polymers Article β-Cyclodextrin Modified Poly(Acrylonitrile-co-Acrylic Acid) Hydrogel for Thorium(IV) Adsorption GuojianDuan1,QiangqiangZhong2,LeiBi2,LiuYang2,TonghuanLiu2,*,XiaoningShi1 andWangsuoWu2 1 CollegeofPharmacy,GansuUniversityofChineseMedicine,Lanzhou730000,China; [email protected](G.D.);[email protected](X.S.) 2 RadiochemistryLaboratory,SchoolofNuclearScienceandTechnology,LanzhouUniversity, Lanzhou730000,China;[email protected](Q.Z.);[email protected](L.B.);[email protected](L.Y.); [email protected](W.W.) * Correspondence:[email protected];Tel.:+86-931-8913551 AcademicEditor:JodieLutkenhaus Received:18February2017;Accepted:25May2017;Published:31May2017 Abstract: Inthisreport,theβ-CD(AN-co-AA)hydrogelwasusedtoremovethethorium(IV)[Th(IV)] from the water system, and the new adsorbent was characterized through Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). Theinfluencesofcontacttime,pHvalue,ionicstrength,solid-liquidratio,initialTh(IV)concentration, andtemperatureonTh(IV)adsorptionontothefunctionalhydrogelwereresearched. Theresults showedthattheexperimentaldatafollowedtheLangmuirisothermandthemaximumadsorption capacity(q )forTh(IV)was692mg/gatpH2.95,whichapproachedthecalculated(q )682mg/g. max e ThedesorptioncapacityofTh(IV)indifferentHNO concentrationsrangingfrom0.005to0.5Mwas 3 alsostudied,andthepercentageofthemaximumdesorptionwas86.85%intheconditionof0.09M HNO . Theselectivityofβ-CD(AN-co-AA)hydrogelwasalsobestudied,theresultsindicatedthat 3 thismaterialretainedthegoodadsorptioncapacitytoTh(IV)evenwhentheCa2+, Mg2+, orPb2+ existedinthesystem. Thefindingsindicatethatβ-CD(AN-co-AA)canbeusedasanewcandidate fortheenrichmentandseparationofTh(IV),oritsanalogueactinides,fromlarge-volumesolutionin practicalapplication. Keywords: β-cyclodextrin;functionalhydrogel;adsorbentmaterial;Th(IV) 1. Introduction Witheconomicdevelopmenttheproblemofenergyshortagesbecomesmoreandmoreserious and nuclear power has been used significantly in production and living. Thorium, as a potential nuclearfuel,hasattractedmuchattention[1]. Theusenuclearpowergeneratesspentnuclearfuel, which contains various fission products, one of them is thorium. Generally, the direct toxicity of thoriumislowbecauseofitsstablecharacteratroomtemperature[2],butiftheconcentrationofTh(IV) ionsinthesolutionislargeenough,itwillarouseacutetoxicologicaleffectsforpeople,whichmay leadtopotentialoccupationalcarcinogensandprogressiveorirreversiblerenalinjury[3]. Atpresent, therearealsosomeimportanttetravalentactinides,suchasNp(IV),U(IV),andPu(IV),whichappear intheuseofnuclearfuelprocesses,butthoseareinstableintetravalentform,sothestablethoriumcan bestudiedasanmodelelementforothers[4–7]. A series of technologies have been introduced to remove thorium from aqueous solutions, suchaschemicalprecipitation,ionexchange,evaporation,andadsorption[8]. Amongthesemethods, adsorptionisoneofthemostwidelyappliedinradiation/nuclearchemistry[2,9,10]. Inrecentyears, manygroupshavesynthesizednewmaterialstoseparateTh(IV)fromthesolution[11–13]. Polymers2017,9,201;doi:10.3390/polym9060201 www.mdpi.com/journal/polymers Polymers2017,9,201 2of15 Inordertoexpandthescopeoftheadsorptionmaterials,theadsorptionbehaviorofTh(IV)ions onto β-Cyclodextrin (β-CD) derivatives is studied. β-CD is a cyclic oligosaccharide connected by α-(1,4)glycosidebondswhichconsistofsevenglucoseunits. Meanwhile,thesecondaryhydroxyl groupsandprimaryhydroxylgroupsformtheoutersideandthenarrowside,respectively,which formstheβ-CDasatruncatedcone. Thisconformationgivestheβ-CDhydrophobicinternalcavity andhydrophilicexternalsurfaceatthesametime,whichcaneasilyforminclusioncomplexeswith typesofguestmoleculesthroughnon-covalentinteractionsand, therefore, providesidealbinding sites[14–18]. Thesenewcomplexeshaveexcellentsolubility,bioactivity,andstabilitybecauseofthe special structure with the guest molecules, which leads to serious applications in food, cosmetics, and even in pharmaceutical industries. However, very few studies on the adsorption behavior of metalionsontothefunctionalizationofβ-CD[19]havebeenconducted. Meanwhile,theadsorption mechanismisstillunclear. Theaimofthepresentresearchwastostudytheefficiencyofβ-CD(AN-co-AA)forremoving thorium from wastewater. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) were used to characterize the structure of β-CD(AN-co-AA).Theeffectofvariousexperimentalparameters,includingthepHofthesolution, contacttime,initialthoriumconcentration,andtemperature,aswellasadsorptionkinetics,isotherm models,andthermodynamics,werestudied. Inaddition,thepropertiesofreusabilityandselectivity ofβ-CD(AN-co-AA)werealsoinvestigated. 2. MaterialsandMethods 2.1. Materials All chemicals used in our experiment were purchased as analytically pure and no further purificationwasconducted. 2.2. SynthesisofPoly(acrylonitrule-co-acrylicacid)-graft-β-cyclodextrinHydrogel(β-CD(AN-co-AA)) ThishydrogelwassynthesizedviatheformationofC-CsinglebondsbetweentheANandAA, esterbondsbetweenthehydroxylgroups(O-H)inβ-CD,andthecarboxylgroups(COOH)inthe AA.Briefly,β-CD(0.7495g,0.7mmol)wasaddedtoaceticacid(100mL)andstirredfor10minunder 60◦C.NaHSO (0.1040g,1.0mmol)wasaddedtotheabovesolutionandstirredfor15minunder 3 theprotectionofnitrogen. Then,AN(2.6712g,50.4mmol)andAA(3.6318g,50.4mmol)wereadded totheabovereactiondropwiseatthesametime. Thesolutionwasstirredfor10min,andK S O 2 2 8 (0.3244g,1.2mmol)wasaddedtothereactionsystemonetime. Thereactionwasstirredfor3.0hat 60◦Cundertheprotectionofnitrogen. Then,thereactionsystemwascooledtoroomtemperatureand letstandfor0.5h. Pouringthesupernatantout,thewhiteprecipitatewaswashedwithdistilledwater andethanolthreetimes,respectively. Thenthesolidproductwasdriedinavacuumovenat40◦C for24h. Inordertoavoidthevariationsincharacteristicsdependentonthepreparation,a10glotof β-CD(AN-co-AA)hydrogelwaspreparedtoconducttheoverallinvestigations. 2.3. Characterizationof β-CD(AN-co-AA)Hydrogel 2.3.1. FourierTransformInfraredSpectroscopy IRspectraofβ-CD(AN-co-AA)anditsTh(IV)complexwererecordedonaFTIRspectrometer (NicoletAvatar360,NicoletInstrumentCorportion,Connecticut,USA).Thepowderofthesamplewas mixedwithpotassiumbromide(KBr)andcompressedintoatransparentKBrtablet. Thespectrawere shownatwavenumbersfrom4000to400cm−1. TheresultsoftheFTIRanalysis(Figure1)showed themajoradsorptionbondsatthefollowingfrequencies. Abroadandintensepeakat3469cm−1is attributedtoO–Hvibrations[20];the–C≡Nstretchingvibrationspeaksareappearedat2244cm−1; Polymers2017,9,201 3of15 Thepeaksat1732and1453cm−1 areassignedtotheC=OandC–O–Cstretchingbondsoftheester group[21,22]. PolymeIrns 2t0h17e, 9s,p 2e01c t rum of Th(IV) complex, the intense peak of 1732 cm−1 decreased, but the3p oef a1k4 of 1455 cm−1 showed no obvious change, which means a part of the acrylic acid groups were In the spectrum of Th(IV) complex, the intense peak of 1732 cm−1 decreased, but the peak of involved in the combination. At the same time, the bond of O–H vibrations was changed from Polymers 2017, 9, 201 3 of 14 13445659 ccmm−−1 1ditdo 3n4o3t 6chcman−g1e, owbhviicohusmlye,a wnshtichha tmtheeanTsh a(I pVa)rct hoefl tahteed acwryitlhict ahceidO gHrogurpous pwseirne βin-CvoDlvoefdt hine the combination, while H–O–H bending vibrations of lattice water molecules in the complexes were copolymeIrn [t2h3e] .spTehcteruHm– Oof– THh(bIVe)n dcoimngplvexib, rtahtei oinntsenosfe lpatetaikc eowf 1a7t3e2r cmmo−1l edceuclreesasiend,t hbeutc tohme ppleeaxke osf were eexxpprree1ss4ss5ee5dd c aamtt −111 66d33id55 nccmomt −−c1h.1 a.nge obviously, which means a part of the acrylic acid groups were involved in the combination, while H–O–H bending vibrations of lattice water molecules in the complexes were expressed at 1635 cm−1. Figure1.FTIRspectraofβ-CD(AN-co-AA)(a)andβ-CD(AN-co-AA)-Th4+(b). Figure 1. FTIR spectra of β-CD(AN-co-AA) (a) and β-CD(AN-co-AA)-Th4+ (b). Figure 1. FTIR spectra of β-CD(AN-co-AA) (a) and β-CD(AN-co-AA)-Th4+ (b). 2.3.2. ScanningElectronMicroscopyMeasurements 2.3.2. 2S.3ca.2n. nScinangn Einlegc Etrleocntr Moni cMroicsrcooscpoyp yM Meaesausureremmeennttss TToo lleeTaarornn l ettahhreen mmthooer rmpphohoropllohogogylyoo gofyf t ohthfe tehh hey ydhdyrodrogrogegleelc loc cmoommpoppsooisstieitteep paparatrritcitcileclelsse,,s SS,E ESMMEM mm emeaasesuaursreuemmreeenmntset snwwtesr ewer eceacrrear riceradier drieodn othne tghooeln d g-tsohpledu g-tstoeplrdue-tdstpesurpettedec riesmdp eesncpsiemwcieminthesn asw JSwitMhit h-6a 7 a0J SJ1SMFMi-n-66s77t00r1u1FFm ieinnnsstttr(ruJuemmoel,neTnt ot( kJe(yJoeolo,, lJT,a opTkaoynok),y. oJBa,ep fJaoanrp)e.a tnBh)ee.f oeBrxeep fetohrreiem tehnet , thesaemxppelreimweanst,p trheep saarmedplbe ywdarsi pprpeipnagreads bmya dllriapmpionugn at somfathlle apmaorutinctl eofs uthsep epnarstiiocnle osnustopeancsioovne orngtloa sas and experiment, the sample was prepared by dripping a small amount of the particle suspension onto a allowcionvgeri tgtloasasi ar-nddr ayl.lowing it to air-dry. cover glass and allowing it to air-dry. FigurFeig2usrheo w2 ssShEoMwsi mSaEgMes oifmtahgeeβs -CoDf (AthNe -cβo--CADA(A)hNy-dcor-oAgAel). Thhyedmroogrepl.h oTlhoeg ymofoβrp-hCoDlo(gAyN -ocfo -AA) Figure 2 shows SEM images of the β-CD(AN-co-AA) hydrogel. The morphology of β-CD(AN-co-AA) resembled a cloud sheet, and the size of the gel sheet is 2 μm in length and 1 μm in hasalooseflocculentstructure. SEMresultsindicatedthatthehydrogels’structureprovidedalarger β-CD(AN-co-AA) resembled a cloud sheet, and the size of the gel sheet is 2 μm in length and 1 μm in width, mostly. SEM results indicated that the hydrogels’ structure provided a larger specific surface specificsurfacearea,whichisbetterforitscombiningwithmetalionsbyprovidingwiderexposed width, mostly. SEM results indicated that the hydrogels’ structure provided a larger specific surface area, which is better for its combining with metal ions by providing wider exposed sites for sitesforadsorption,andtheadsorptionexperimentsalsostronglydemonstratedtheseresults. area, awdshoircpht ioins , banedtt ethr e faodrs oirtsp ticoonm exbpinerinimge nwtsi tahls om setrtoanl giloyn dse mboyn sptrraotveidd tihnegs ew reisdueltrs . exposed sites for adsorption, and the adsorption experiments also strongly demonstrated these results. (a) (b) Figure 2. SEM of β-CD(AN-co-AA) hydrogel particles in different resolution size 10 μm (a) and 1 Figure2.SEMofβ-CD(AN-co-AA)hydrogelparticlesindifferentresolutionsize10µm(a)and1µm(b). μm (b). (a) (b) F igure 2. SEM of β-CD(AN-co-AA ) hydrogel particles in different resolution size 10 μm (a) and 1 μm (b). Polymers 2017, 9, 201 4 of 14 Polymers2017,9,201 4of15 2.3.3. X-ray Diffraction Measurements 2.3.3.PXow-radyerD iXff-rraacyt iodniffMraecatsiounre mise nat smethod that can provide insightful information about the combination mode between the β-CD, AN, and AA. The XRD pattern of β-CD(AN-co-AA) was Powder X-ray diffraction is a method that can provide insightful information about the obtained using a powder X-ray diffractometer (Rigaku, The Woodlands, TX, USA) with copper Kα combination mode between the β-CD, AN, and AA. The XRD pattern of β-CD(AN-co-AA) was radiation at 150 mA and 40 kV, and the diffraction intensity data were scanned with a step size of obtainedusingapowderX-raydiffractometer(Rigaku,Texas,USA)withcopperKαradiationat150 0.02° in the 2θ range from 5° to 50°. Figure 3 shows the XRD patterns of β-CD and β-CD(AN-co-AA). mAand40kV,andthediffractionintensitydatawerescannedwithastepsizeof0.02◦ inthe2θrange The XRD pattern of β-CD(AN-co-AA) showed a broad peak, which was consistent with its from5◦ to50◦. Figure3showstheXRDpatternsofβ-CDandβ-CD(AN-co-AA).TheXRDpatternof amorphous feature [23] and, at the same time, a number of intense and sharp peaks shown in the β-CD(AN-co-AA)showedabroadpeak,whichwasconsistentwithitsamorphousfeature[24]and,at XRD pattern of β-CD [24] proved the crystalline characteristic of β-CD. This further indicates that thesametime,anumberofintenseandsharppeaksshownintheXRDpatternofβ-CD[25]proved these three materials, combined by chemical bonds, have formed a hydrogel, and β-CD has lost its thecrystallinecharacteristicofβ-CD.Thisfurtherindicatesthattheproductofcopolymerisnota crystalline characteristic. simplyphysicalmixture. FFiigguurree 33.. XXRRDD ppaatttteerrnn ooff ββ--CCDD ((aa)) aanndd ββ--CCDD((AANN--ccoo--AAAA)) ((bb)).. 22..44.. AAddssoorrppttiioonn EExxppeerriimmeennttss TThhee TThh((IIVV)) aaqquueeoouuss ssoolluuttiioonn ooff kknnoowwnn ccoonncceennttrraattiioonn wwaass aaddddeedd ttoo 1100 mmLL ppoollyyeetthhyylleennee ttuubbeess,, wwiitthh aa cceerrttaaininq quuanantittiytyo foafd asdosrobrebnet,nfit,n failnlyaltlhye tmheix medixseodlu stioolnutwioans 5w.0asm 5L.0i nmbLat cinh ebxaptcehri mexepnetsri.mHeNnOts3. H(0N.1OM3 )(o0.r1N MaO) oHr (N0.a1OMH) w(0a.1s uMse) dwtaosa udsjuedst ttoh eaidnjiutisat ltphHe ionfittihael spoHlu otifo nth.eT hsoelsuytisotenm. Twhaes scyesntetrmif uwgeads caetnhtrigifhugsepde eadt h(1ig.2h ×sp1e0e4d r(/1m.2 in× )1f0o4 rr/2m0imn)i nfoar ft2e0r mviibnr aatfitnerg vaitbrroatoimng taetm rpoeormat uterme pfoerratthuerer efqour itrhede rteimquei.reCdo tnimceen. tAra ctieorntaionf vTohlu(ImV)e wofa ssuapnearnlyazteadnt wwiaths dtheteecAterdse tnoa dzoe-teIIrImsipneec tthroe pThh(oItVo)m ceotnriccenmtreatthioond boyn uasisnpge cat rsoppehctortoopmheotteorm(ePteerrk (iPne-Erklmine-Er,lmWearl,t hWaamlt,hMamA,, MUASA, U).SAA)q auta an twityavoefle1ngmthL oTfh 6(6IV2 )nsmolu, atinodn tshaem apdlseo,r1ptmioLn 0c.a5pMaciHtyC olfa tnhde β1.-0CmD(LA0N.1-c%o-AAArs)e nhayzdor-oIgIIela qofu eTohu(IsVs)o wluatsio cnalwcuelraeteadd dbeyd thtoe cah2a5ngmeLs bgelatwsseflena stkh,er iensiptieaclt aivnedly f,inaanld etqhueilfiibnraiulmso lcuotniocnenvtroalutimones.w asfilledupto25mLbyaddingdeionized water. After15min,theabsorbanceofthemixtureliquidwasmeasuredat662nm,andtheadsorption 2c.a5p. aDceitsyoropftitohne Eβx-pCeDri(mAeNnt- co-AA)hydrogelofTh(IV)wascalculatedbythechangesbetweentheinitial andfinalequilibriumconcentrations. In order to examine the adsorption and desorption behaviors of thorium ions from β-CD(AN-co-AA) hydrogel, to ensure the reusability of adsorbents, at the end of adsorption 2.5. DesorptionExperiment experiments the suspension was centrifuged and all of the supernatant was poured out and then In order to examine the adsorption and desorption behaviors of thorium ions from washed with distilled water. An equal volume of acid solution was added, and the suspension was β-CD(AN-co-AA) hydrogel, to ensure the reusability of adsorbents, at the end of adsorption shaken for 4 h. The amount of Th(IV) ions released into the solution was monitored using the same experiments the suspension was centrifuged and all of the supernatant was poured out and then spectrophotometric method as in the adsorption experiments. The Th(IV) ions’ recovery percentage washedwithdistilledwater. Anequalvolumeofacidsolutionwasadded,andthesuspensionwas upon desorption from the hydrogel was calculated using the initially adsorbed Th(IV) ion amount shakenfor4h. TheamountofTh(IV)ionsreleasedintothesolutionwasmonitoredusingthesame and the amount found in the solution at the end of the desorption process, according to Equation. (1): spectrophotometricmethodasintheadsorptionexperiments. TheTh(IV)ions’recoverypercentage Polymers2017,9,201 5of15 Polymers 2017, 9, 201 5 of 14 upondesorptionfromthehydrogelwascalculatedusingtheinitiallyadsorbedTh(IV)ionamountand q −q theamountfoundinthesolutionatthReeceonvderoefdt h(%ed)=es oreptiond ×p1ro00ce ss,accordingtoEquation(1): (1) q e q −q Recovered(%) = e d ×100 (1) where qe is the number of adsorbed Th(IV) ion (g/g) aqned qd is the amount of desorbed Th(IV) ion (g/g). The adsorption/desorption cycles were repeated ten times using the same batch of the whereq isthenumberofadsorbedTh(IV)ion(g/g)andq istheamountofdesorbedTh(IV)ion hydrogeel (10 mg). d (g/g). Theadsorption/desorptioncycleswererepeatedtentimesusingthesamebatchofthehydrogel (31. 0Rmesgu)l.ts and Discussion 3. ResultsandDiscussion 3.1. Adsorption Performance Study 3.1. AdsorptionPerformanceStudy 3.1.1. Adsorption Kinetics 3.1.1.EAqudisloibrprattioionnK tiimneet iicss a key factor which has a direct relationship with the adsorption kinetics of adsorbent at the set initial adsorbate concentration. Figure 4 shows the impact of the contact time on Equilibrationtimeisakeyfactorwhichhasadirectrelationshipwiththeadsorptionkineticsof Th(IV) adsorption onto β-CD(AN-co-AA), from the results of the experiment we can determine that adsorbentatthesetinitialadsorbateconcentration. Figure4showstheimpactofthecontacttimeon Tthhe( IsVp)eeadd soofr Tphti(oInV)o andtosoβr-pCtiDo(nA oNn-tcoo β-A-CAD),(AfroNm-coth-AeAre)s iusl vtseoryf tfhaeste ixnp tehreim ineintitawl setacgaen (daebtoeurmt 3i0n emtihna)t. Tthhee sipneiteidal osfteTehp( IaVd)soardpstoiropnt iboencoomnteos βsl-oCwD,( sAuNbs-ecoq-uAeAnt)lyis, vatetrryibfuatsetdin tot htheei nTihti4a+l isotnasg (ew(aitbho au tra3d0imusi no)f. Tabhoeuitn 0it.i1a0l2s tnemep),a ndesaorrlpyt aionn ebqeuciolimbreiusmslo swta,tseu bbestewqueeenn ttlhye, astotrluibtuiotned antod tthhee Tahd4s+oirobninsg( wmiathteariraal.d Tiuhsesoef speed differences of Th(IV) adsorption onto β-CD(AN-co-AA) and desorption from the material are about0.102nm),nearlyanequilibriumstatebetweenthesolutionandtheadsorbingmaterial. These ssmpeaeldlerd ifafnedre nscmesalolefrT ha(sI Vth)ea dtsimorep tiionncroeansteosβ. -TChDis( ApNh-ecnoo-AmAen)oann dwdiells ohrpeltpio nusf rotom uthnedmerasttaenrida ltahree adsorption modality (chemical adsorption or physical adsorption) [25,26]. In order to ensure the smallerandsmallerasthetimeincreases. Thisphenomenonwillhelpustounderstandtheadsorption adsorption equilibria were reached, the stir time was set for 4.0 h for all remaining batch modality (chemical adsorption or physical adsorption) [26,27]. In order to ensure the adsorption experiments. equilibriawerereached,thestirtimewassetfor4.0hforallremainingbatchexperiments. Figure 4F.igureE 4ff. eEcftfecot fof eeqquuiilliibbrriiuumm timtime eon Tonh(IVT)h a(dIVso)rpatdiosno ropnttioo nβ-CoDn(tAoN-βc-oC-ADA(A). N-co-AA). ([Th(VI)] =6.5334×10−4M,pH=2.95±0.05,T=298.15±1.00K,I=0.50MNaNO ). 0 3 In order to describe the kinetic mechanism clearly, which was controlled by the process of Th(IVIn) oarddseorrptotiodnes cornibtoe tβh-eCkDin(AetNic-cmo-eAchAa)n, isthme cplesaerulyd,ow-sheiccohnwd-aosrcdoenr trmololeddelbs ywthaes pursoecde stsoo tfeTsht (tIhVe) eaxdpsoerrpimtioenntoanl dtoatβa-.C TDh(iAs mN-ocdo-eAl iAs )g,itvheenp asse:u do-second-ordermodelswasusedtotesttheexperimental data. Thismodelisgivenas: t 1 t qttq=t =k1qk2eqe2++qtqee, , (2()2 ) wwhheerree qqtt ((gg//gg)) iiss tthhee aammoouunntt ooff TThh((IIVV)) aaddssoorrbbeedd oonn ββ--CCDD((AANN--ccoo--AAAA)) aatt ttiimmee tt,, aanndd qqee ((gg//gg)) iiss tthhee eeqquuiilliibbrriiuumm aaddssoorrpptitoionnc acpaapcaictyit,yk, (gk /((gg/·(mg∙imn)i)nr)e) prreepserenstesnthtse stheceo nsedc-oonrdde-orrrdateer croantset acnotnosftathnet koifn ethtiec kminoedteilc. mFiogduerel. 5Fisghuorwe s5t hsheorwessu tlhtseo rfeususilntsg otfh eusEinqug atthioen E(q2u)atotiofint t(h2e) teox pfiet rtihmee enxtpaledriamtae.nTtahle deaqtua.a tTiohne equation of pseudo-second-order is y = 1.4788x + 29.844; as is known from the calculation, according to the slope and intercept, k is 0.0660 g/(g∙min); the qe equal to 0.6820 g/g and the linear correlation Polymers2017,9,201 6of15 ofpseudo-second-orderisy=1.4788x+29.844;asisknownfromthecalculation,accordingtotheslope Polymers 2017, 9, 201 6 of 14 andintercept,kis0.0660g/(g·min);theq equalto0.6820g/gandthelinearcorrelationcoefficient e cRo2e=ffi0c.i9e8n8t 3R.2T =h e0s.9e8r8e3s.u Tlthsessheo rwestuhlatst tshheowps ethuadto t-hsee cposnedu-doord-seercorantde-oeqrdueart iroantei seaqusuatiitoanb lies ma estuhiotadbtloe mdeestchroibde ttoh deeksicnreibtiec tahdes okrinpetitoicn a.dsorption. Figure5.Testofpseudo-second-orderadsorptionkineticsplotforTh(IV).([Th(VI)] =6.5334×10−4M, 0 Figure 5. Test of pseudo-second-order adsorption kinetics plot for Th(IV). pH=2.95±0.05,T=298.15±1.00K,I=0.50MNaNO ). 3 3.1.2. Effect of pH on Th(IV) Adsorption onto β-CD(AN-co-AA) 3.1.2. EffectofpHonTh(IV)Adsorptionontoβ-CD(AN-co-AA) The pH value of the adsorption system is an important parameter which is a direct impact on ThepHvalueoftheadsorptionsystemisanimportantparameterwhichisadirectimpactonthe the uptake of metal ions from aqueous solution. At the same time, it affects the adsorbent surface uptakeofmetalionsfromaqueoussolution. Atthesametime,itaffectstheadsorbentsurfacecharge, charge, the ionization degree and the adsorbate speciation [27,28]. From Figure 6, the pH value of the theionizationdegreeandtheadsorbatespeciation[28,29]. FromFigure6,thepHvalueoftheaqueous aqueous solution directly affects the adsorption results of Th(IV) onto β-CD(AN-co-AA). The solution directly affects the adsorption results of Th(IV) onto β-CD(AN-co-AA). The adsorption adsorption progress of Th(IV) onto β-CD(AN-co-AA) can be divided into two stages. The first is the progressofTh(IV)ontoβ-CD(AN-co-AA)canbedividedintotwostages. Thefirstistheadsorption adsorption percentage (from ~25% to ~95%) of Th(IV) onto β-CD(AN-co-AA), increasing with the percentage(from~25%to~95%)ofTh(IV)ontoβ-CD(AN-co-AA),increasingwiththechangingof changing of pH value (from 1.8 to 4.0) of adsorption system. The second is the adsorption percentage pHvalue(from1.8to4.0)ofadsorptionsystem. Thesecondistheadsorptionpercentageinastable in a stable range (from ~90 to ~95%) with the changing of pH value (from 4.0 to 5.6) of adsorption range (from ~90 to ~95%) with the changing of pH value (from 4.0 to 5.6) of adsorption system. system. The changed trend of stage one may be attributed to the surface properties of Thechangedtrendofstageonemaybeattributedtothesurfacepropertiesofβ-CD(AN-co-AA),such β-CD(AN-co-AA), such as the surface charge and the ionization of surface functional groups of asthesurfacechargeandtheionizationofsurfacefunctionalgroupsofβ-CD(AN-co-AA).Thebest β-CD(AN-co-AA). The best result of adsorption in the pH range of 3–4 may be due to the formation result of adsorption in the pH range of 3–4 may be due to the formation of the Th(IV) complexes of the Th(IV) complexes with carboxyl groups of the acrylic acid unit and hydroxyl groups of the withcarboxylgroupsoftheacrylicacidunitandhydroxylgroupsoftheβ-CDunitonthesurface β-CD unit on the surface of β-CD(AN-co-AA). It is well known that, increasing with the pH, the ofβ-CD(AN-co-AA).Itiswellknownthat,increasingwiththepH,themorecarboxylicgroupstend more carboxylic groups tend to deprotonate, and the more carboxylate ions form stable complexes todeprotonate,andthemorecarboxylateionsformstablecomplexeswithTh(IV)ions. Atthesame with Th(IV) ions. At the same time, this operation of decreasing the positive charge density of the time,thisoperationofdecreasingthepositivechargedensityoftheadsorptionedgesincreasesthe adsorption edges increases the adsorption capacity of this kind of hydrogel through electrostatic adsorptioncapacityofthiskindofhydrogelthroughelectrostaticattraction[30]. Therearecertainform attraction [29]. There are certain form features of the Th(IV) complex in a specific solution pH which featuresoftheTh(IV)complexinaspecificsolutionpHwhichmaybeimportantfactorsthataffectthe may be important factors that affect the uptake efficiency of β-CD(AN-co-AA) for Th(IV) adsorption uptakeefficiencyofβ-CD(AN-co-AA)forTh(IV)adsorption[31].Accordingtothehydrolysisconstants [30]. According to the hydrolysis constants of Th(IV) in aqueous solution, in the range of 2.0 to 4.0 of ofTh(IV)inaqueoussolution,intherangeof2.0to4.0ofthepHvalue,Th4+and[Th(OH)]3+arethe the pH value, Th4+ and [Th(OH)]3+ are the main species [7,31]. If the value of the solution pH is over mainspecies[7,32]. IfthevalueofthesolutionpHisover4.0,Th(OH) isgraduallybecomingthemain 4 4sp.0e, cTiehs(.OTHh)e4r eisfo grera,dthuealglyo obdecreosmuilntgo ftTheh (mIVa)ino nstpoeβci-eCsD. T(AhNer-ecfoo-rAe,A t)hme agyoobde artetsruibltu toefd Ttho(tIhVe) soonltido β-CD(AN-co-AA) may be attributed to the solid Th(OH)4 on the surface of the hydrogel. We take into Th(OH) onthesurfaceofthehydrogel. Wetakeintoaccountbothofthefactorsofadsorptionpercent 4 account both of the factors of adsorption percent and Th(IV) species present at different pH values andTh(IV)speciespresentatdifferentpHvaluesand,inthefollowingexperiments,pH=2.95±0.05 and, in the following experiments, pH = 2.95 ± 0.05 was selected as the value of the experiment wasselectedasthevalueoftheexperimentsystems. systems. 3.1.3. Effect of Ionic Strength Figure 7 shows the relationship between ionic strength and the adsorption ability of Th(IV) onto β-CD(AN-co-AA) hydrogel. From the results we can find that the adsorption results of Th(IV) onto β-CD(AN-co-AA) do not change significantly when the ionic strength increases from 0.00 to 0.60 mol/L NaNO3 at a pH value in the range of 2.95 ± 0.05, which indicates that, under this experimental Polymers2017,9,201 7of15 3.1.3. EffectofIonicStrength Figure 7 shows the relationship between ionic strength and the adsorption ability of Th(IV) ontoβ-CD(AN-co-AA)hydrogel. FromtheresultswecanfindthattheadsorptionresultsofTh(IV) onto β-CD(AN-co-AA) do not change significantly when the ionic strength increases from 0.00 to Polymers 2017, 9, 201 7 of 14 0.60 mol/L NaNO at a pH value in the range of 2.95 ± 0.05, which indicates that, under this 3 Polymers 2017, 9, 201 7 of 14 ecxopnedriitmioenn, ttahlec oinndnietrio-snp,htehree insnuerfra-scpe hceormespulerfxaecse bcoetmwpeleenx eTshb(eIVtw) eaenndT hβ(-ICVD)(aAnNd-βco-C-ADA(A) Nha-cso -bAeAen) hfcooarsnmdbeietdeion n[f3,o 2rt,mh3e3e ]d.i n[Tn3he3er,3-rs4ep]in.h,Te hrieoe nrse uienrx,faciohcena necgxoecm hhpaanlesgx eensho a bscenotwnotecreoibnnu trtTiiobhnu(I tVitoo)n attnhodet hβaed-aCsdoDsr(opArtpiNotni-oc ono-Aof fATT)hh (h(IIVaVs)) obonenettono βfβo--CrCmDDe((dAA NN[3--c2coo,-3-AA3]AA. )).T. ChCoeormmebinbin,i neiedodnw wietihxthcth htaehnepg rpee rvehivoaiusos uncsoo cn otcenontnetstnr,titsbh,u etthaioedn sa odrtsopo tritophntei odnaedp dseeonprdpesntiodonns t ohonef pthTHeh v(pIaVHlu) evoaanlnutdoe iaβsn-iCdnD dise( ApineNdn-edcpeoe-nAntdAoef)n.t htC eoofim othnbeiic niosetdnri ecwn sgitttrhhe .nthgeth p. r evious contents, the adsorption depends on the pH value and is independent of the ionic strength. FiFgiugruere6 .6.E Efffefectcto offt htheep pHHv vaalluuee ooff tthhee ssoolluuttiioonn oonn tthhee aaddssoorrppttiioonn ooff TThh((IIVV)) oonnttoo ββ-C-CDD(A(ANN-c-oc-oA-AAA).) . ([TFihg(uVrIe)] 6.= E6ff.e5c3t3 o4f× th1e0 p−H4 Mva,lmue/ Vof =th0e. 1s8olgu/tiLo,nT o=n 2t9h8e. 1a5ds±or1p.0ti0oKn ,oIf =Th0.(5IV0)M onNtoaN β-OCD).(AN-co-AA). 0 3 Figure 7. Effect of the ionic strength of the solution on the adsorption of Th(IV) onto FFβii-ggCuuDrre(eA 7N.7E.- cffoEe-fcAfteAocft) .t hoef iotnhiec sitorennicg thstorefnthgeths olouft iotnheo nstohleutaidonso ropnti onthoef Tahd(sIoVr)potniotno βo-Cf DT(Ah(NIV-c)o -AonAto). (β[T-ChD(V(AI)]N]0-c=o-6A.5A33).4 ×10−4M,m/V=0.18g/L,pH=2.95±0.05,T=298.15±1.00K). 3.1.4. Effect of Solid-Liquid Ratio 33..11..44..T EEhffeffee crctet looafft iSSooonllsiiddh-i-LpLi iqqbuueitiddw ReReaanttii ooa dsorbent content and adsorption percentage of Th(IV) from the aqueTTohuhese rseroelalluatittoiioonnnsh sohipniptbo e bβtwe-tCeweDen(eAandN sao-dcrosb-oeArnbAtec)n oitns ctseohnnottwaennndt iaandn Fsdio graupdrtseioo 8nr.p pFteirorocnme np tteahrgece eronefstauTglhtes( I Viotf ) ifsTr okhmn(IoVtwh) enfa rtoqhmuaet ottuhhsee saaodqlusuoetiroopuntsioo snno tloruatβtiio-oCn o Dof( nATtohN (βI-Vc-oC)- ADonA(At)oNi sβ-sc-Coh-oDAw(AAn)N iins- cFsohi-gAouwAren) 8iis.n F kFreoipgmut rateht e8a. r reFesrluoalmttisv teihtlyeis rsketnasbuolwlets nv iatth liuas etk tnwhoeiwtahdn ts htohera pstto itolhinde caodnsoternptt iionnc rreaatsioin ogf inT hth(IeV r) aonngteo oβf- C0.D00(A8~N0.-2c og-/ALA. T) hise nk etphte aatd as orreplatitoivne rlya tsiota dbelec rveaalsuees wwiitthh tthhee ssoolliidd ccoonntteenntt iinnccrreeaassiinngg iwn hthene rtahneg seo olifd 0 c.0o0n8t~e0n.t2 egx/cLe. eTdhse 0n. 2t hge/ La.d Hsoorwpteiovne rr, atthioe dcoecnrceeanstersa twiointh o tfh eT hso(IlVid) acodnsoternbte din ocnretaos βin-Cg Dw(hAeNn- ctoh-eA sAo)l igdi vceosn tthene tr eesxuceltesd tsh a0t. 2f igrs/tLly. Hinocwreeavseer, ,a tnhde tchoennc ebnectroamtioe ns toabf lTe hw(IiVth) tahdes oinrbcreeda soinntgo hβy-CdrDo(gAelN c-ocno-tAenAt )( tghiev etsu rtnhien rge spuolitns tt ihsa at tf i0r.s2t lgy/ Lin, carse awseel,l )a.n Tdh tehseen r ebseuclotsm cea nst abbe lde uwei ttho tthweo i rnecarseoansisn [g3 4h]y. dFirrosgt,e tlh ceo Tnhte(nIVt )( tchaen t buer neiansgil yp ocionmt bisi naet d0 .w2 igth/L t,h aes switeesll )o.f T thhee shey rdersougltesl caannd ,b teh duus,e w toe towbtoa irne aas ohnigsh [ 3a4b]s. oFriprstti,o tnh era Tteh.( TIVh)i sc aisn b beec aeuassiel yth ceo amdbsionrepdti wonit ohf t thhee s piteers uonf itth me hasysd orof gβe-Cl aDn(dA, Nth-ucos-,A wAe ) iosb ktaeipnt aa ht iag hh iagbhs olrepvteilo nw rhaetne . tThhei ss oisli bde ccoaunsteen tth eis a rdesloatripvteiolyn loofw th, er apnegri nugn ift rmomas s0 .o0f0 β8-–C0.D2 (gA/NL -icno -tAhAis ) eisx pkeerpitm aetn ata hl icgohn dleivtieoln w, ahnedn athlle o sfo tlhide caodnstoernptt iiosn r esliatetisv aerlye sloawtu,r aratendg iwngh efnro tmhe 0 s.0o0li8d–-0li.2q ugi/dL riant itoh iiss e xperimental condition, and all of the adsorption sites are saturated when the solid-liquid ratio is Polymers2017,9,201 8of15 ratio of Th(IV) onto β-CD(AN-co-AA) is kept at a relatively stable value with the solid content increasingintherangeof0.008~0.2g/L.Thentheadsorptionratiodecreaseswiththesolidcontent increasingwhenthesolidcontentexceeds0.2g/L.However,theconcentrationofTh(IV)adsorbed ontoβ-CD(AN-co-AA)givestheresultsthatfirstlyincrease,andthenbecomestablewiththeincreasing hydrogelcontent(theturningpointisat0.2g/L,aswell). Theseresultscanbeduetotworeasons[35]. First,theTh(IV)canbeeasilycombinedwiththesitesofthehydrogeland,thus,weobtainahigh absorptionrate. Thisisbecausetheadsorptionoftheperunitmassofβ-CD(AN-co-AA)iskeptat aPohlyimghersl e20v1e7l, w9, 2h0e1n thesolidcontentisrelativelylow,rangingfrom0.008–0.2g/Linthisexperime8 noft a1l4 condition,andalloftheadsorptionsitesaresaturatedwhenthesolid-liquidratioisbelow0.2g/L, sboeltohweq 0.i2s gsi/mL,i lsaor wthieth qee aicsh soimthielarra nwditthh eeaacdhs oortphteior nanpder cthenet aagdesohrapstsioignn pifiecracnentltyaignec rheaass esdig.nSiefcicoanndtllyy, e increased. Secondly, the adsorption percentage can approach the maximum with enough adsorbent. the adsorption percentage can approach the maximum with enough adsorbent. However, in this However, in this aspect the content of Th(IV) is fixed, and when the β-CD(AN-co-AA) is over 0.2 g/L, aspectthecontentofTh(IV)isfixed,andwhentheβ-CD(AN-co-AA)isover0.2g/L,therewillnot btheeerne owuigllh nmote btae leinoonusgtho mcoemtabl iinonesw toit hcotmhebiandes woribthe ntht,e saodwsoerbceannt,fi snod wteh ceaqn fiisndd ethcree qaes iesd dwecirtehatsheed e with the increasing amount of β-CD(AN-co-AA), while the percent of absorption is at its maximum. increasingamountofβ-CD(AN-co-AA),whilethepercentofabsorptionisatitsmaximum. Figure8. EffectofsolidcontentontheadsorptionofTh(IV)ontoβ-CD(AN-co-AA),squarepoint Figure 8. Effect of solid content on the adsorption of Th(IV) onto β-CD(AN-co-AA), square point showthevalueofqe(g/g)anddotshowthevalueof“adsorption%”([Th(VI)]0=6.5334×10−4M, psHho=w2 t.h9e5 v±al0u.0e5 o,fT q=e (2g9/g8.)1 a5n±d d1.o0t0 sKho,Iw= th0.e5 0vaMluNe oaNf “Oad)s.orption %”. 3 3.1.5. Effect of Initial Th(IV) Concentration 3.1.5. EffectofInitialTh(IV)Concentration The initial concentration of Th(IV) directly affects the adsorption process and efficiency. To TheinitialconcentrationofTh(IV)directlyaffectstheadsorptionprocessandefficiency. Tostudy study the relationship between the adsorption and the metal ions concentration in the aqueous therelationshipbetweentheadsorptionandthemetalionsconcentrationintheaqueousphasewillhelp phase will help us to understand the adsorption behavior. Therefore, the initial concentration of ustounderstandtheadsorptionbehavior. Therefore,theinitialconcentrationofTh(IV)variedwithin Th(IV) varied within the range of 3.92 × 10−4~1.26 × 10−3 mol/L, with the other parameters being kept therangeof3.92×10−4~1.26×10−3mol/L,withtheotherparametersbeingkeptconstant. Figure9 constant. Figure 9 shows the trend of adsorption capacity (g/g) with the increase of the initial metal shows the trend of adsorption capacity (g/g) with the increase of the initial metal concentration. concentration. The changing curve indicates that, in the range of 3.92 × 10−4 to 7.19 × 10−4 mol/L of the Thechangingcurveindicatesthat, intherangeof3.92 × 10−4 to7.19 × 10−4 mol/LoftheTh(IV) Th(IV) concentration, the adsorption amount increases with the metal concentration. Combined with concentration, theadsorptionamountincreaseswiththemetalconcentration. Combinedwiththe the above results of Section 3.1.4, the larger part of the active sites was used in the adsorption process aboveresultsofSection3.1.4,thelargerpartoftheactivesiteswasusedintheadsorptionprocesswhen when more Th(IV) ions were contained in the reaction system. However, if the Th(IV) concentration moreTh(IV)ionswerecontainedinthereactionsystem.However,iftheTh(IV)concentrationexceeded exceeded 7.19 × 10−4 mol/L, adsorption capacity will saturate the available binding sites on the 7.19 × 10−4 mol/L, adsorption capacity will saturate the available binding sites on the adsorbent. adsorbent. Under the present experimental conditions, the maximum adsorption reached was 0.692 Underthepresentexperimentalconditions,themaximumadsorptionreachedwas0.692g/g. g/g. Figure 9. Effect of the initial concentration of Th4+ on the adsorption behavior onto β-CD(AN-co-AA). Polymers 2017, 9, 201 8 of 14 below 0.2 g/L, so the qe is similar with each other and the adsorption percentage has significantly increased. Secondly, the adsorption percentage can approach the maximum with enough adsorbent. However, in this aspect the content of Th(IV) is fixed, and when the β-CD(AN-co-AA) is over 0.2 g/L, there will not be enough metal ions to combine with the adsorbent, so we can find the qe is decreased with the increasing amount of β-CD(AN-co-AA), while the percent of absorption is at its maximum. Figure 8. Effect of solid content on the adsorption of Th(IV) onto β-CD(AN-co-AA), square point show the value of qe (g/g) and dot show the value of “adsorption %”. 3.1.5. Effect of Initial Th(IV) Concentration The initial concentration of Th(IV) directly affects the adsorption process and efficiency. To study the relationship between the adsorption and the metal ions concentration in the aqueous phase will help us to understand the adsorption behavior. Therefore, the initial concentration of Th(IV) varied within the range of 3.92 × 10−4~1.26 × 10−3 mol/L, with the other parameters being kept constant. Figure 9 shows the trend of adsorption capacity (g/g) with the increase of the initial metal concentration. The changing curve indicates that, in the range of 3.92 × 10−4 to 7.19 × 10−4 mol/L of the Th(IV) concentration, the adsorption amount increases with the metal concentration. Combined with the above results of Section 3.1.4, the larger part of the active sites was used in the adsorption process when more Th(IV) ions were contained in the reaction system. However, if the Th(IV) concentration exceeded 7.19 × 10−4 mol/L, adsorption capacity will saturate the available binding sites on the adsorbent. Under the present experimental conditions, the maximum adsorption reached was 0.692 Polymers2017,9,201 9of15 g/g. FFiigguurree 99.. EEffffeecctt ooff tthhee iinniittiiaall ccoonncceennttrraattiioonn ooff TThh44++ oonn ththee aaddssoorrpptitoionn bbeehhaavvioiorr oonnttoo ββ-C-CDD(A(ANN-c-coo-A-AAA)). . ([pH=2.95±0.05,m/V=0.18g/L,T=298.15±1.00K,I=0.50MNaNO3). 3.1.6. AdsorptionIsotherm The adsorption isotherms are mathematical models when the adsorption process reaches an equilibrium state which is used to describe the distribution of the adsorbate species between theliquidandadsorbent. Inthisreport,theLangmuirandFreundlichmodelsarethemostcommonly usedtodescribetheadsorptionequilibriumisotherms. Iftherearesomeimportantfacts,suchasthe adsorptionislocalizedinamonolayerandtheadsorbatemoleculesdonotinteractwitheachother, theadsorptionisothermusestheLangmuirmodel,whereastheFreundlichisothermmodelisalways usedasanempiricalrelationshipwhichassumesthattherearemanyadsorptionenergiesindifferent adsorptionsitestodescribetheadsorptionofsolutesfromaliquidtoasolidsurface. TheLangmuirisothermequationwasusedinthelinearizedform[28]: C /q =1/(q ·b)+C /q , (3) e e max e max wherebandq areLangmuirconstantsrelatedtoadsorptionenergyandadsorptionmaximum, max separately. AlinearizedplotofC /q againstC givesbandq . e e e max TheFreundlichequation,basedontheadsorptiononaheterogeneoussurface,isrepresentedas follows[36]: lgq =lgK +(1/n)lgC , (4) e F e whereK andnareFreundlichtheadsorptionisothermconstants. K andncanbegainedfromthe F F linearplotoflgq againstlgC . e e ThelinearizedLangmuirandFreundlichplotsareshowninFigure10a,b,respectively. Fromthese results, the Langmuir model is presented with higher correlation coefficients than the Freundlich model, so we can say that the Langmuir model is much better suited to describe the adsorption mannerthantheFreundlichmodelintherangeofrelevantconcentration,combinedwiththeresults above,whichmeansthattheadsorptionprocessmatcheswiththechemisorptioncharacteristicsin amonolayer. Polymers 2017, 9, 201 9 of 14 3.1.6. Adsorption Isotherm The adsorption isotherms are mathematical models when the adsorption process reaches an equilibrium state which is used to describe the distribution of the adsorbate species between the liquid and adsorbent. In this report, the Langmuir and Freundlich models are the most commonly used to describe the adsorption equilibrium isotherms. If there are some important facts, such as the adsorption is localized in a monolayer and the adsorbate molecules do not interact with each other, the adsorption isotherm uses the Langmuir model, whereas the Freundlich isotherm model is always used as an empirical relationship which assumes that there are many adsorption energies in different adsorption sites to describe the adsorption of solutes from a liquid to a solid surface. The Langmuir isotherm equation was used in the linearized form [27]: C /q =1/(q ⋅b)+C /q , (3) e e max e max where b and q are Langmuir constants related to adsorption energy and adsorption maximum, max separately. A linearized plot of C /q against C gives b and q . e e e max The Freundlich equation, based on the adsorption on a heterogeneous surface, is represented as follows [35]: lgq =lgK +(1/n)lgC , (4) e F e where K and n are Freundlich the adsorption isotherm constants. K and n can be gained from the F F linear plot of lgq against lgC e e The linearized Langmuir and Freundlich plots are shown in Figure 10a,b, respectively. From these results, the Langmuir model is presented with higher correlation coefficients than the Freundlich model, so we can say that the Langmuir model is much better suited to describe the adsorption manner than the Freundlich model in the range of relevant concentration, combined with the results above, which means that the adsorption process matches with the chemisorption Polymers2017,9,201 10of15 characteristics in a monolayer. (a) (b) Figure 10. Adsorption isotherms of Langmuir model (a) and Freundlich model (b). Figure10.AdsorptionisothermsofLangmuirmodel(a)andFreundlichmodel(b). The essential feature of the Langmuir isotherm is that it can be described as a dimensionless The essential feature of the Langmuir isotherm is that it can be described as a dimensionless constant separation coefficient, R , which is used to express whether the adsorption system is constant separation coefficient, RL , which is used to express whether the adsorption system is L “favorable” or “unfavorable”. The separate coefficient, R is given as [36]: “favorable”or“unfavorable”. Theseparatecoefficient,R Lisgivenas[37]: L R =1/(1+bC ), (5) R =L1/(1+bC )0, (5) L 0 where C and b are the initial Th(IV) concentration (mg/L) and Langmuir adsorption constant (L/mg), 0 whereC andbaretheinitialTh(IV)concentration(mg/L)andLangmuiradsorptionconstant(L/mg), 0 respectively. Table 1 shows the results of the computation. Based on the impact of the separation respectively. Table1showstheresultsofthecomputation. Basedontheimpactoftheseparationfactor factor on the form of the isotherm, the R values are significantly smaller than one, which indicates ontheformoftheisotherm,theR valueLsaresignificantlysmallerthanone,whichindicatesthatthe L thaβt -tChDe (βA-CND-c(oA-ANA-)coh-yAdAro)g helysdarroegaeflasv aorrea bal feaavdosroarbbleen atdtosoTrhb(eIVn)t [t3o8 T].h(IV) [37]. Table1.RLvaluesbasedontheLangmuirisotherm. InitialTh4+ No. Concentration(mmol/L) RLValue 1 0.000327 0.0455 2 0.000392 0.0382 3 0.000457 0.0329 4 0.000523 0.0289 5 0.000588 0.0258 6 0.000653 0.0233 7 0.000719 0.0212 8 0.000784 0.0195 9 0.000849 0.018 10 0.000915 0.0167 11 0.00098 0.0156 12 0.00105 0.0147 3.1.7. EffectofTemperature InordertofurtherstudytheadsorptionpatternofTh(IV)ionsonβ-CD(AN-co-AA),aseriesof experimentswerepresentatdifferenttemperatures,suchas298.15,318.15,and338.15K,whichwas usedtoindicatetheeffectoftemperature,withtheconcentrationofTh(IV)rangingfrom4.45×10−4 to1.05×10−3mol/L,andallotherparametersconstantattheiroptimumvalues. FromFigure11we canknowthatthetemperaturerisehasimprovedtheadsorptionabilities,whichrepresentsthatthe adsorptionisanendothermicprocess. Inordertoensurethethermodynamicfeatures, threebasic
Description: