The Plant Cytoskeleton: a Key Tool for Agro-Biotechnology NATO Science for Peace and Security Series This Series presents the results of scientific meetings supported under the NATO Programme: Science for Peace and Security (SPS). The NATO SPS Programme supports meetings in the following Key Priority areas: (1) Defence Against Terrorism; (2) Countering other Threats to Security and (3)NATO, Partner and Mediterranean Dialogue Country Priorities. The types of meeting supported are generally "Advanced Study Institutes" and "Advanced Research Workshops". The NATO SPS Series collects together the results of these meetings.The meetings are co- organized by scientists from NATO countries and scientists from NATO's "Partner" or "Mediterranean Dialogue" countries.The observations and recommendations made at the meetings, as well as the contents of the volumes in the Series, reflect those of parti- cipants and contributors only;they should not necessarily be regarded as reflecting NATO views or policy. Advanced Study Institutes (ASI) are high-level tutorial courses intended to convey the latest developments in a subject to an advanced-level audience Advanced Research Workshops (ARW) are expert meetings where an intense but informal exchange of views at the frontiers of a subject aims at identifying directions for future action Following a transformation of the programme in 2006 the Series has been re-named and re-organised. Recent volumes on topics not related to security, which result from meetings supported under the programme earlier, may be found in the NATO Science Series. The Series is published by IOS Press, Amsterdam, and Springer, Dordrecht, in conjunction with the NATO Public Diplomacy Division. Sub-Series A. Chemistry and Biology Springer B. Physics and Biophysics Springer C. Environmental Security Springer D. Information and Communication Security IOS Press E. Human and Societal Dynamics IOS Press http://www.nato.int/science http://www.springer.com http://www.iospress.nl Series C:Environmental Security The Plant Cytoskeleton: a Key Tool for Agro-Biotechnology edited by Yaroslav B. Blume Institute of Food Biotechnology and Genomics National Academy of Sciences of Ukraine, Kiev Ukraine W. Vance Baird Clemson University Clemson, SC U.S.A. Alla I. Yemets Institute of Cell Biology and Genetic Engineering National Academy of Sciences of Ukraine, Kiev Ukraine and Diego Breviario CNR, Milano Italy Published in cooperation with NATO Public Diplomacy Division Proceedings of the NATO Advanced Research Workshop on The Plant Cytoskeleton: Genomic and Bioinformatic Tools for Biotechnology and Agriculture Yalta, Crimea, Ukraine 19–2 3 September 2006 Library of Congress Control Number: 2008932215 ISBN 978-1-4020-8842-1 (PB) ISBN 978-1-4020-8841-4 (HB) ISBN 978-1-4020-8843 -8 (e-book) Published by Springer, P.O. Box 17, 3300 AADordrecht, The Netherlands. www.springer.com Printed on acid-free paper All Rights Reserved © 2008 Springer Science + Business Media B.V. No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being enteredand executed on a computer system, for exclusive use by the purchaser of the work. TABLE OF CONTENTS Preface..........................................................................................................ix Acknowledgements......................................................................................xi PART 1 CYTOSKELETON FUNDAMENTALS Plant Gamma-TuSC-like Components: Their Role in Microtubule Nucleation....................................................................................................3 V. Seltzer, T. Pawlowski, J.-L. Evrard, J. Canaday, E. Herzog, and A.-C. Schmit 1. Introduction...........................................................................................4 2. Microtubule nucleation complexes........................................................5 2.1. The gamma-TuSC, a minimal nucleating unit...............................6 2.2. The gamma-TuRC, a structured seed controlling microtubule nucleation.......................................................................................8 3. Microtubule nucleation is a conserved process.....................................8 3.1. Plant extracts restore the nucleating function of inactivated centrosomes...................................................................................9 3.2. The Plant nuclear surface acts as microtubule nucleator.............10 3.3. Membrane-associated complexes show a microtubule nucleation activity.........................................................................................11 4. Tracking microtubule nucleation sites.................................................11 4.1. Centrosomes and SPBs................................................................11 4.2. Microtubule nucleation in animal cells possessing inactive centrosomes.................................................................................12 4.3. Are kinetochores necessary for spindle assembly?......................12 4.4. Organelle and membranous nucleating sites...............................13 4.5. Plant microtubule nucleation sites...............................................13 4.5.1. Interphase cells.................................................................14 4.5.2. Spindle microtubule assembly and cell plate development14 5. Multiple functions of γ-TuSC components.........................................16 5.1. Gamma-tubulin mutants..............................................................16 5.2. SPC97/GCP2 and SPC98/GCP3 mutants....................................17 6. Concluding remarks............................................................................17 v vi TABLE OF CONTENTS Gamma-tubulins and their Functions in Plant Cells.............................23 P. Binarova, V. Cenklova, Z. Pochylova, E. Draberova, and P. Draber 1. Introduction.........................................................................................24 2. Microtubule organizing centers...........................................................24 3. Non-centrosomal microtubule nucleation...........................................25 4. γ-Tubulin in eukaryotic cells is present in multiple forms and its structure suggests multiple interactions...............................................26 5. Subcellular distribution of γ-tubulin in acentrosomal higher plant cells.............................................................................................28 6. γ-Tubulin complexes and their effect on microtubule nucleation.......30 7. Plant γ-tubulin complexes are associated with membranes.................31 8. Association of plant γ-tubulin with αβ-tubulin dimers and microtubules........................................................................................32 9. Conclusions.........................................................................................36 Coiled-coil- and Intermediate Filament-proteins in the Plant Nucleoskeleton....................................................................................................45 S. Moreno Díaz de la Espina and C. de la Torre 1. The nucleoskeleton..............................................................................46 2. Ultrastructural organization of the plant NSK.....................................47 3. Protein composition of the plant NSK.................................................48 4. Coiled-coil and IF proteins..................................................................49 5. Binding of IF and coiled-coil proteins to nucleic acids.......................50 6. IF-related proteins in the NSK............................................................50 7. NuMA (Nuclear Mitotic Apparatus) protein.......................................51 7.1. Self-assembly of NuMA..............................................................51 7.2. NuMA partners............................................................................52 7.3. NuMA in mitosis.........................................................................53 7.4. Nuclear functions of NuMA........................................................54 7.5. Plant NuMA homologues............................................................55 8. Lamins.................................................................................................56 8.1. Secondary structure of lamins......................................................57 8.2. Lamin-associated proteins...........................................................57 8.3. Polymerization of lamins.............................................................58 8.4. Internal lamins.............................................................................59 8.5. Roles of lamins............................................................................60 8.6. Do plants have nuclear lamins?...................................................61 9. Other IF components of the plant nuclear matrix: MFP1, NMCP1 and NMP1.............................................................................62 10. FPP (Filament-like Plant Proteins)......................................................63 11. Concluding remarks and perspectives.................................................64 TABLE OF CONTENTS vii PART 2 CYTOSKELETON AND DEVELOPMENT Microtubules and the Control of Cell Elongation in Arabidopsis Roots ..........................................................................................................73 J.-P. Verbelen, J. Le, K. Vissenberg, T. de Cnodder, F. Vandenbussche, K. Sugimoto, and D. Van Der Straeten 1. Introduction.........................................................................................74 2. Results and discussion.........................................................................75 2.1. Defining fast elongation...............................................................75 2.2. The control of fast elongation......................................................76 2.3. Microtubules and microfibrils.....................................................77 2.4. Microtubule reorientation is not involved in the control of cell elongation....................................................................................83 2.5. The cell wall and control of cell elongation................................85 3. Conclusions.........................................................................................87 Regulation of Root Hair Tip Growth: Can Mitogen-activated Protein Kinases be Taken into Account?................................................91 M. Ovečka, I. K. Lichtscheidl, F. Baluška, J. Šamaj, D. Volkmann, and H. Hirt 1. Introduction.........................................................................................92 2. Morphogenesis of plant roots..............................................................93 3. Root hair formation and tip growth.....................................................95 3.1. Root hair initiation.......................................................................95 3.2. Cell wall.......................................................................................96 3.3. Transition from the bulge to hair elongation...............................96 3.4. Cell elongation by tip growth......................................................97 3.4.1. Cytoskeleton.....................................................................97 3.4.2. Calcium.............................................................................99 3.4.3. Other ions and pH...........................................................100 3.4.4. Plant hormones...............................................................101 4. Signal transduction and MAPKs.......................................................102 4.1. Plant MAPKs.............................................................................105 4.2. MAPKs in plant pathogen, hormone and stress response..........105 4.3. MAPKs in developmental processes.........................................106 5. SIMK in Medicago root hairs............................................................107 6. Conclusions.......................................................................................116 Cytoskeletal Changes During Spermatogenesis in Chara Antheridia................................................................................................129 Q. Jin and K. H. Hasenstein 1. Introduction.......................................................................................130 viii TABLE OF CONTENTS 2. Materials and methods.......................................................................131 2.1. Culture conditions......................................................................131 2.2. Chemical treatments..................................................................131 2.3. Immuno-cytolocalization...........................................................131 2.3.1. MT staining.....................................................................131 2.3.2. F-actin staining...............................................................132 2.3.3. Nuclear staining and confocal microscopy.....................132 3. Results...............................................................................................132 3.1. Mitosis of the antheridial filaments............................................132 3.1.1. Microtubules...................................................................132 3.1.2. Actin...............................................................................134 3.2. Differentiation............................................................................135 3.2.1. Microtubules...................................................................135 3.2.2. F-actin.............................................................................136 3.3. Oryzalin treatment......................................................................137 4. Discussion.........................................................................................139 PART 3 CYTOSKELETON AND SIGNALLING Plant Tubulin Phosphorylation and its Role in Cell Cycle Progression..............................................................................................145 Y. B. Blume, C. W. Lloyd, and A. I. Yemets 1. Introduction.......................................................................................146 2. Plant tubulin- and microtubule related protein kinases.....................147 2.1. Cyclic nucleotide- and calcium-dependent tubulin phosphorylation..........................................................................147 2.2. Role of cyclin-dependent kinases in plant microtubule organization................................................................................150 2.3. Putative role of tyrosine kinases in plant microtubule phosphorylation..........................................................................153 3. Interaction of serine/threonine protein phasphatases with plant microtubules......................................................................................154 4. Conclusions.......................................................................................155 Plant Myosins: Do they Have Roles in Gravi- and Mechanosensing?....................................................................................161 D. Volkmann and F. Baluška 1. Introduction.......................................................................................161 2. The cytoskeleton in root gravisensing...............................................163 3. Differential expression of critical cytoskeletal molecules in the root cap....................................................................................164 4. Domain organization of unconventional plant myosins....................167 5. Conclusions and outlook...................................................................168 TABLE OF CONTENTS ix The Role of the Cytoskeleton in Plant Cell Gravisensitivity...............173 E. L. Kordyum, G. V. Shevchenko, I. M. Kalinina, O. T. Demkiv, and Y. D. Khorkavtsiv 1. Introduction.......................................................................................173 2. Cytoskeleton in graviperception........................................................175 2.1. Gravitropic reaction in moss protonema....................................179 2.2. Possible links between light and gravisensing...........................180 2.2.1. Microtubules reorganization during red light mediated phototropism...................................................................180 2.2.2. Gravity-dependent morphogenesis of protonemata cell.182 3. Cytoskeleton in gravisensing.............................................................184 4. Interrelations between cytoskeleton elements during gravisensing..189 5. Conclusions.......................................................................................191 PART 4 GENOMICS OF THE CYTOSKELETON The Importance of Being an Intron, by Wild….Type Tubulin Genes.........................................................................................199 D. Breviario, L. Morello, A. Manca, and S. Gianì 1. Introduction.......................................................................................199 1.1. Spliceosomal introns: evolutionary genomics aspects...............200 1.2. Spliceosomal introns: regulatory aspects...................................201 2. Introns in cytoskeletal genes regulate gene expression.....................203 2.1. Intron-mediated enhancement of gene expression: IME............203 2.2. Intron dependent spatial expression: IDSE................................204 2.3. Predictable functional versatility of the introns of cytoskeletal genes.......................................................................205 2.4. Additional predictable regulatory features?...............................206 3. Introns in tubulin genes: a rationale for the cTBP method................207 3.1. Intron length polymorphism: ILP...............................................207 3.2. Combinatorial tubulin-based polymorphism: cTBP..................208 4. cTBP method: some applications......................................................209 4.1. Genotyping plant species...........................................................209 4.2. Plant origin recognition..............................................................211 4.3. Genotyping plant varieties.........................................................212 4.4. Parental assessment....................................................................213 4.5. In vitro genomic instability........................................................214 5. Conclusions.......................................................................................215 The Transcriptome of the Tubulin Gene Family in Plants..................219 V. V. Radchuk 1. Introduction.......................................................................................219 2. Genes and gene families for tubulins................................................220 x TABLE OF CONTENTS 3. Expression of tubulin genes..............................................................225 3.1. Tubulin genes are expressed highly redundantly in vegetative tissues.........................................................................................225 3.2. Pollen-specific tubulin genes.....................................................229 3.3. Role of the microtubules during seed development...................231 3.4. Modification of tubulin gene expression in response to different factors..........................................................................233 4. Regulation of the expression of tubulin genes..................................234 Array Technology for Studying Maize Tubulin...................................243 D. P. Griffin and S. M. Wick 1. Introduction.......................................................................................244 2. Array platforms.................................................................................245 2.1. Single-channel and two-color microarray analyses...................246 2.1.1. Two-color spotted microarray (also known as two-dye design, ratio-based, or two-channel microarrays)...........246 2.1.2. Single-channel microarray (also known as one-color and single-dye oligonucleotide microarrays)..................247 2.1.3. Affymetrix maize GeneChip®........................................248 3. Analysis software packages and their properties...............................249 4. Considerations when designing a microarray experiment.................250 5. Materials and methods...................................................................... 253 5.1. Plant growth and tissue collection..............................................253 5.2. RNA isolation and microarray hybridizations...........................253 5.3. Present-absent gene analysis......................................................254 5.4. Statistical analysis using MAS5.0 and RMA.............................254 5.5. Determination of significance....................................................254 6. Results...............................................................................................255 6.1. Presence of transcripts................................................................255 6.2. Expression patterns of each β-tub gene between B73 tissues....255 6.3. Comparison of expression of each β-tub gene across B73 tissues.................................................................................256 7. Discussion.........................................................................................258 7.1. Determining significance of expression levels...........................258 7.2. Choosing replication strategy when designing a microarray study...........................................................................................258 7.3. Determination of presence of transcript correlated to intensity of GeneChip® signal..................................................................259 7.4. Comparison of gene chip analyses and previous studies on tub transcripts........................................................................259 7.5. Differential expression of the tub genes.....................................260 7.5.1. β-tubulin 1......................................................................260 7.5.2. β-tubulin 2......................................................................260
Description: