies. For disc galaxies, (Athanassoula&Misiriotis, 2002; Laurikainenetal., 2005), or this is equivalent to say that we have selected objects with in- integratingthem=2Fouriermodeinthebarregion(Ohtaetal., clination i < 60◦. Although the cut in the observed axial ratio 1990; Aguerrietal., 2000a). The bar strength is almost con- of the sample galaxies introducesa bias in the selection of the stantwithHubbletype(Marinova&Jogee,2007),butlenticular ellipticalones,thiswillnotaffectthe resultsof thepapersince galaxieshostweakerbarsthanspirals(Laurikainenetal.,2007). weareinterestedonlyinthepropertiesofdiscgalaxies. Aguerri,Me´ndez-Abreu,andCorsini:Detectionandcharacterisationbarsinthelocaluniverse 3 Then,werejectedallgalaxieswithcloseneighbours.Tothis Table 1. Median values of the light concentration and central aim,weexcludedallthegalaxieswithacompanionwhichwas velocitydispersionforthedifferentgalaxytypes. closer than 2 × r , where r is defined as the radius which 90 90 contains90%ofthetotalgalaxylight.Inaddition,thecompan- GalaxyType C σ ion must be within ± 3 magnitudes with respect to the magni- (km0s−1) tude of the target galaxy to be excluded. In this way, galaxies with faint companions or possibly contaminated by faint fore- E 3.18±0.15 242±40 ground/backgroundobjects are not discarded in our study. The S0 3.10±0.31 209±43 S0/a-Sb 2.53±0.50 149±34 resultingsampleconsistedof3060galaxies. Sbc-Sm 2.10±0.24 126±27 According to Marinova&Jogee (2007) the bar length of barred galaxies in the local universe ranges between about 0.5 and5kpc,withameanvalue∼3.5kpc.Atz=0.04theshortest Table2.ComparisonbetweenourandRC3classification. barlength(r =0.5kpc)projectsonto2.17pixel(0′.′86)inthe bar SDSSimages,whichhaveascaleof0′.′3946arcsecpixel−1.The S0(our) Early-typespirals(our) Late-typespirals(our) PSF of the SDSS images can be modelled assuming a Moffat E(RC3) 0.16 0.01 0.01 function (see e.g. Trujilloetal., 2001). We fit a bidimensional S0(RC3) 0.53 0.05 0.03 Moffatfunctionoftheform S0/a-Sb(RC3) 0.26 0.67 0.37 Sbc-Sm(RC3) 0.05 0.27 0.59 β−1 r2 −β PSF(r)= 1+ , (1) πα2 α whereC′ andσ′ arethemedianvaluesofC andσ reportedin (cid:18) (cid:19) 0 0 Table1. to severalstars in each galaxyfield obtaininga typicalFWHM Galaxies, for which only the light concentrationwas avail- andβparameterof1′.′09(2.77pixel)and3.05,respectively.This able, were assigned to the morphologicalbin correspondingto means that the bars with a length of 0.5 kpc are not resolved. theclosestmedianvalueofC. According to the tests on artificial galaxies we performed (see We found that 26%, 29%, 20%, and 25% of the selected Sect.4),thesmallestbarsthatweareabletorecoverintheSDSS galaxiesturnedtobeellipticals,lenticulars,early-typeandlate- imageshavealengthof∼9pixel.Thiscorrespondsto∼0.5kpc typespirals,respectively.Inthiswork,wefocusedonthe2166 at z = 0.01 and ∼ 2 kpc at z = 0.04. Therefore, a value of 2 disc galaxies which include the lenticulars and the early-type kpc is a more reliable limit on the actual resolution of the bar and late-type spirals. This represents our final sample. Among lengththroughouttherangeofdistancescoveredbyoursample thediscgalaxies39%,28%,and33%wereclassifiedaslenticu- galaxies. lars,early-typeandlate-typespirals,respectively.Table2shows The visual morphological classification given by the RC3 the comparison between the RC3 morphological classification was availableonly fora subsampleof 612galaxies.Automatic andourautomaticclassificationforthesamplegalaxieslistedin galaxy morphological classifications divide galaxies according RC3. It lists the fraction of elliptical, S0, S0/a-Sb and Sbc-Sm to some photometric observables. In particular, the light con- galaxiesas classified by RC3 amongthe galaxieswe classified centration is strongly correlated with the Hubble type (e.g., aslenticular,early-andlate-typespirals.Itisworthnoticingthat Abrahametal., 1996; Conseliceetal., 2000; Conselice, 2003). for all the disc galaxies more than 50% of the objects are as- In fact, it is greater in early- than in late-type galaxies. We de- signedtothesamemorphologicalbinbyboththeRC3 andour fined the light concentrationas C = r /r , where r and r 90 50 50 90 automatic classification. The better agreement is shown by the are the radii enclosing 50% and 90% of the total galaxy light, early-type spiral galaxies. Nevertheless, the contamination be- respectively.TheseradiiareavailableintheSDSSdatabasefor tweenthedifferentclassescouldbestrong. allobjectsofoursample.WecalculatedthemedianvaluesofC The r−band image of each galaxy was retrieved from the for the ellipticals (T ≤ −4), lenticulars(−3 ≤ T ≤ −1), early- SDSSarchive.Alltheimageswerebiassubtracted,flat-fieldcor- type spirals (0 ≤ T ≤ 3), and late-type spirals (T ≥ 4) of the rected,andskysubtractedaccordingtotheassociatedcalibration RC3subsample.TheyaregiveninTable1andshowninFig.1. informationstoredintheDataArchiveServer(DAS). Althoughthedispersionofthedataislarge,themedianvalueof thelightconcentrationdecreaseswithincreasingHubbletype. If the light traces mass, then we expect a relation between 3. Methodsfordetectingandanalysingbars the mass concentration and morphological type too. The cen- tralmassconcentrationofagalaxycanbetracedbythecentral Three main methods have been proposed for detecting bars velocitydispersionσ .Thiswasavailablein theSDSSfor298 and analysing their properties (see for a review Erwin, 2005; 0 ofthesamplegalaxieslistedinRC3.Wecalculatedthemedian Michel-Dansac&Wozniak, 2006). They are based on the valuesof σ for the differentHubble types, and they are given ellipse fit of the galaxy isophotes (Wozniaketal., 1995; 0 inTable1andshowninFig.1.Themedianvelocitydispersion Knapenetal., 2000; Laineetal., 2002; Shethetal., 2003; decreaseswithincreasingHubbletype,too. Elmegreenetal., 2004; Jogeeetal., 2004; Marinova&Jogee, Fig.2showstherelationbetweenC andσ forthosegalax- 2007; Barazzaetal., 2008), Fourier analysis of the az- 0 ies in our sample with both the photometric and kinematic in- imuthal luminosity profile (Elmegreen&Elmegreen, formation.Eachgalaxycanbeassignedtoamorphologicalbin 1985; Ohtaetal., 1990; Aguerrietal., 2000a; Butaetal., accordingto itsvaluesofC andσ . Theywere assignedto the 2006; Laurikainenetal., 2007), and decomposition of the 0 bin with closestmedianvalueslisted in Table 1 byminimizing galaxy surface-brightness distribution (Prietoetal., 2001; thefollowingequation: Aguerrietal.,2005;Laurikainenetal.,2005). In the present work, we have developed a fully automatic method for classifying barred and unbarred galaxies using the d = (C−C′)2+(log(σ0)−log(σ′0))2, (2) ellipse fitting (Sect. 3.1) and Fourier analysis (Sect. 3.2). This q 4 Aguerri,Me´ndez-Abreu,andCorsini:Detectionandcharacterisationbarsinthelocaluniverse 3.1.Ellipsefittingmethod This method is based on the fit of the galaxy isophotes by el- lipses. As a first step, each image was cleaned of field stars and galaxies.Thiswasdonebyrotatingtheimageby180◦ withre- specttothegalaxycentre.Then,wesubtracttherotatedframeto theoriginalone.Theresidualimagewassigma-clippedtoiden- tifyallthepixelswithanumberofcountslowerthan1σ,where σisthermsoftheimagebackgroundafterskysubtractionand calculatedin regionsfreeofsourcesandfarfromthegalaxyto avoidcontamination.Thevalueofthedeviantpixelswassetto zero. Finally, the clipped image was subtracted to the original onetogetthecleanedandsymmetrizedimagetobeusedinthe analysis. The ellipses were fitted to the isophotesof the cleaned and symmetrizedimagesofthe2166discgalaxiesusingtheIRAF1 Fig.1.Valuesof the lightconcentrationC (toppanel)andcen- task ELLIPSE (Jedrzejewski, 1987). In order to get a good fit tral velocity dispersion σ (bottom panel) as a function of the at all radii out to an intensity level correspondingto the back- 0 morphological parameter T. Only the sample galaxies in RC3 ground rms, we implemented the fitting method described by areplotted.MedianvaluesofCandσ forellipticals(diamond), Jogeeetal. (2004)andMarinova&Jogee(2007). Thisisan it- 0 lenticulars(asterisk),early-typespirals (triangle),and late-type erativewrappedprocedure,whichrunstheellipsefittingseveral spirals(square)areshown. timeschangingthetrialvaluesateachfititeration.Ateachfixed semi-majoraxis length,the coordinatesof the centreof the fit- ting ellipse were kept fixed and corresponded to those of the galaxycentre.Thiswasidentifiedwiththepositionoftheinten- sitypeak.Thetrialvaluesfortheellipticityǫ andpositionangle PA were randomlychosen between 0 and 1 and between −90◦ and90◦,respectively.Thefittingprocedurestoppedwheneither theconvergencewasreachedorafter100iterations.Theellipse fit failed for a small fraction (60/2166)of the sample galaxies. For all the galaxieswith properlyfitted isophotes,we obtained theradialprofilesofǫ andPAofthefittedellipses. Theellipticityradialprofileinabrightandinclinedunbarred galaxy usually shows a global increase from low values in the centre to a constant value at large radii. At large radii the PA radial profile is constant too. The constant values of ǫ and PA (on large radial scales) are related to the inclination and orien- tationoftheline ofnodesofthe galacticdisc. Onthecontrary, barredgalaxiesarecharacterisedbythepresenceofalocalmaxi- mumintheellipticityradialprofileandconstantPAinthebarre- gion(seee.g.,Wozniaketal.,1995;Aguerrietal.,2000b).This Fig.2. Values of the light concentration C and central veloc- isduetotheshapeandorientationofthestellarorbitsofthebar ity dispersion σ for the sample galaxies with σ available in 0 0 (seeContopoulos&Grosbol,1989;Athanassoula,1992). SDSS-DR5.Theyarecolourcodedaccordingtoourmorpholog- Thisallowedustoidentifybarsbyanalysingtheradialpro- icalclassification:thered,magenta,green,andbluedotscorre- filesofǫ andPA.Weconsideredthatagalaxyhostsabarwhen: spondtotheellipticals,lenticulars,early-typeandlate-typespi- (1)theellipticityradialprofileshowsasignificantincreasefol- rals, respectively. Median values for the ellipticals (diamond), lowed by a significant decrease (∆ǫ ≥ 0.08), and (2) the PA lenticulars(asterisk),early-typespirals (triangle),and late-type of the fitted ellipses is roughly constant within the bar region spirals (square) plotted in Fig. 1 are also shown. The full lines (∆PA≤20◦)2. represent the locus of equal distance between different galaxy The values adopted for ∆ǫ and ∆PA were determined morphologicaltypes. by applying the method to artificial galaxies (see Sect. 4.2). The bar length was derived as the radius rǫ at which the bar maximum ellipticity was reached (e.g., Wozniaketal., 1995; automaticprocedurehasseveraladvantageswith respectto the Laineetal., 2002; Marinova&Jogee, 2007) or as the radius user-dependentvisualclassifications.In fact, itis reproducible, rPA at which the PA changes by 5◦ with respect to the value bar it can be implemented and applied to large data sets. We first corresponding to the maximum ellipticity (e.g, Wozniaketal., testeditbymeansofextensivesimulationsonalargesetofarti- ficialdiscgalaxies(Sect.4)andthenweappliedittotheimages 1 IRAFisdistributed by NOAO, which isoperated by AURA Inc., ofthesamplegalaxies.Inaforthcomingpaperwewillobtainthe undercontractwiththeNationalScienceFoundation. structuralparametersforthebulge,disc,andbarofallthesam- 2 Wehaveconsideredthataglobalmaximumintheellipticityprofile ple galaxies by applying a photometric decomposition of their isproducedbyabarwhenitislocatedatmorethan3.5pixelsfromthe surface-brightnessdistributionbasedonthetechniquedeveloped galaxycentre.Thisradialdistancecorrespondtomorethan3timesthe byMe´ndez-Abreu(2008b). FWHM/2oftheimages. Aguerri,Me´ndez-Abreu,andCorsini:Detectionandcharacterisationbarsinthelocaluniverse 5 1995; Shethetal., 2003; Erwin&Sparke, 2003; Erwin, 2005; 4. Testonartificialgalaxies Michel-Dansac&Wozniak,2006). 4.1.Structuralparametersoftheartificialgalaxies Thismethodhasbeenalreadysuccessfullyappliedbydiffer- ent authors both in the optical and near-infrared wavebands to Extensive simulations on a large set of artificial disc galaxies detectbarsingalaxiesatlow(Knapenetal.,2000;Laineetal., werecarriedouttotestthereliabilityandaccuracyoftheellipse 2002; Marinova&Jogee, 2007) and high redshift (Jogeeetal., fitting (Sect. 3.1) and Fourier analysis (Sect. 3.2) in detecting 2004;Elmegreenetal.,2004;Shethetal.,2008). bars.Moreover,theywereusedtofinetunethefreeparameters of the two methods, i.e., ∆ǫ and ∆PA in the ellipse fitting, and ∆(I /I )and∆φ intheFourieranalysis.Thesurface-brightness 3.2.Fourieranalysismethod 2 0 2 distributionoftheartificialgalaxieswasassumedtobethesum An alternative way to detect and characterise bars is with a of the contributions of three structural components: a bulge, a Fourieranalysisoftheazimuthalluminosityprofile(Ohtaetal., disc, and a bar (e.g., Prietoetal., 2001; Aguerrietal., 2003, 1990; Elmegreen&Elmegreen, 1985; Aguerrietal., 2000a). 2005;Laurikainenetal.,2005).Thesurface-brightnessdistribu- The method starts by deprojecting the image of each sample tionofeachindividualcomponentwasassumedtofollowapara- galaxybyaflux-conservingstretchalongtheminoraxisbythe metric law, which has to be strictly consideredas an empirical factor 1/cosi, where i is the galaxy inclination. Therefore, we fittingfunction. neededagoodestimationoftheinclinationandmajor-axisPAof The Se´rsic law (Se´rsic, 1968) was assumed for the radial thegalaxy.TheywerederivedfromtheellipticityandPAofthe surface-brightnessprofileofthebulge ellipsesfittedtothefiveoutermostisophotes,wherethetotallu- minosityisdominatedbythedisccontribution.Foreachgalaxy, Ibulge(r) = I0,bulge 10−bn(r/re)1/n, (7) theintensityoftheoutermostisophotecorrespondstoavalueof 1σ,whereσisthermsofthesky-subtractedbackgroundofthe wherer ,I ,andnaretheeffective(orhalf-light)radius,the e 0,bulge image. central surface brightness, and the shape parameter describing Thedeprojectedluminosityprofile,I(R,φ),where(R,φ)are thecurvatureoftheprofile,respectively.Thevalueofb iscou- n thepolarcoordinatesinthegalaxyframe,isdecomposedintoa pledtonsothathalfofthetotalfluxisalwayswithinr andcan e Fourierseries beapproximatedasb =0.868n−0.142(Caonetal.,1993).The n A (R) ∞ totalluminosityofthebulgeisgivenby I(R,φ)= 0 + (A (R)cos(mφ)+B (R)sin(mφ)), (3) m m 2 Xm=1 L =2πI (1−ǫ )nr2Γ(2n), (8) wherethecoefficientsaredefinedby bulge 0,bulge bulge e b2n n 1 2π Am(R)= πZ0 I(R,φ)cos(mφ)dφ, (4) wEuhleerregǫabmulgmeaisfuthnectoiobnse.rvedellipticity of the bulgeandΓ is the and The exponential law (Freeman, 1970) was assumed to de- 1 2π scribetheradialsurface-brightnessprofileofthedisc B (R)= I(R,φ)sin(mφ)dφ. (5) m π Z0 Idisc(r)= I0,disce−r/h, (9) TheFourieramplitudeofthem-thcomponentisdefinedas A (R)/2 m=0, wherehandI0,discarethescalelengthandcentralsurfacebright- Im(R)= 0A2(R)+B2(R) m,0. (6) nessofthedisc,respectively.Thetotalluminosityofthediscis ( m m givenby The evepn (m = 2,4,6,...)relative Fourier amplitudes Im/I0 of galaxies with bars are large, while the odd (m = 1,3,5,...) L =2πI (1−ǫ )h2, (10) disc 0,disc disc ones are small. In particular, the bar is evidenced by a strong m = 2 component. Similarly to the ellipse fitting method, we whereǫdiscistheobservedellipticityofthedisc. consideredthatagalaxyhostsabarwhen:(1)them=2relative Several parametric laws have been adopted in literature Fourier component shows a local maximum (∆(I /I ) ≥ 0.2), to describe the surface-brightness distribution of bars. Ferrers 2 0 and (2) the phase angle of the m = 2 mode φ is roughlycon- (Laurikainenetal., 2005), Freeman (Freeman, 1966), and flat 2 stantwithinthebarregion(∆φ ≤ 20◦).Thevaluesadoptedfor bars(Prietoetal.,1997)wereconsideredfortheartificialgalax- 2 ∆(I /I )and∆φ werealsodeterminedbyapplyingthemethod ies. 2 0 2 toartificialgalaxies(seeSect.4.3). The surface-brightness distribution was assumed to be The bar length rFourier was calculated using the bar/interbar axially symmetric with respect to a generalised ellipse bar intensity ratio as in Aguerrietal. (2000a). The bar intensity, (Athanassoulaetal., 1990). When the principal axes of the el- I , is defined as the sum of the even Fourier components, lipsearealignedwiththecoordinateaxes,theradialcoordinate b I + I + I + I , while the inter-bar intensity, I , is given by isdefinedas 0 2 4 6 ib I − I + I − I (Ohtaetal., 1990; Elmegreen&Elmegreen, 0 2 4 6 1985; Aguerrietal., 2000a). Ohtaetal. (1990) arbitrarily de- y c 1/c r= |x|c+ , (11) fiHnoewdevtheer,bAagruleernrgitehtaals.t(h2e00o0uate)rproaidnitueds foourtwthhaitcha Ifibx/eIidb v=alu2e. (cid:12)(cid:12)(1−ǫbar)(cid:12)(cid:12) ! (cid:12) (cid:12) of I /I cannot account for the wide variety of bar luminosi- where ǫ (cid:12)is the ell(cid:12)ipticity and c controls the shape of the b ib bar(cid:12) (cid:12) ties present in galaxies. Instead, they defined the bar length as isophotes. A bar with pure elliptical isophotes has c = 2. It is the FWHM of the curve of I /I . This method was applied c > 2iftheisophotesareboxy,andc < 2iftheyarediscy.The b rmib byAthanassoula&Misiriotis(2002)toanalyticmodelsdemon- parametersǫ andcareassumedtobeconstantasafunctionof bar stratingitsaccuracyinmeasuringthebarlength. radius. 6 Aguerri,Me´ndez-Abreu,andCorsini:Detectionandcharacterisationbarsinthelocaluniverse The radial surface-brightness profile of a Ferrers ellipsoid followingLaurikainenetal.(2005).Theadoptedrangesforthe (Ferrers,1877)isgivenby effective radius of the bulge, scale-length of the disc, and bar length were selected accordingto the values measured for spi- IbFaerrrers(r)= I0,bar 1− rbrar 2 nbar+0.5 r ≤rbar, (12) r(a2l00g3a)l,axMieso¨llbeynhMoffo¨lle(2n0h0o4ff),&LHaeuidritka(i2n0e0n1e),taMl.ac(A20rt0h7u)r,etanald. 0 (cid:18) (cid:16) (cid:17) (cid:19) r >rbar, Me´ndez-Abreuetal.(2008a).Theyare where I0,bar, rbar, and nbar are the central surface brightness, 0.5<re <3kpc, (22) length, and a shape parameter of the bar, respectively. The to- talluminosityisgivenby 1<h<6kpc, (23) ∞ LFbaerrrers =2πI0,barrb4ar r(rb2ar−r2)nbar+0.5dr, (13) and Z0 0.5<r <5kpc, (24) bar where ǫ is the ellipticity of the bar. The simulated bars were bar generated by adopting n = 2 following Laurikainenetal. respectively.Theellipticitiesofthestructuralcomponentswere bar (2005).Inthisparticularcase, thetotalluminosityofthebaris also selected to mimic those measured in real galaxies (e.g, givenby Marinova&Jogee,2007).Theyare Γ(7/2) 0.8<1−ǫbulge <1, (25) LFerrers =πI (1−ǫ )r2 . (14) bar 0,bar bar barΓ(9/2) 0.5<1−ǫ <1, (26) disc Theradialsurface-brightnessprofileofaFreemanbaris and r 2 0.2<1−ǫ <0.7, (27) IFreeman = I 1− , (15) bar bar 0,bars rbar! with whereI andr arethecentralsurfacebrightnessandlength 0,bar bar ǫ <ǫ <ǫ . (28) ofthebar,respectively(Freeman,1966).Thetotalluminosityof bulge disc bar aFreemanbaris Finally,thepositionanglesofthethreecomponentswerese- 2 lectedrandomlybetween0◦ and180◦ toalloweachcomponent LFbarereman = 3π(1−ǫbar)I0,barrb2ar, (16) tobeindependentlyorientedwithrespecttotheothers. In each pixel of the resulting images noise was added to whereǫ istheellipticityofthebar. yield a signal-to-noise ratio (S/N) similar to that of the avail- bar Finally,theradialsurface-brightnessprofileofaflatbaris ableSDSSimages.ItwasgivenbythePoissonnoiseassociated tothephotoncountsduetoboththegalaxyandskybackground 1 Iflat = I , (17) and read-out noise (RON) of the CCD. The pixel scale, CCD bar 0,bar 1+er−rrsbar ! gainandRONwere0′.′3946arcsecpixel−1,4.72e−ADU−1,and 5.52e−,respectively.Theymimictheinstrumentalsetupofthe whereI0,barandrbararethecentralsurfacebrightnessandlength SDSSimages.Inordertoaccountforseeingeffects,theimages of the bar. For radii larger than r the surface-brightnesspro- bar oftheartificialgalaxieswereconvolvedwithaMoffatPSFwith filefallsoffwithascalelengthr (Prietoetal.,1997).Thetotal s FWHM=2.77pixelsandβ=3.05(seeSect.2). luminosityis Theartificialgalaxiesdonotmatchthesamplegalaxiessince we did not account for their redshift distribution. Due to this Lflbaart =−2πI0,bar(1−ǫbar)rs2Li2 −erbar/rs , (18) issue, the fractions given in Tab. 3 and 4 do not represent at whereǫ istheellipticityofthe(cid:16) barand(cid:17) Li isthedilogarithm allestimationsofthe absolutebarfractionlostin realgalaxies. bar 2 However, they are useful to test the efficiency of the two pro- function(alsoknowastheJonquierefunction). posedmethodsfordetectingbars,inordertofinetunetheirfree Wegeneratedasetof8000imagesofartificialgalaxieswith parametersandunderstandpossiblebiasesintheresults.Thear- a Se´rsic bulge and an exponentialdisc. Among these galaxies, tificialgalaxiesweresizedinpixels.Inthisway,theimagesare 2000haveaFerrersbar,2000aFreemanbar,2000aflatbar,and somewhat ‘dimensionless’ and the performances of two meth- 2000donotpossesabar. odscanbeassessedbyconvertingthescalelengthsfrompixelto Theapparentmagnitudesoftheartificialgalaxieswereran- physicalunitsaccordingtothe distanceoftheobjects.Inorder domlychosenintherange to coverthe fullrangeofbarlengthsandredshifts,theshortest 10<mr <16, (19) bars(rbar = 0.5kpc)werescaled assumingaredshiftz = 0.04, whilethelargestones(r =5kpc)wereplacedatz=0.01. bar correspondingtothatofthesamplegalaxies.Toredistributethe totalgalaxyluminosityamongthethreegalaxycomponents,the 4.2.Testingtheellipsefittingmethod bulge-to-totalL /L andbar-to-discL /L luminosityra- bulge tot bar disc tioweretakenintoaccount.Theywereconsideredtobe The ellipse fitting method has two free parameters, ∆ǫ and ∆PA. Laineetal. (2002) adopted ∆ǫ = 0.1 and ∆PA = 20◦, 0<L /L <0.7, (20) bulge tot Marinova&Jogee (2007), Mene´ndez-Delmestreetal. (2007), and andBarazzaetal.(2008)adopted∆ǫ =0.1and∆PA=10◦. Weappliedtheellipsefittingmethodtotheartificialgalaxies 0<L /L <0.3, (21) byadopting∆ǫ =0.1,0.08,0.05and∆PA=10◦,20◦,30◦tofind bar disc Aguerri,Me´ndez-Abreu,andCorsini:Detectionandcharacterisationbarsinthelocaluniverse 7 Table3.Percentageofgalaxiesclassifiedasbarredandunbarred galaxieserroneouslyfoundtobebarredbyapplyingtheellipse fittingmethodtothesampleofartificialgalaxies. ∆PA Barred Unbarred FerrersBars FreemanBars FlatBars ∆ǫ=0.10 10◦ 39 46 22 2 20◦ 53 58 34 3 30◦ 57 63 37 4 ∆ǫ=0.08 10◦ 48 55 30 3 20◦ 62 67 40 5 30◦ 66 71 43 6 ∆ǫ=0.05 Fig.3.Fractionofartificialgalaxiescorrectlyclassifiedasbarred 10◦ 65 70 43 9 vs fraction of bad/spurious bar detections using the ellipse fit- 20◦ 77 81 54 13 ting method with ∆PA=10◦ (asterisks), 20◦ (filled circles), and 30◦ 79 83 57 15 30◦ (squares)and∆ǫ =0.1(blacksymbols),0.08(redsymbols), and0.05(bluesymbols).Thelarge,medium,andsmallsymbols correspondtoFerrers,Freeman,andflatbars,respectively. thebestcombinationof∆ǫ and∆PAmaximisingthebaridenti- ficationsandminimisingthebadand/orspuriousdetections.The resultsaregiveninTable3. trast, Freeman and flat bars were better determined,their mea- The flat and Freeman bars are the most difficult and eas- surementsbeingshorterby30%and19%,respectively.Thebar length is underestimated when rPA is used for the Ferrers bars iest bars to be detected, respectively. This means that the el- bar lipsefittingmethoddetectsmoreefficientlythebarswithsharp (11%),butitisoverestimatedfortheFreeman(8%)andflatbars (28%).Theseresultsshowthepossibilityofdefineanempirical endsthanthosecharacterisedbyasmoothtransitiontothedisc. Moreover,adopting∆PA = 20◦ insteadof∆PA = 10◦ increases correctiontothebarlength,knowingthebartypeinadvance. thefractionofbardetectionsby10%forallthebartypes,while theincrementbetween∆PA=20◦and∆PA =30◦ isonlyabout 4.3.TestingtheFourieranalysismethod 4%. Spurious detections correspondto unbarredgalaxies which Thedeprojectionofthegalaxyimageisacrucialstepinapplying are erroneously found to be barred. In order to estimate their theFouriermethod,whichhastwofreeparameters,∆(I2/I0)and fraction, we applied the method to the sample of unbarred ar- ∆φ2.Theinclinationandmajor-axispositionangleofthegalaxy tificial galaxies we built to this aim. The results for the differ- disc can be obtained by either fitting ellipse to the outermost entvaluesof∆ǫ and∆PA arealsogiveninTable3.Bad detec- galaxy isophotes (e.g., Aguerrietal., 2003) or minimising the tionscorrespondtobarredgalaxiesforwhichweobtainedabad m=2Fouriermodeintheoutermostregionsofthegalaxy(e.g., measurementofthebarlength.Inordertoestimatethisfraction Grosbol, 1985). We applied these two methods to the artificial (whichisnotreportedinTable3),wecomparedthebarlengths galaxies and found that ellipse fitting gave lower errors (about knownfortheartificialgalaxieswiththerǫ derivedbyapplying 3◦)onbothiandPA. bar the ellipse fitting method.We derivedthe median and standard We applied the Fourier method to the artificial galaxies by deviationoftherelativeerrorbetweentheknownandmeasured adopting∆(I2/I0) = 0.2,0.1,0.08,0.05and∆φ2 = 10◦,20◦,30◦ bar length using a 3σ clipping iterative procedure. We consid- to find the best combination of ∆(I2/I0) and ∆φ2, maximising ered as bad detections the measurements with a relative error the bar identification and minimising the bad and/or spurious largerthan3σwithrespecttothemedian. detections.TheresultsaregiveninTable4andinFig.5. The fraction of galaxies classified as barred versus the In general, the Fourier method is less efficient in detecting bad/spuriousdetectionsareshowninFig.3asafunctionof∆ǫ barsthantheellipsefittingmethod.Wefoundthat∆(I2/I0)=0.2 and∆PA.Theoptimalconfigurationis∆ǫ =0.08and∆PA=20◦ has to be adoptedto have a fraction of bad/spuriousdetections sincethefractionofdetectionsincreasesbymorethan10%with lowerthan10%.Wealsoadopted∆φ2 =20◦becauseitincreases respect to ∆ǫ = 0.1 and ∆PA = 10◦, while the fraction of detectionsbymorethan10%andgiveslessbad/spuriousdetec- bad/spurious detections is always lower than 10%. It is worth tionswithrespectto∆φ2 =30◦.Thebarlengthswemeasuredas noticing that for ∆ = 0.08 and ∆PA = 30◦ the fraction of rFourier intheartificialgalaxiesareshowninFig.4.Themethod ǫ bar bardetectionsrisesbyabout3%withrespectto∆ = 0.08and recovers the bar length with the best accuracy for the Ferrers ǫ ∆PA=20◦.Butthefractionofbad/spuriousdetectionsincreases bars (3% error), while the bar length is over estimated for the too. For example, for the Ferrers bars such a fraction is even Freeman(28%)andflatbars(46%). largerthan10%. The bar lengths we measured as rǫ and rPA in the artifi- bar bar 5. Barfraction cial galaxies are shown in Fig. 4. The bar length is underesti- matedwhenrǫ isused,asfoundbyMichel-Dansac&Wozniak Both theellipse fitting andFouriermethodwereappliedto our bar (2006)too.ThisisparticularlytruefortheFerrersbarswherethe sample of 2106 disc galaxies. We found that the fraction of measuredbarlengthsare51%shorterthantherealones.Incon- galaxiesclassified as barreddependsstrongly on the technique 8 Aguerri,Me´ndez-Abreu,andCorsini:Detectionandcharacterisationbarsinthelocaluniverse Fig.4.Barlengthmeasuredwiththemaximumellipticity(toppanels),positionangle(middlepanels),andFourieranalysismethod (bottompanels)forFerrers(leftpanels),Freeman(centralpanels),andflatbars(rightpanels)inartificialgalaxies.Meanrelative error(definedasthedifferencebetweeninputandmeasuredvalues)andstandarddeviationforthemeasurementsaregivenineach panel. Table4.Percentageofgalaxiesclassifiedasbarredandunbarred galaxieserroneouslyfoundtobebarredbyapplyingtheFourier analysismethodtothesampleofartificialgalaxies. ∆φ Barred Unbarred 2 FerrersBars FreemanBars FlatBars ∆(I /I )=0.20 2 0 10◦ 29 26 18 5 20◦ 44 42 31 8 30◦ 51 51 37 8 ∆(I /I )=0.10 2 0 10◦ 47 44 35 19 20◦ 63 62 52 26 30◦ 69 70 60 31 ∆(I /I )=0.08 2 0 Fig.5.Fractionofartificialgalaxiescorrectlyclassifiedasbarred 10◦ 53 50 40 22 and fraction of bad/spurious bar detections using the Fourier 20◦ 67 67 58 32 analysis method with ∆φ = 10◦ (asterisks), 20◦ (filled cir- 30◦ 73 74 65 36 2 cles),and30◦(squares)and∆(I /I )=0.2(greensymbols),0.1 2 0 ∆(I /I )=0.05 (black symbols), 0.08 (red symbols), and 0.05 (blue symbols). 2 0 The large, medium, and small symbols correspond to Ferrers, 10◦ 62 61 53 29 Freeman,andflatbars,respectively. 20◦ 75 76 70 41 30◦ 81 82 75 48 was demonstrated to be less efficient than ellipse fitting in de- tectingbars,thisdifferenceislargerthanthatexpectedfromthe adoptedfortheanalysis:itis45%withtheellipsefittingmethod analysis of the artificial galaxies. To investigate this issue, we and26%withtheFouriermethod.AlthoughtheFouriermethod tookintoaccountthemorphologicalclassificationofthegalax- Aguerri,Me´ndez-Abreu,andCorsini:Detectionandcharacterisationbarsinthelocaluniverse 9 Table5.Medianvaluesofthebarradiusforthedifferentgalaxy types. S0 Early-typespirals Late-typespirals rǫ (kpc) 3.5 4.0 3.8 bar rPA (kpc) 5.6 5.4 4.9 bar rǫ /r 0.35 0.30 0.25 bar gal rPA/r 0.51 0.39 0.31 bar gal Our bar fraction (45%) of disc galaxies in the local uni- verse is in good agreement with recent results obtained in op- tical bands by Marinova&Jogee (2007, 44% in the B band), Reeseetal.(2007,47%intheIband),andBarazzaetal.(2008, 50%intherband).Inaddition,ourfindingthatearly-andlate- type spirals host a larger fraction of bars than lenticular galax- Fig.6.Ther−bandimages(leftpanels),ellipticity(centralpan- ies,wasalsoinagreementwithBarazzaetal.(2008)sincethey els), and m = 2 Fourieramplituderadialprofiles(rightpanels) foundthatdisc-dominatedgalaxieswithlowbulge-to-disclumi- oftheearly-typespiralSDSSJ031947.01+003504.4(toppanels) nosityratiodisplayahigherbarfractionthangalaxieswithsig- and the late-type spiral SDSSJ020159.33−081441.9 are anal- nificantbulges.However,Marinova&Jogee(2007)didnotfind ysedbybothmethods(bottompanels).Foreachgalaxythever- anydifferenceinthebarfractionintheNIRasafunctionofthe ticaldottedlinecorrespondstothevalueofrǫ . Hubbletype,wearguethattheirresultisbiasedbytheirsmaller bar coverage of the Hubble sequence since neither lenticulars nor Sd/Sm galaxies were taken into account. The same considera- iesfoundtobebarred.Accordingtotheellipsefitmethod29%, tioncanbeappliedtotheresultsfoundbyKnapenetal.(2000) 55%, and 54% of the lenticular, early-type and late-type spiral andEskridgeetal.(2000). galaxies,respectively,arebarred.Theyare29%,33%,and17%, respectively,withtheFouriermethod.Therefore,bothmethods 6. Barproperties obtainedasimilaroffractionofbarredlenticulargalaxies,while the Fourier method is less efficient in detecting bars in spirals, 6.1.Barlength andparticularlyinlate-typespiralgalaxies. An example is shown in Fig. 6. The early-type spi- The distributionsofthe bar lengthsand normalisedbar lengths ral SDSSJ031947.01+003504.4 and the late-type spiral were derived for the sample galaxies after deprojection on the SDSSJ020159.33−081441.9areanalysedbybothmethods.The galaxyplane.TheyareshowninFig.7.Bothrǫ andrPA were bar bar bar of the early-type spiral was detected by both methods and considered, and the galaxy size was defined as r = 2 × r , gal p the measured bar lengths are in agreement. In fact, the radial wherer isthePetrosianradiusfromSDSS.Themedianvalues p profiles of ǫ and I /I show a local maximum at about 5′′, derivedforthedifferentmorphologicalbinsaregiveninTab.5. 2 0 where the PA and φ are constant. On the contrary, the bar of Thevaluesofrǫ aresystematicallysmallerthanthoseofrPA,as 2 bar bar the late-typespiralwasdetectedonlyby the ellipse fit method. expected from the measurements of the artificial galaxies. The The radial profiles of ǫ and I /I show a local maximum at comparison of our results, with previous works where the rǫ 2 0 bar different radii (about 10′′). The I /I maximum is located in values are reported, gives us a good agreement. For example, 2 0 the spiral arm region, where φ is not constant. Therefore, the Erwin (2005) found a median bar length of 3.3 kpc, Marinova 2 bar of this galaxy was not detected by the Fourier method.We &Jogee(2007)calculateameanvalueof4kpcandMenendez- concludethatbarswith sharp endsare detectedbyboth ellipse Delmestreetal.(2007)obtainamedianvalueof3.5kpc.These fittingandFouriermethods.But,thebarsofgalaxieswithlenses resultsholdevenconsideringonlythebarswith alengthlarger or strong spiral arms are more easily detected with the ellipse than2kpc.Thislimitcorrespondstominimumbarlengthweare fitting method. This kind of bars is usually found in late-type abletoresolveallthroughoutourrangeofdistances. spirals.Theselargedifferencesinthebarfractionsbetweenthe Since the bar length is strongly dependent on the method two methods could bias our conclusions. For this reason, we usedtoderiveit,wecannotconcludemuchaboutthecorrelation willstudythephotometricalparametersofthebarsbyadopting betweenthebarlengthandthemorphologicaltype.Accordingto onlytheellipsefittingmethod. rǫ ,thelenticularshosttheshortestbars,whileaccordingtorPA bar bar Asanadditionalcheck,wevisuallyclassifiedallgalaxiesin theirbarsarethelongestones.Asfarasthemedianbarlengthof barredandunbarred.Thevisualclassificationwasdonebytwo the spiralsconcerns,the late-typespiralshostshorterbarswith of us (JALA and JMA). Both the classifications were in close respectto the early-typeones(Tab. 5). Nevertheless,a correla- agreementandonlytheir meanis reported.No attemptto clas- tion between the bar length and galaxy size was found. Thus, sify the galaxiesaccordingto their Hubbletype was done.The larger bars are located in bigger galaxies(Fig. 8). The correla- difference between the bar fractions found with the visual and tion is independent of the adopted method to measure the bar the automatic classification (∼ 7%) is our best estimate of the length. It holds for the different morphologicalbins too, being fraction of undetected bars in the galaxy sample. We obtained strongerforlate-typespirals(r=0.52)andweakerforS0galax- that the global fraction of barred galaxies in our sample was ies (r = 0.38). This relation could indicate a link between the 38%.Takingintoaccountthedifferentmorphologicaltypeswe formation and evolution processes between of bars and galaxy foundthat22%,52%and48%ofthe lenticular,early-typeand discs. A similar correlation was found by Marinova&Jogee late-typespiralgalaxies,respectively,werebarred. (2007),althoughaquantitativecomparisonwiththemisnotpos- 10 Aguerri,Me´ndez-Abreu,andCorsini:Detectionandcharacterisationbarsinthelocaluniverse Fig.7.Distributionofthebarlength(leftpanels)andnormalisedbarlength(rightpanels)inlenticulars(fullline),early-typespirals (dottedline),andlate-typespirals(dashedline).Thebarlengthwasmeasuredwithboththemaximumellipticity(toppanels)and PAmethod(bottompanels).Arrowsmarkthemedianvaluesofthedistributions. opedtomeasureit(seeLaurikainenetal.,2007,andreferences therein). Nowadays, the most commonly used parameter mea- suringthebarstrengthisQ definedbyButa&Block(2001).It g can be accurately estimated by analysing near-infrared images (Butaetal., 2003; Blocketal., 2004; Laurikainenetal., 2007), whicharenotavailableforoursamplegalaxiesdrawnfromthe SDSS.However,Abraham&Merrifield(2000)definedanother barstrengthparametergivenby 2 f = arctan(1−ǫ )−1/2−arctan(1−ǫ )+1/2 , (29) bar π bar bar (cid:16) (cid:17) whereǫ isthebarellipticitymeasuredatrǫ .Itcorrelateswith bar bar Q (e.g.,Laurikainenetal.,2007)andwasadoptedforoursam- g plegalaxies. Wedidnotadoptedanyminimumvalueforthebarellipticity. Wefoundǫ =0.16,whichisclosetheminimumellipticity bar,min Fig.8. Galaxy radius r versus bar length measured with the adoptedinotherstudies(e.g.,ǫ = 0.2,Marinova&Jogee, gal bar,min PAmethod(toppanel)andmaximumellipticitymethod(bottom 2007).Thedistributionsofthebarstrengthswe derivedforthe panel).Thesolidlinerepresentsthelinearregressionthroughall differentmorphologicaltypesare shown in Fig. 9. The median the data points. The Pearson correlation coefficient (r) and the values for the bar strengths of the lenticular, early-type, and resultofthelinearfitaregiven. late-type spiral galaxies are 0.16, 0.19, and 0.20, respectively. Indeed, we found a significant difference between the lenticu- lar and spiral galaxies. They are characterised by differentdis- sibleduetothedifferentband-passesanddifferentdefinitionof tributions, as confirmedat a high confidencelevel (> 95%) by thegalaxyradiustheyadopted. aKolmogorov-Smirnov(KS)test.Usingfourdifferentmethods to derive the bar strength, Laurikainenetal. (2007) also found that S0 galaxies host significantly weaker bars than the rest of 6.2.Barstrength discgalaxies,thisresultwasholdalsoby(Dasetal.,2003)and The bar strength represents the contribution of the bar to Barazzaetal. (2008) using only the bar ellipticity. In contrast, the total galaxy potential. Several methods have been devel- Marinova&Jogee(2007)foundthattheellipticityofthebaris