ebook img

The Physics of Crystallization from Globular Cluster White Dwarf Stars in NGC 6397 PDF

0.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Physics of Crystallization from Globular Cluster White Dwarf Stars in NGC 6397

ACCEPTEDBYTHEASTROPHYSICALJOURNALLETTERS PreprinttypesetusingLATEXstyleemulateapjv.10/09/06 THEPHYSICSOFCRYSTALLIZATIONFROMGLOBULARCLUSTERWHITEDWARFSTARSINNGC6397 D.E.WINGET1,2,S.O.KEPLER2,FABÍOLACAMPOS2,M.H.MONTGOMERY1,3,LEOGIRARDI4,P.BERGERON5,KURTISWILLIAMS1,6 (ReceivedAugust18,2008;AcceptedJanuary16,2009) AcceptedbytheAstrophysicalJournalLetters ABSTRACT Weexplorethephysicsofcrystallizationinthedeepinteriorsofwhitedwarfstarsusingthecolor-magnitude 9 diagramandluminosityfunctionconstructedfrompropermotioncleanedHubbleSpaceTelescopephotometry 0 0 oftheglobularclusterNGC6397.Wedemonstratethatthedataareconsistentwiththetheoryofcrystallization 2 oftheionsintheinteriorofwhitedwarfstarsandprovidethefirstempiricalevidencethatthephasetransition is first order: latent heat is released in the process of crystallization as predicted by vanHorn (1968). We n outlinehowthisdatacanbeusedtoobservationallyconstrainthevalueofΓ≡E /E neartheonset a Coulomb thermal ofcrystallization,thecentralcarbon/oxygenabundance,andtheimportanceofphaseseparation. J Subjectheadings:whitedwarfs—densematter—equationofstate 9 1 1. STARFORMATIONHISTORYANDPHYSICSFROMTHEWHITE becausethediskpopulationcontainsstarsformedatdifferent ] R DWARFSTARS timesandfromdifferentmainsequenceprogenitors. Thisis S White dwarf stars are the inevitable progeny of nearly greatly simplified in a cluster sample and, most of all, in an . all(≃97%)stars(e.g.,Fontaine,Brassard,&Bergeron2001, oldglobularcluster. InthispaperwefocusontheHSTpho- h hereafterFBB).Theirdistributioncanbeusedtoextracttwo tometryofNGC6397andthedistributionofWDstarsinthe p things:ageofthestellarpopulationandcoolingphysicsofthe color magnitudediagram. We reportevidencefor a “bump” - o whitedwarf(WD) stars. Thetwo are interrelated,butquali- intheLFduetothereleaseofthelatentheatofcrystallization r tatively different. Extracting the age and history of star for- andwe show howthis can be refined to yield moreaccurate st mationhasbecomeknownasWDcosmochronology. Anex- measuresoftheseprocesses. a cellentreviewemphasizingthisconnectionandtheattendant [ uncertaintiesisgivenbyFBB. 2. ANCHORINGTHEWHITEDWARFEVOLUTIONARY SEQUENCESINTHECOLOR-MAGNITUDEPLANE The techniques of WD cosmochronology have been suc- 1 v cessfullyappliedtothediskbyanumberofinvestigators(e.g., Wefitmainsequence,pre-WD,andWDevolutionarymod- 0 Wingetetal.1987;Wood1992;Hansen&Liebert2003,and els simultaneously. The main sequenceandpre-WD models 5 referencestherein)andarebeingcontinuouslyrefined. They we used for this work were computed with the Padova stel- 9 have also been applied to a varietyof open clustersand cal- larevolutioncode(Marigoetal.2008). Weusedavarietyof 2 ibrated against main sequence turnoff and related methods metallicitiestodeterminethebestfittothemainsequenceand . (e.g., Kaliraietal. 2007; DeGennaroetal. 2008, and refer- WDmodels. 1 encestherein). TheHubbleSpaceTelescope(HST)photom- Our WD evolutionary models have updated constitu- 0 9 etry obtained by Richer and Hansen and their collaborators tivephysics(seee.g.,Bischoff-Kim,Montgomery,&Winget 0 (Hansenetal. 2002, 2007; Richeretal. 2008) has yielded a 2008). We place the new generation of WD evolutionary models of DA and DB WD stars in the observed F : new harvest of informationfor WD populations. They have 814W v usedtheAdvancedCameraontheHSTtoreachtheterminus vs. F606W color-magnitudediagram(hereinafterCMD) using Xi of the WD cooling sequence, giving us a qualitatively dif- P. Bergeron’s model atmosphere grids7 (for a detailed de- ferent tool for analyzing the WD population. Hansenetal. scriptionseeBergeronetal.1995;Holberg&Bergeron2006; r a (2007)usedMonteCarlotechniquesinconjunctionwiththeir Holberg,Bergeron,&Gianninas2008)alongwithananalyt- coolingmodelsto determinethe age of NGC 6397from the icalcorrectiontotheKowalski(2007)resultsfortheeffectof WDstars,attemptingtoaccountforuncertaintiesinthebasic Ly α far red-wing absorption. This correction is small and physicalparametersoftheWD starstodetermineanagefor willbediscussedinaforthcomingpaper. thecluster;usinggoodnessoffitcriteria,theyarriveatanage Our best fit of the CMD in the natural ACS color sys- forthecluster,basedonWDcooling,of11.47±0.47Gyr. temgivesametallicityofZ=0.00012±0.00001,E(606W- Findingthe signatureofthe key physicalpropertiesof the 814W)=0.22±0.02,and(m- M)=12.49±0.05(Figure1) WDstarsinthediskluminosityfunction(hereinafterLF)has and a main sequence turnoff age of 12-+10..05 Gyr. The age is provenmore difficult than getting an age constraint. This is consistent with the values found by Richeretal. (2008) and Hansenetal. (2007), even though they used the Dartmouth 1Department ofAstronomy,University ofTexasatAustin, Austin, TX, EvolutionarySequence (DES). The metallicity is a factor of USA;[email protected] two lower than Richeretal. (2008) but is in agreementwith 2Instituto deFísica, Universidade Federal doRioGrandedoSul, Porto theindependentdirectspectroscopicdeterminationsbasedon Alegre,RS-Brasil VLTdata(Kornetal.2007). Thevaluesofthese parameters 3Delaware Asteroseismic Research Center, Mt. Cuba Observatory, fixtheWDcoolingtracksinthecolor-magnitudediagramand Greenville,DE,USA 4INAF-PadovaAstronomicalObservatory eliminatethefreedomtoslidethetracksashasbeendonein 5Département de Physique, Université de Montréal, C. P. 6128, Succ. other works (e.g., Hansenetal. 2007). This constrains the Centre-Ville,Montréal,QuébecH3C3J7,Canada 6NSFAstronomy&AstrophysicsPostdoctoralFellow 7http://www.astro.umontreal.ca/∼bergeron/CoolingModels/ 2 Wingetetal. NGC6397 Hubble ACS FIgure 2: NGC 6397 white dwarfs with DA and DB evolutionary tracks with 5 Bergeron-Kowalski Colors and E=0.22,(m-M)=12.49 22 23 24 10 Padova 12Gyr 25 [[FFee//HH]]==--22..01 F814W 26 DA 000...454705500 0.535 15 [Fe/H]=-2.2 27 0.580 0.685 0.800 0.900 28 DB 0.450 (m-M)=12.49 00..550305 E(F606W-F814W)=0.22 29 0.580 0.685 0.800 20 0.900 30 -0.5 0 0.5 1 1.5 2 F606W-F814W FIG.2.— NGC6397WDswithDAandDBevolutionarysequencesusing Bergeron(2006)atmospheresadjustedwithananalyticalfittotheKowalski 25 (2007)changesforLy-αred-wingopacity. of the reddening. We emphasize again that simultaneously fittingthemainsequenceandwhitedwarfsequenceprovides 0 1 2 3 tightconstraintsonboththedistancemodulusandtheredden- F606W-F814W ing. InFigure3weshowtheLFofboththeHansenetal.(2007) FIG. 1.— The best fit to the proper-motion screened HST data on andRicheretal.(2008)samples. ThepeakinbothLFsnear NGC6397usingthePadovastellarevolutioncode(Marigoetal.2008)and theBergeron(2006)atmospheres. Thisfitgives[Fe/H]=- 2.2, (m- M)= F814W =26.5suggeststhatevolutionslowsthroughthisre- 12.49,andE(F606W- F814W)=0.22. ThisanchorsourWDsequencesin gion. In the sample of Hansenetal. (2007) the LF contin- theCMD. best-fittotalWD massthroughoutthe CMD. Itisclear from Figure2thatthetracksfitthebulkofthesamplewell. The data (see Figure 2) are taken from the proper motion selected sample of Richeretal. (2008). This is a more ho- mogeneous sample than that of Hansenetal. (2007) but is smaller because of the reduced area and magnitude limits of the proper-motion data. Four features stand out in Fig- ure 2: there is a gap in the distribution near F814W =24.5 thatmaybestatisticallysignificant,thereisanoticeablecon- centration of stars near F814W = 26.5, there is a terminus atapproximatelyF814W =27.6and a noticeableturnto the bluebeforetheterminus. Theselasttwofeatureswerenoted in Hansenetal. (2007). In this paper we focus on what we canlearnfromtheconcentration,orclump,ofstarsnear26.5, providingaphysicalexplanation. 3. PHYSICSWITHTHECMDANDLUMINOSITYFUNCTION The CMD diagramconstrainsthe mechanicalandthermal propertiesoftheWDstars(Richeretal.2008). Oncetheevo- lutionary tracks have been anchored by the main sequence andWDsequencesimultaneouslyasdescribedabovewecan move on to exploring the physics contained in the CMD. Hansenetal.(2007)pointoutthatthelocationoftheterminus providesasimplelower-limittotheageoftheclusterfromthe WDcoolingtimes. Forourmodels,thisWDcoolinglimitis reachedatabout10.5Gyrforpurecarboncoremodels. This agelimitisconsistentwiththevaluesquotedinHansenetal. (2007) and Richeretal. (2008). The position of the tracks isinsensitivetoprocessesaffectingonlytheage;toexamine thesewemustlooktotheLF,thenumberofstarsobservedas afunctionofmagnitude. Fortheparametersdescribedabove,itisevidentfromFig- FIG. 3.—toppanel: TheobservedWDLF(histogram)andcompleteness ure2thatmodelswithmassesintherangeof0.500- 0.535M⊙ rpealnaetilo:nth(deostatemdelifnoer)tohfethHeanRsiecnheerteatl.al(.2(020070)8s)asmamplpel.eFfoorrNboGthCs6a3m9p7l.elso,wweer bestfittheregionnearthecenteroftheclump.Thisincreases notethatthecompletenesschangesfairlyslowlyovertheregionoftheob- slightly fordecreasedvaluesof m- M andis also a function servedrapidfall-offofstarsandwhileremainingabove50%. CrystallizationPhysicsfromWDs 3 uedtorisewellpastthispeak,soitwasnotthemaximumof thedistribution;itcompletelydominatesthedistributionafter the application of the proper motion selection (Richeretal. 2008).Thecompletenessestimatesofbothsampleshavebeen carefullyconsideredbytherespectiveauthors(Figure3,dot- tedlines)andtherelativelyslowvariationofthecompleteness near this peak implies it is not the result of incompleteness. We therefore seek a physicalexplanationof this peak in the contextofaphysicalprocessthatoccursnearthispointinthe models. TwoprocessesoccurinthedominantDAmodelsnearthis point:crystallizationandtheconvectivecoupling(e.g.,FBB). Crystallization,throughthereleaseoflatentheat,slowsdown evolutionandproducesabumpin theLF. Convection,when itreachesdowntothedegeneracyboundary,decreasesthein- sulation of the nondegenerate envelope and temporarily in- creases the total temperature gradient; this serves to slow downtheevolution,briefly,thencausesittospeedupagain. This producesa broad feature in the WD cooling curve that willhaveasignatureintheLF. 3.1. The ΓofCrystallization Crystallization in the dense Coulomb plasma of WD inte- FIG. 4.— Theobserved WDLFofNGC6397(Richeretal. 2008, his- riors was theoretically predicted independently by Kirzhnits togram) with LFs from theoretical evolutionary sequences of 0.5M⊙ DA (1960), Abrikosov (1960), and Salpeter (1961) to occur modelswithpurecarboncores(lines): crystallizationwith(“Pure_C_Xtal”) when the ratio of the Coulomb energy to the thermal en- andwithout(“Pure_C_Xtal_No_LH”)thereleaseoflatentheat,andexclud- ergy of the ions (the ratio “Γ”) is large. For a one- ingthephysicsofcrystallization altogether(“Pure_C_No_Xtal”). Thenor- malizationofthetheoreticalcurvesischosentominimizetheRMSresiduals component plasma (OCP), there is universal agreement intheneighborhoodofthepeak,betweenthemagnitudesof25.1and27.7, amongdifferenttheoreticalapproachesthatcrystallizationoc- thefaintestvaluecalculatedforthenocrystallizationcase. Thevalueofthe curs when Γ≃175 (e.g., Slattery,Doolen,&Dewitt 1982; averageresidualforeachcurveislistedinthelegend,e.g.,itis4.77forthe “Pure_C_Xtal”case. Stringfellow,Dewitt,&Slattery 1990; Potekhin&Chabrier 2000; Horowitz,Berry,&Brown 2007). There is a similar correction given explicitly in Table 4 of Richeretal. (2008) consensus, based largely on a density-functional approach, andshowninthetoppanelofourFigure3. Finally,wenor- thatthisvalueofΓalsoholdsforabinarycarbonandoxygen malize the resulting curves by minimizing their root-mean- mixture. Such a mixture is likely relevant to WD interiors. squareresidualsintheneighborhoodofthepeak,betweenan Recently, Horowitz,Berry,&Brown (2007) used a massive F814Wof25.1and27.5. moleculardynamicscomputationtoexplorecrystallizationin In Figure 4 we show the LF of our fiducial sequence a dense Coulomb plasma. They found Γ=175 for an OCP, (“Pure_C_Xtal”), that of a sequence with crystallization ar- whileforaspecificmixtureofelementstheyfoundΓ≃237. tificially suppressed (“Pure_C_No_Xtal”), and that of one Asweshow,suchadifferenceispotentiallymeasurablefrom including crystallization but artificially excluding the latent theobservationsofWDstarsinglobularclustersorolderopen heatofcrystallization(“Pure_C_Xtal_No_LH”);allareplot- clusters. tedoverahistogramoftheobservedLF.Thenocrystallization andnolatentheatsequencesshowevidenceofabumpdueto 3.2. Luminosityfunctionswithandwithoutcrystallization convectivecouplingaroundF814W∼26,butdonotcontinue Hansenetal.(2007)demonstratedintheiranalysisthatthe torise throughtheobservedmaximum;thisisclearlyincon- entire observed sequence represents a very narrow range of sistent with the data, and no adjustment of mass or internal WDmasses,includingmagnitudeswellbelowF814W=26.5. composition can bring them into good agreement. In terms It is therefore reasonable for purposes of this initial explo- of χ2, for average observational errors of ∼5.5 stars/bin in ration to adopt a fiducial mass. On the basis of the model theneighborhoodofthepeak,wehaveχ2=0.75forthecrys- tracksin the CMD shownin Figure 2, we choose the model tallizingsequenceandχ2∼2.2forthenocrystallizationand that passes nearest the color of the red edge of the clump no latent heat sequences, a nearly three-fold increase in χ2. of stars corresponding to the peak in the LF; this model Thus,thesequencewithcrystallizationprovidesamuchbet- has a mass of 0.5M⊙. For the layer masses, we assume termatchtothedata. M /M = 10- 4 and M /M = 10- 2 for the DA sequences, H ⋆ He ⋆ and M /M =10- 2 for the DB sequence. We adopt a car- 3.3. Constrainingcrystallization,phaseseparation,andcore He ⋆ composition boncoremodelincludingtheeffectsofcrystallizationforthis sequence. In the years since vanHorn (1968) the realization that Assumingaconstantstarformationrate,thetheoreticalLF the cores of normal mass WD stars should consist of is proportional to the “cooling function” of an evolutionary a mixture of carbon and oxygen implied that crystal- model sequence. This function is given by the derivative lization may also release energy resulting from phase (dt/dm),wheremistheF814Wmagnitudeofagivenmodel separation of the carbon and oxygen (Stevenson 1977; andt isitsage. Sincewewillbecomparingdirectlywiththe Barrat,Hansen,&Mochkovitch 1988; Segretain&Chabrier data,wealsomultiplythetheoreticalLFbythecompleteness 1993;Segretainetal.1994;Isernetal.2000).Thisoccursbe- 4 Wingetetal. rioroxygenabundancebecomesstronger.Takenatfacevalue, theseresultsindicatethatthecarbon-to-oxygenratioismuch greaterthan1,andwewillbeabletomakeamorequantitative statementfromourfuturemorecompleteBayesianstatistical analysis(inpreparation). Second, as shown in Figure 4, the data are consistent and well-fitbycarboncoremodelswithcrystallizationandthere- leaseoflatentheat,butnotbymodelswithout.Thisconfirms thepredictionofvanHorn(1968)thatcrystallizationisafirst orderphase transitionand releases the latent heatof crystal- lization. Were itnotso, crystallizationwouldleavenosharp peakat thismagnitudein the observedLF. Thisimpactsour understanding of solid-state physics at extremely high den- sity: it is the first empirical confirmation of the release of latent heat during crystallization – an important theory that has a large impact on WD ages, as has been pointed out by vanHorn(1968)andmanyauthorsintheinterveningyears. Third,itispossibleapriorithatasignificantfractionofthe observedWDs may be DBs. The mismatch of observed LF andthe DB sequencein Figure5 essentially eliminatespure Heatmospheresasasignificantcomponentofthesample(as shown by Hansenetal. 2007), but not models that become mixed (H/He) as they cool; we explore this possibility in a FIG. 5.— The same as Figure 4 but for DA model sequences with forthcomingpaper. uniform, 50:50 carbon/oxygen cores: crystallization only (“CO_Xtal”), Fourth, the “best-fit” fiducial sequence in Figure 4 begins crystallization and phase separation (“CO_Xtal_PS”), and no crystalliza- crystallizingnearthevalueofΓ ≡E /E ∼170. tion (“CO_No_Xtal”). Inaddition, weshow a pure oxygen DA sequence xtal Coulomb thermal (“pure_O_Xtal”)andapurecarbonDBsequence(“pure_C_DB_Xtal”). All If the actual value is higher (lower) then crystallization will modelshave0.5M⊙. occuratlower(higher)luminosities. Highervaluesallowfits with larger amounts of oxygen in their cores. In addition, causewhenacarbon/oxygenmixturecrystallizestheoxygen Potekhin&Chabrier(2000)showthatevenforapurecompo- contentofthesolidshouldbeenhanced. SinceWDscrystal- sitiontheoreticaluncertaintiesinthepolarizationoftheelec- lizefromthecenteroutwards,thisleadstoa nettransportof tron Fermi gas and quantum effects in the liquid and solid oxygen inward and carbon outward, and because oxygen is phasecanalterthevalueofΓxtal. Infutureanalyses,anaccu- slightlyheavierthancarbonthisdifferentiationreleasesgrav- rate determinationof the mass, distance, and reddeningwill itationalenergy. leadtoanaccuratedeterminationofΓ andthecorecompo- xtal We have included this energy in our models as de- sition. scribed in Montgomeryetal. (1999). For these compu- Finally,wenotethatthecentraldensityandtemperatureas- tations we have assumed the carbon and oxygen abun- sociatedwithaparticularvalueofF814W throughthemodel dances are equal throughout the core. This underesti- atmospheresissensitive onlytothe mass-radiusrelationship mates the oxygen abundance compared to that predicted setbythedegenerateelectronpressuresupport. Thisis very by standard stellar evolution calculations (e.g., Salarisetal. insensitive to theC/O relative abundances— these produce 1997), but the remaining uncertainty in the C(α,γ)O reac- differencesofδF814W <0.05.Thisimpliesthatthevalueof tion rate (Metcalfe,Salaris,&Winget 2002; Assunçãoetal. Γ in the center, at the peak of the LF for example, is sensi- 2006) lead to a degree of uncertainty in the C/O ratio and tiveonlytotheinteriorcomposition. Thereforeweconclude profile. In Figure 5 we show several LFs: crystalliza- thattheonsetofcrystallizationisdeterminedbytheparticular tion only (“CO_Xtal”), crystallization with phase separation mixtureand the value of Γ for that mixture. Comparison of (“CO_Xtal_PS”), no crystallization (“CO_No_Xtal”), pure thetheoreticalmodelsandthedatapromisetoprovideimpor- oxygencorewithcrystallization(“Pure_O_Xtal”),andapure tantmeasuresoftheonsetanddevelopmentofcrystallization. carbonDBsequence(“Pure_C_DB_Xtal”). Asisreadilyap- parent,allofthesesequenceshaveapeakwhichistoobright 4. DISCUSSION,SUMMARY,ANDFUTURESOFEXPLORING byatleast0.5maginF814W. WHITEDWARFPHYSICSWITHCMDS These results have several interesting possible interpreta- Althoughwearenotfocusedonuncertainties,itisreason- tions. First, theresultsseemtosuggestthattheoxygencon- able to examine how changing the distance modulus might tent of these stars is relatively small or zero, since it is the affect the results. Put another way, how much does the dis- highercrystallizationtemperatureofoxygenwhichshiftsthe tance have to change to reproduce the peak of the observed peak in the LF to smaller magnitudes. The only way to LF with oxygen crystallization rather than carbon? The an- accommodate more oxygen would be to have lower mass swer is containedin Figure 5. Here we see thatto makethe models, in conflict with the distance modulus(Hansenetal. location of the peak of the LF consistent with oxygen crys- 2007). Thecolors(e.g.,Figure2)alsomakeitdifficulttoap- tallization we have to lower the distance modulusby a little peal to lower masses with higher oxygen abundances. Ad- more than 0.5 magnitudes— this possibility is excluded by ditionally, for plausible IFMRs the main sequence lifetime themainsequencefitting(Richeretal.2008). for single stars becomes more problematic with lower WD We have shown that simultaneously fitting the main se- masses even with the IFMR dependency on metallicity of quence and the WDs in a cluster gives the best possible Meng,Chen,&Han(2008). Thusthe constraintontheinte- constraintondistance,metallicityandreddeningcorrections. CrystallizationPhysicsfromWDs 5 Physically realistic atmospherecalculationsthen allow us to Brassard&Fontaine (2005). While certainly important, we place evolutionarytracksin the CMD. The numberdistribu- notethatasteroseismologicalanalysesdonotprobethelatent tion of stars contains important information on the internal heatofcrystallization;thisquantityisaccessibleonlythrough physicsoftheWDstars. Thisallowsustoexplorethephysics the WDLF, as demonstrated in this paper. To this end, we of crystallization. We presentevidencethat the data is most eagerly anticipate the forthcomingHST observationsof this consistentwith a first orderphase transition, releasing latent cluster. Thesewillprovideaproper-motionscreenedsample heatduringcrystallization, as proposedby vanHorn(1968). overalargerareaoftheclusterandtofaintermagnitudes,pro- Thecurrentdataplacesconstraintsontheonsetofcrystalliza- vidinganexactingtestoftheideasputforthinthispaper. tion, the central carbon/oxygen abundance, and the compo- sition of the envelope at the degeneracy boundary. We will improvetheseconstraintswithamorecompleteBayesiansta- The authors wish to thank A. Zabot for help computing tisticalanalysisinthenearfuture.Thisworkalsopointstothe theisochrones,TedvonHippel,andHughvanHornforuse- importanceofforthcomingdataonadditionalclustersaswell ful discussions, and Brad Hansen and referees for suggest- asincreasingthesampleofstarsthroughmoreHSTfieldson ing improvements. D.E.W., S.O.K., and F.C. are fellows of this cluster. This work also underscoresthe essential nature CNPq-Brazil. M.H.M.andK.A.W.aregratefulforthefinan- ofmorepropermotiondatatogetthemostinformationoutof cialsupportoftheNationalScienceFoundationunderawards thesekindsofstudies. AST-0507639 and AST-0602288, respectively, and M.H.M. Pulsationsmayalsoallowanasteroseismologicaldetermi- acknowledgesthesupportoftheDelawareAsteroseismicRe- nationofthecrystallizedmassfractionformassivepulsators, searchCenter.ThisworkwassupportedinpartbytheNSERC asshownbyMetcalfe,Montgomery,&Kanaan(2004)forthe CanadaandbytheFundFQRNT (Québec). P.Bergeronisa DAVBPM37093,althoughthisclaimhasbeenchallengedby CottrellScholarofResearchCorporation. REFERENCES Abrikosov,A.A.1960,Zh.Eksp.iTeor.Fiz,39,1798 Korn,A.J.,Grundahl,F.,Richard,O.,Mashonkina,L.,Barklem,P.S.,Collet, Assunção, M., Fey, M., Lefebvre-Schuhl, A., Kiener, J., Tatischeff, V., R.,Gustafsson,B.,&Piskunov,N.2007,ApJ,671,402 Hammer, J. W., Beck, C., Boukari-Pelissie, C., Coc, A., et al. 2006, Kowalski,P.M.2007,A&A,474,491 Phys.Rev.C,73(5),055801 Marigo, P.,Girardi, L.,Bressan, A.,Groenewegen, M. A.T.,Silva, L.,& Barrat,J.L.,Hansen,J.P.,&Mochkovitch,R.1988,A&A,199,L15 Granato,G.L.2008,A&A,482,883 Bergeron,P.,&Leggett,S.K.2002,ApJ,580,1070 Meng,X.,Chen,X.,&Han,Z.2008,A&A,487,625 Bergeron,P.,Wesemael,F.,Lamontagne,R.,Fontaine,G.,Saffer,R.A.,& Metcalfe,T.S.,Montgomery,M.H.,&Kanaan,A.2004,ApJ,605,L133 Allard,N.F.1995,ApJ,449,258 Metcalfe,T.S.,Salaris,M.,&Winget,D.E.2002,ApJ,573,803 Bischoff-Kim, A., Montgomery, M. H., & Winget, D. E.2008, ApJ, 675, Montgomery,M.H.,Klumpe,E.W.,Winget,D.E.,&Wood,M.A.1999, 1505 ApJ,525,482 Brassard,P.,&Fontaine,G.2005,ApJ,622,572 Potekhin,A.Y.,&Chabrier,G.2000,Phys.Rev.E,62,8554 DeGennaro, S., von Hippel, T., Winget, D. E., Kepler, S. O., Nitta, A., Richer, H. B., Dotter, A., Hurley, J., Anderson, J., King, I., Davis, S., Koester,D.,&Althaus,L.2008,AJ,135,1 Fahlman,G.G.,Hansen,B.M.S.,Kalirai,J.,Paust,N.,Rich,R.M.,& Fontaine,G.,Brassard,P.,&Bergeron,P.2001,PASP,113,409 Shara,M.M.2008,AJ,135,2141 Hansen,B.M.S.,&Liebert,J.2003,ARA&A,41,465 Salaris, M., Dominguez, I., Garcia-Berro, E., Hernanz, M., Isern, J., & Hansen, B. M. S., Anderson, J., Brewer, J., Dotter, A., Fahlman, G. G., Mochkovitch,R.1997,ApJ,486,413 Hurley, J.,Kalirai, J., King, I., Reitzel, D., Richer, H. B., Rich, R. M., Salpeter,E.E.1961,ApJ,134,669 Shara,M.M.,&Stetson,P.B.2007,ApJ,671,380 Segretain,L.,&Chabrier,G.1993,A&A,271,L13 Hansen, B. M. S., Brewer, J., Fahlman, G. G., Gibson, B. K., Ibata, R., Segretain, L., Chabrier, G., Hernanz, M., García-Berro, E., Isern, J., & Limongi,M.,Rich,R.M.,Richer,H.B.,Shara,M.M.,&Stetson,P.B. Mochkovitch,R.1994,ApJ,434,641 2002,ApJ,574,L155 Slattery,W.L.,Doolen,G.D.,&Dewitt,H.E.1982,Phys.Rev.A,26,2255 Holberg,J.B.,&Bergeron,P.2006,AJ,132,1221 Stevenson,D.J.1977,Proc.Ast.Soc.Australia,3,167 Holberg,J.B.,Bergeron,P.,&Gianninas,A.2008,AJ,135,1239 Stringfellow,G.S.,Dewitt,H.E.,&Slattery,W.L.1990,Phys.Rev.A,41, Horowitz, C. J.,Berry, D.K., & Brown, E.F. 2007, Phys.Rev. E, 75(6), 1105 066101 Tassoul,M.,Fontaine,G.,&Winget,D.E.1990,ApJS,72,335 Isern,J.,García-Berro,E.,Hernanz,M.,&Chabrier,G.2000,ApJ,528,397 vanHorn,H.M.1968,ApJ,151,227 Kalirai,J.S.,Bergeron,P.,Hansen,B.M.S.,Kelson,D.D.,Reitzel,D.B., Winget, D. E., Hansen, C. J., Liebert, J., van Horn, H. M., Fontaine, G., Rich,R.M.,&Richer,H.B.2007,ApJ,671,748 Nather,R.E.,Kepler,S.O.,&Lamb,D.Q.1987,ApJ,315,L77 Kanaan, A., Nitta, A.,Winget, D. E., Kepler, S. O., Montgomery, M. H., Wood,M.A.1992,ApJ,386,539 Metcalfe, T.S.,Oliveira, H.,Fraga, L.,daCosta, A.F.M.,et al. 2005, A&A,432,219 Kirzhnits,D.A.1960,SovietPhys.—JETP,11,365

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.