ebook img

The Physics of Ettore Majorana: Theoretical, Mathematical, and Phenomenological PDF

394 Pages·2014·2.191 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Physics of Ettore Majorana: Theoretical, Mathematical, and Phenomenological

THE PHYSICS OF ETTORE MAJORANA Through just a handful of papers, Ettore Majorana left an indelible mark on the fields of physics, mathematics, computer science, and even economics before his mysteriousdisappearancein1938.ItisonlynowthattheimportanceofMajorana’s work is being realized: Majorana fermions are intensely studied today, and his work on neutrino physics has provided possible explanations for the existence of darkmatter. Inthisuniquevolume,SalvatoreEspositonotonlyexploresMajorana’sknown papers but, even more interestingly, also unveils his unpublished works. These include powerful methods and results, ranging from the atomic two-center prob- lem, the Thomas–Fermi model, and ferromagnetism to quasi-stationary states, n-componentrelativisticwaveequations,andquantumscalarelectrodynamics. Featuring biographical notes and contributions from leading experts Evgeny Akhmedov and Frank Wilczek, this fascinating book will captivate graduate stu- dentsandresearchersinterestedinbothfrontierscienceandthehistoryofscience. Salvatore Esposito is Professor of the History of Physics and Associate Pro- fessor of Theoretical Physics, and Associate Researcher at the Naples Unit of the Istituto Nazionale di Fisica Nucleare. His research interests range from neutrino physicstofieldtheory,andheisconsideredtobetheworldexpertonMajorana’s work. THE PHYSICS OF ETTORE MAJORANA Phenomenological, Theoretical, and Mathematical SALVATORE ESPOSITO WithcontributionsbyE.AkhmedovandF.Wilczek UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107044029 ©S.Esposito2015 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2015 PrintedintheUnitedKingdombyClays,StIvesplc AcatalogrecordforthispublicationisavailablefromtheBritishLibrary ISBN978-1-107-04402-9Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication, anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents Acknowledgments pagexii PartI Introducingthecharacter 1 1 Lifeandmyth 3 1.1 Fortunesandmisfortunesofagenius 3 1.2 Familyanduniversitytraining 6 1.3 LonephysicistintheFermigroup 9 1.4 Leipzig–Rome–Naples:thelateryears 12 2 Thevisibleside 17 2.1 Tenpapersdepictingthefuture 17 2.2 IntroducingtheDiracequationintoatomicspectroscopy 18 2.3 Spontaneousionization 19 2.3.1 Anomaloustermsinhelium 19 2.3.2 IncompleteP(cid:2) triplets 21 2.3.3 Majorana–Fano–Feshbachresonances 23 2.4 Chemicalbonding 24 2.4.1 Heliummolecularion 24 2.4.2 Majoranastructures 26 2.5 Non-adiabaticspin-flip 27 2.5.1 Majoranasphereandageneraltheorem 28 2.5.2 Landau–Zenerprobabilityformula 30 2.5.3 Majorana’sholes 31 2.5.4 Majorana–Brosseleffect 32 2.6 Nuclearforces 33 2.6.1 TheHeisenbergmodelofnuclearinteractions 33 2.6.2 Majorana’sexchangemechanism 35 vi Contents 2.6.3 Thomas–FermiformalismandYukawapotential 37 2.7 Infinite-componentequation 38 2.7.1 Asuccessfulrelativisticwaveequation 39 2.7.2 Majoranaequation 40 2.7.3 Infinite-dimensional representations of the Lorentzgroup 41 2.7.4 AdifficultproblemforPauliandFierz 42 2.7.5 Furtherelaborations 44 2.8 Majorananeutrinotheory 47 2.8.1 “Symmetric”Diracequation 47 2.8.2 Neutrino–antineutrinoidentity 49 2.8.3 Racahandtheneutrinolessdoubleβ-decay 50 2.8.4 Pontecorvoandtheneutrinooscillations 51 2.8.5 Majoranafermions 52 2.9 Complexsystemsinphysicsandeconomics 53 2.9.1 GenesisofpaperN.10 54 2.9.2 Statisticallawsinsocialsciences 55 2.9.3 Asensationalsuccessineconophysics 57 PartII Atomicphysics 61 3 Two-electronproblem 63 3.1 Along-lastingsuccessforquantummechanics 63 3.2 Knownsolutionstotheheliumatomproblem 64 3.2.1 Perturbativecalculations 64 3.2.2 VariationalmethodI 66 3.2.3 Self-consistentfieldmethod 68 3.2.4 Slater’srefinement 69 3.2.5 VariationalmethodII:Hylleraasvariables 70 3.2.6 Helium-likeions 71 3.3 Majoranaempiricalrelations 72 3.4 Heliumwavefunctionsandbroadrangeestimates 76 3.5 Accuratenumbersandageneraltheory 78 3.5.1 AsimpleralternativetoHylleraas’smethod 78 3.5.2 Majorana’svariantofthevariationalmethod 79 3.6 Conclusions 81 4 Thomas–Fermimodel 83 4.1 Fermiuniversalpotential 83 4.1.1 Thomas–Fermiequation 83 Contents vii 4.1.2 Numericalandapproximatesolutions 85 4.1.3 Mathematicalproperties 86 4.2 MajoranasolutionoftheThomas–Fermiequation 87 4.2.1 TransformationintoanAbelequation 87 4.2.2 Analyticseriessolution 89 4.2.3 Numericaltables 92 4.3 Mathematicalgeneralizations 93 4.3.1 Frobeniusmethod 93 4.3.2 Scale-invariantdifferentialequations 95 4.4 Physicalapplications 97 4.4.1 ModifiedFermipotentialforheavyatoms 98 4.4.2 Secondapproximationfortheatomicpotential 100 4.4.3 Atomicpolarizability 102 4.4.4 Applicationstomolecules 103 4.5 Conclusions 105 PartIII Nuclearandstatisticalphysics 107 5 Quasi-stationarynuclearstates 109 5.1 Probingtheatomicnucleuswithα particles 109 5.2 Scatteringofα particlesonaradioactivenucleus 111 5.2.1 Quantum-mechanicaltheory 111 5.2.2 Thermodynamicapproach 115 5.3 Transitionprobabilitiesofquasi-stationarystates 116 5.3.1 Transitionsfromadiscreteintoacontinuumstate 116 5.3.2 Transitionsintotwocontinuousspectra 118 5.3.3 Transitionsfromacontinuumstate 118 5.4 Nucleardisintegrationbyα particles 119 5.4.1 Statementoftheproblem 119 5.4.2 Theappropriatewavefunction 121 5.4.3 Crosssection 122 5.5 Conclusions 124 6 Theoryofferromagnetism 127 6.1 Towardsastatisticaltheoryofferromagnetism 128 6.1.1 Molecularfields 128 6.1.2 Heisenbergtheory 129 6.1.3 Laterrefinements 131 6.2 Majoranastatisticalmodel 131 6.2.1 Distributionfunction 134 viii Contents 6.3 Solutionofthemodelinthecontinuumlimit 136 6.3.1 Partitionfunctionatfinitetemperature 138 6.3.2 Meanmagnetization 139 6.4 Applicationsandfurtherresults 141 6.4.1 Particularferromagneticgeometries 141 6.4.2 Criticaltemperatureanddimensionality 143 6.5 Conclusions 144 PartIV Relativisticfieldsandgrouptheory 147 7 Groupsandtheirapplicationstoquantummechanics 149 7.1 The“Gruppenpest”inquantummechanics 150 7.2 Unitarytransformationsintwodimensions 153 7.2.1 D representationandgroupgenerators 154 j 7.3 Three-dimensionalrotations 156 7.3.1 Groupgenerators 157 7.4 Application:theanomalousZeemaneffect 160 7.5 Lorentzgroupanditsrepresentations 164 7.5.1 n-dimensionalDiracmatrices 164 7.5.2 Specialcase:maximumallowedpforfixedn 167 7.5.3 Non-Hermitianoperators 169 7.5.4 Infinite-dimensionalunitaryrepresentations 170 7.6 Conclusions 173 8 Diracequationsandsomealternatives 175 8.1 Searchingforanequation 175 8.1.1 MassivephotonsandtheDKPalgebra 178 8.1.2 Dirac–Fierz–Pauliformalism 180 8.1.3 Generalequationsforarbitraryspin 182 8.2 Majoranan-componentspinorequations 184 8.2.1 The16-componentequationforatwo-particlesystem 185 8.2.2 Equationforasix-componentspinor 187 8.2.3 Five-componentequation 189 8.3 Parallellives(andfindings) 189 8.4 Conclusions 191 PartV Quantumfieldtheory 193 9 Scalarelectrodynamics 195 9.1 Earlyquantumelectrodynamics 196 Contents ix 9.1.1 Quantumfieldformalism 196 9.1.2 Particlesandantiparticles 198 9.1.3 Pauli–Weisskopftheory 198 9.2 MajoranatheoryofscalarelectrodynamicsI 201 9.3 MajoranatheoryofscalarelectrodynamicsII 205 9.4 Applicationtothenuclearstructure 209 9.5 Conclusions 212 10 Photonsandelectrons 214 10.1 Photonwavemechanics 215 10.1.1 Majorana–Oppenheimer formulation of electrodynamics 215 10.1.2 Lorentz-invariantwavetheory 217 10.1.3 Two-componenttheory 219 10.1.4 Fieldquantization 220 10.2 Dynamicaltheoryofelectronsandholes 221 10.3 Conclusions 224 PartVI Fundamentaltheoriesandothertopics 227 11 A“pathintegral”approachtoquantummechanics 229 11.1 DiracandFeynman’smathematicalapproach 230 11.2 Majorana’sphysicalapproach 232 11.3 Conclusions 234 12 Fundamentallengthsandtimes 236 12.1 Introducingelementaryspace-timelengths 236 12.2 Quasi-Coulombianscattering 239 12.3 Intrinsictimedelayandretardedelectromagneticfields 242 12.4 Conclusions 244 13 Majorana’smultifacetedlife 246 13.1 Majoranaasastudent 246 13.1.1 Meltingpointshiftduetoamagneticfield 246 13.1.2 Determinationofafunctionfromitsmoments 248 13.1.3 WKBmethodfordifferentialequations 251 13.2 Majorana as a phenomenologist: spontaneous and induced ionizationofahydrogenatom 254 13.2.1 Hydrogenatomplacedinahighpotentialregion 255 13.2.2 Ionizationofahydrogen-likeatominanelectricfield 260 13.3 Majoranaasatheoretician:aunifyingmodelforthe fundamentalconstants 263 x Contents 13.4 Majoranaasamathematician 264 13.4.1 Improperoperators 264 13.4.2 Cubicsymmetry 266 13.5 Majoranaasateacher 270 PartVII BeyondMajorana 277 14 Majoranaandcondensedmatterphysics 279 f.wilczek 14.1 Spinresponseanduniversalconnection 280 14.2 LevelcrossingandgeneralizedLaplacetransform 282 14.3 Majorana fermions and Majorana mass: from neutrinos to electrons 285 14.3.1 Majorana’sequation 285 14.3.2 AnalysisofMajorananeutrinos 287 14.3.3 Majoranamass 289 14.3.4 Majoranaelectrons 292 14.4 Majorinos 293 14.4.1 Kitaevchain 294 14.4.2 Junctionsandthealgebraicgenesisofmajorinos 298 14.4.3 Continuummajorinos 301 15 MajorananeutrinosandotherMajoranaparticles:theory andexperiment 303 e.akhmedov 15.1 Weyl,Dirac,andMajoranafermions 304 15.1.1 Particle−antiparticleconjugation 306 15.1.2 DiracdynamicsandtheMajoranacondition 307 15.1.3 FermionmasstermsandU(1)symmetries 312 15.1.4 FeynmanrulesforMajoranaparticles 313 15.2 C,P,CP,andCPTpropertiesofMajoranafermions 314 15.3 MixingandoscillationsofMajorananeutrinos 317 15.3.1 NeutrinoswithaMajoranamassterm 317 15.3.2 GeneralcaseofDirac+Majoranamassterm 322 15.3.3 Dirac and pseudo-Dirac neutrino limits intheD+Mcase 325 15.4 Seesawmechanismofneutrinomassgeneration 327 15.5 ElectromagneticpropertiesofMajorananeutrinos 330 15.6 MajoranaparticlesinSUSYtheories 338

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.