Astronomy&Astrophysicsmanuscriptno.8520 (cid:13)c ESO2008 February4,2008 The physical structure of the point-symmetric and quadrupolar planetary nebula NGC 6309 R.Va´zquez1,L.F.Miranda2,L.Olgu´ın1,3,S.Ayala3,4, J.M.Torrelles5,M.E.Contreras1,andP.F.Guille´n1 8 1 InstitutodeAstronom´ıa,UniversidadNacionalAuto´nomadeMe´xico,Apdo.Postal877,22800Ensenada,B.C.,Mexico 0 e-mail:vazquez, mcontreras, [email protected] 0 2 InstitutodeAstrof´ısicadeAndaluc´ıa,CSIC,P.O.Box3004,E-18080Granada,Spain 2 e-mail:[email protected] 3 InstitutodeAstronom´ıa,UniversidadNacionalAuto´nomadeMe´xico,Apdo.Postal70-264,04510Me´xico,D.F.,Mexico n e-mail:[email protected] a J 4 Centro de Radioastronom´ıa y Astrof´ısica, Universidad Nacional Auto´noma de Me´xico, Apdo. Postal 3-72 (Xangari), Morelia, Mich.,Mexico 0 e-mail:[email protected] 3 5 InstitutodeCienciasdelEspacio(CSIC)-IEEC,FacultatdeF´ısica,UniversitatdeBarcelona,Av.Diagonal647,08028Barcelona, Spain ] h e-mail:[email protected] p Received—/Accepted— - o r ABSTRACT t s a Aims.Weanalysethepoint-symmetricplanetarynebulaNGC6309intermsofitsthree-dimensionalstructureandofinternalvaria- [ tionsofthephysicalconditionstodeducethephysicalprocessesinvolvedinitsformation. Methods.WeusedVLA-Dλ3.6-cmcontinuum,ground-based,andHST-archiveimagingaswellaslongslithigh-andlow-dispersion 1 spectroscopy. v Results.Thelow-dispersionspectraindicateahighexcitationnebula,withlowtomediumvariationsofitsinternalphysicalconditions 1 (10,600K . T [O]. 10,900K;10,100K . T [N]. 11,800K;1440cm−3 . N [S]. 4000cm−3;1700cm−3 . N [Cl]. 0 2600cm−3;100e0cm−3 . N [Ar]. 1700cm−3).Teheradiocontinuumemissionindicaetesameanelectrondensityof≃ 19e00cm−3, 6 emissionmeasureof5.1×1e05pccm−6,andanionisedmassM(H)≃0.07M .Intheopticalimages,thepoint-symmetricknotsshow ⊙ 4 alackof[N] emissionascompared withsimilarfeaturespreviouslyknown inother PNe.Arichinternalstructureof thecentral . 1 region isseen inthe HSTimages, resembling adeformed torus. Long slit high-dispersion spectra reveal a complex kinematics in 0 thecentralregion,withinternalexpansionvelocitiesrangingfrom≃ 20to30kms−1.Inaddition,thespectrallineprofilesfromthe 8 externalregionsofNGC6309indicateexpandinglobes(≃ 40kms−1)asthosegenerallyfoundinbipolarnebulae.Finally,wehave 0 foundevidenceforthepresenceofafainthalo,possiblyrelatedtotheenvelopeoftheAGB-starprogenitor. : Conclusions.OurdataindicatethatNGC6309isaquadrupolarnebulawithtwopairsofbipolarlobeswhoseaxesareorientedPA=40◦ v andPA=76◦.Equatorialandpolarvelocitiesforthesetwopairsoflobesare29and86kms−1 forthebipolarsystematPA=40◦ and i 25and75kms−1 forthebipolarsystematPA=76◦.Thereisalsoacentraltorusthatisexpandingat25kms−1.Kinematicalagefor X allthesestructuresisaround3700to4000yr.WeconcludethatNGC6309wasformedbyasetofwell-collimatedbipolaroutflows r (jets),whichwereejectedintheinitialstagesofitsformationasaplanetarynebula.Thesejetscarvedthebipolarlobesintheprevious a AGBwindandtheirremnantsarenowobservedasthepoint-symmetricknotstracingtheedgesofthelobes. Keywords.planetarynebulae:individual:NGC6309–ISM:kinematics–ISM:abundances 1. Introduction objectstocollimatedoutflowsfroma precessingcentralsource known as bipolar rotating episodic jets (BRETs, see Lo´pez, Inspite of alltheworkthatupto nowhasbeendonetounder- Va´zquez&Rodr´ıguez1995).However,insomecases,thereare stand the origin of planetary nebulae (PNe) morphologies and notdefiniteproofsaboutthejetnatureofthesefeaturesasthey theirevolution(e.g.,Kwok,Purton&FitzGerald1978;Kahn& are not confirmedby spectroscopicstudies(e.g. Va´zquez et al. West 1985; Balick 1987; Icke 1988; Mellema 1995; Perinotto 1999a, Va´zquezetal.2002).Althoughsometheoreticalmodels et al. 2004; Rijkhorst, Mellema & Icke 2005; Scho¨nberner et have intended to explain point-symmetric PNe (e.g., Cliffe et al. 2005; Scho¨nberner et al. 2007), some morphologicalstruc- al. 1995; Livio & Pringle 1996, 1997; Garc´ıa-Segura& Lo´pez tures still remain as unsolved problems. In particular, the so- 2000;Rijkhorst,Icke&Mellema2004),theoriginandshaping calledpoint-symmetry(Stanghellini,Corradi&Schwarz,1993; ofthiskindofobjectsremainsapuzzle. Gonc¸alves et al. 2003) appears enigmatic. Some observational NGC 6309 is a PN whose morphologystrongly suggests a studiesaboutpoint-symmetricPNe (e.g.Miranda&Solf1992; BRETscenarioforitsorigin,ascanbeseenintheHα+[N]and Lo´pez, Meaburn & Palmer 1993) relate the formation of these [O]imagesbySchwarz,Corradi&Melnick(1992).Ithastwo prominent,point-symmetric‘arms’formedbypairsofconden- Sendoffprintrequeststo:R.Va´zquez sationsinadditiontoabrightinternalellipticalstructure.Some 2 Va´zquezetal.:ThephysicalstructureofNGC6309 Fig.1.ImagesofNGC6309inthelightofHα(topleft),[N](topright)and[O](bottomleft),includinganunsharpmaskingof the[O] image(bottomright).Northisupandeastisleftinallthepanels.Smallframesareincludedinsidetheupperpanelsto showthestructureofthecentralregion. previous studies on NGC6309 have determined an expansion done.Inthispaper,wehavecarriedoutaradio-opticalstudyof velocityV [O]=34kms−1(Sabbadin1984),aswellasmean NGC6309, including radio continuum mapping, optical imag- exp physical parameters and total abundances (Go´rny et al. 2004), ing, and long-slit optical spectroscopy,in both, high- and low- namely, electron density and temperature N [S]=2600cm−3, dispersion.Wediscussourresultsonthemorphology,kinemat- e T [N]=12,097K, T [O]=11,845K; and abundance ratios ics,physicalconditions,ionicabundances,andnatureofthegas e e He/H=0.1, N/H=8.20, O/H=8.64, Ne/H=7.82, and S/H=6.49 emissiontoexplorethepossiblemechanismsinvolvedinthefor- (logH=12,exceptforHe/Hratio).Armour&Kingsburgh(2001) mationofNGC6309. foundsimilarvalues.NGC6309hasalsobeenincludedinthelist ofPNewithlowionisationstructures(LIS)byGonc¸alvesetal. (2003).Finally,thecentralstarofNGC6309hasbeenclassified 2. Observationsandresults asa“weakemissionlinestar”byGo´rnyetal.(2004). 2.1.CCDground-basedimaging Inspiteofthissuggestivemorphology,aninternalkinematic study of NGC6309, as well as a full analysis of the physical We obtained narrow-band direct images with the Calar Alto conditions in the different nebular regions, has not yet been Faint Object Spectrograph (CAFOS) in the 2.2m telescope at Va´zquezetal.:ThephysicalstructureofNGC6309 3 Calar AltoObservatory(CAHA1) in1998July8.We usedtwo filters centered in Hα (∆λ = 15Å) and [N]6583 (∆λ = 20Å) N NGC 6309 aswellasaCCD Loralwith2048×2048pixels.Theexposure timeforbothimageswas1800s.Thescalewas0′.′33pixel−1and the seeing was about1′.′7. We obtained an additionalimage on E 2004August 3 with the 1.5m telescope at the Observatoriode SierraNevada2. The detectorwasa RoperScientificVersArray CCDwith2048×2048pixels,eachof0′.′232pixel−1.Weusedan [O]5007(∆λ=50Å)filterwithanexposuretimeof900s.The imageswere reducedfollowingstandard procedureswithin the MIDASpackage.Inthiscase,seeingwas1′.′3. Figure 1 shows the images of NGC6309 in Hα, [N] and [O]. Anadditionalunsharpmasking[O] imageisalsopre- sented in Fig. 1 to show the link between internaland external nebularstructures.Intheseimages,thehighcontrastbetweenthe brightnessofthecentralregionandthatofthe‘arms’isevident. Inparticular,thelackofemissionof[N]fromthe‘arms’isun- expectedlyremarkablegiventhat,ingeneral,thiskindofpoint- symmetric microstructures is related to LIS (Gonc¸alves et al. 2003).However,therearealsosomecasesinwhichtheemission of [N] is marginal(e.g. IC5217;Miranda et al. 2006). In the case of NGC6309, the lack of [N] from the point-symmetric 10" HST−WFPC2−F555W knotsindicatesthatthesecannotbeconsideredasLIS. The structureofthe ‘arms’consistsof atleast fourpairsof Fig.3. HST broad-bandCCD image of NGC6309 in the filter point-symmetricknots, some of them clearly extendedperpen- F555W. diculartotheircorrespondingradialvectorfromthecentralstar. The central region of the NGC6309 is a bright ellipse (major axis ≃ 20′′, PA−14◦) embedded in the main body of the neb- showsthe140secimageusingthefilterF555W(nearlyJohnson ula. The arms appearto leave from the vertexesof this ellipse. V).Thisimagecanbecomparedwiththeopticalground-based Theunsharpmasking[O]imagealsoshowsaconelikestruc- imagesin Fig. 1. The brightellipse is formedbymany clumps turewithitsbaselocatedonthecentralellipseandthevertexon aswellasdiffusegas.Theellipse isopeninits SWandSEre- theNEarm.In[O],faintemissionconnectsthearmswiththe gions,whereasanapparentlydoublestructureisobservedinthe brightellipseandseemstotraceasymmetricallobes.Infact,the SandNregions.Inaddition,asystemoffaintbubblesisdetected appearanceofNGC6309in[O]resemblesthatofaquadrupo- towardstheNE,whichisprobablyrelatedtothecone-likestruc- lar PN in which one of the outflows (at PA40◦) protrude into tureseenin[O](seeabove).Giventheshortexposuretimeof the lobesof the other (at PA76◦). Part of the SW lobe appears theHSTimage,evidenceofthe“arms”isverymarginal. to be open.Finally, a circular fainthalo(probablyspherical)is detectedin[O]image(Figs.1and2).Itscentercoincideswith thecentralstarofthenebulaanditssizeis≃56′′. 2.3.λ3.6-cmVLA-D In Fig. 2, we show the unsharp masking [O] image and We obtained radio continuum observations at λ3.6-cm, toward label some morphologicalfeatures that will be discussed later. NGC6309 with the Very Large Array (VLA) of the National Knots in the NE arm are named E1, E2, E3, and E4, whereas Radio Astronomy Observatory (NRAO)4 in the D configura- thoseintheSWarmarenamedW1,W2,W3,andW4.Regions tionduring1996August8.ThestandardVLAcontinuummode intheellipsearecalledR1andR2forthetipsofitsmajoraxis, with a 100 MHz bandwidthand two circular polarizationswas andR3andR4forthosealongtheminoraxis. employed. The flux and phase calibrators were 1331 + 305 (adoptedfluxdensity5.2Jy)and1733−130(observedfluxden- sity 10.7Jy), respectively. We set phase center at α(2000) = 2.2.HST-WFPC2imaging 17h14m03s.6, δ(2000) = −12◦54′37′′. The on-target integration An Hubble Space Telescope (HST) broadbandimage from the time was 28 min. We calibrated the data and processed it us- MASTArchive3wasusedinordertoimprovethegeneralview ing standardproceduresof the AstronomicalImage Processing of the internal morphology of NGC6309 (proposal ID: 6119; System (AIPS) package of the NRAO. We obtained a cleaned PI:H.E.Bond;Dateofobservation:1995August26).Figure3 map of NGC6309 using the task IMAGR of AIPS (parame- terROBUST= −3;Briggs1995).Self-calibrationwasalsoper- 1 TheCentroAstrono´micoHispano-Alema´n(CAHA)atCalarAlto, formedresultinginafinalsynthesizedbeamof13′.′9indiameter isoperatedjointlybytheMax-PlanckInstitutfu¨rAstronomieandthe andrmsnoiseofthemapofσ=33µJybeam−1. InstitutodeAstrof´ısicadeAndaluc´ıa(CSIC). The detected radio continuum emission is related to the 2 The Observatorio de Sierra Nevada is operated by the Consejo central region and appears partially resolved. Based on a 2-D Superior de Investigaciones Cient´ıficas through the Instituto de Astrof´ısicadeAndaluc´ıa(Granada,Spain) Gaussianfit(taskIMFITinAIPS),weestimateasizeof≃19′′× 3 Some of the data presented in this paper were obtained from 16′′atPA=−27◦(seeFig.4).Thepositionoftheintensitypeak the Multimission Archive at the Space Telescope Science Institute wasfoundatα(2000) = 17h14m04s.28,δ(2000) = −12◦54′37′′. (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. 4 The National Radio Astronomy Observatory is a facility of the SupportforMASTfornon-HSTdataisprovidedbytheNASAOfficeof NationalScienceFoundationoperatedundercooperativeagreementby SpaceScienceviagrantNAG5-7584andbyothergrantsandcontracts. AssociatedUniversities,Inc. 4 Va´zquezetal.:ThephysicalstructureofNGC6309 LOBE NE HALO RING E1 R3 E2 R1 E3 R4 E4 W4 W3 CONE R2 W2 W1 LOBE SW 20" Fig.2.Unsharp-maskingimageofNGC6309inthelightof[O].Northisupandeastisleft.Mainmorphologicalfeaturesaswell assomeregionsofparticularinterestarepointedoutandlabeled. Thetotalflux densityfromthe radiomapis ≃ 115-mJy,which 2.4.Longslitlow-dispersionspectroscopy issimilartothosemeasuredbyMilne&Aller(1982);Ratag& Pottasch (1991); and Condon & Kaplan (1998); at 2cm (146- Low-dispersion optical spectra were obtained with the Boller mJy); 6cm (102-mJy);and 21cm (132-mJy);respectively. We & Chivens spectrometer in the 2.1m UNAM telescope at the didnotdetectemissionfromthe‘arms’. SanPedroMa´rtirObservatory(OAN-UNAM)in1999July19- 20 (grating of 300lines/mm) and 2002 August 7-8 (grating of 400lines/mm). In all of these cases, a CCD Tek 1024× 1024 We also derived the mean physical conditions, based on was used as detector. We set the slit width to 220µm (1.6′′). the formalism of Mezger & Henderson (1967). Optically-thin Thespatialscale is 1′.′05pixel−1 whereasthespectralscale is 3 emission and T = 10,000K were assumed, obtaining the e and4Åpixel−1forthegratingsof400and300lines/mm,respec- following results: N = 1900cm−3; M(H)=0.07M ; EM = e ⊙ tively.Wesettheslitatseveralpositionangles,whicharelabeled 5.1 × 105pccm−6. We assumed distance to the nebula to be asC,J,K,L(gratingof300lines/mm),andA,C,andE(grating 2kpc as the average value from the different estimates, which of400lines/mm),inFig.5. range between 1.1 and 2.5kpc (e.g., Daub 1982, Phillips & Pottasch 1984, Amnuel, et al. 1984, Maciel 1984, Cahn, Kaler Table1showsthedereddenedspectra(consideringcaseBof &Stanghellini,1992). recombination)andphysicalconditionsobtainedwiththeFive- Va´zquezetal.:ThephysicalstructureofNGC6309 5 to be quite uniform (T [O]=10750K, N [Cl]=2350cm−3, -12 54 00 e e N [Ar]=1430cm−3), withvariationswithinthe estimatedun- e certainties. However, those physical parameters obtained from low-excitationemissionionsappearasseparatedintwodifferent 15 regimes (T [N]=10200K, and 11800K; N [S]=1620cm−3 e e and3800cm−3). 0) The dereddened absolute Hβ flux values from regions R1, 0 0 2 R2, R3, and R4 are similar (see Table 1). However, the cor- N (J 30 responding logarithmic extinction coefficients c spread from O Hβ TI 0.70to0.97(meanvalueincludingallregionsis0.87),probably A LIN due to differences in the internal dust distribution, as has been EC 45 found in other PNe (e.g. Va´zquez et al. 1999b, Lee & Kwok D 2005). Inaddition,wepresentthemorecommonratiosforplasma diagnosticsatthebottomofTable1, whichshowthatthesere- 55 00 gions are emitting by photoionisation-recombinationprocesses with minimal or nonexistent shock-cooling contributions. This could be expected in the surroundings of a hot luminous star, 15 howeverthereareseveralcasesofPNeinwhichshock-cooling 17 14 07 06 05 04 03 02 processesmakeanimportantcontributiontothemicrostructures RIGHT ASCENSION (J2000) emission (see Gonc¸alves2003 for a compilation).For compar- Fig.4. Contour plot λ3.6-cm continuum map of NGC6309, ison, previousspectroscopic studies of NGC6309 by Go´rny et overimposedonaHαimage.Contourlevelsare10,20,30,40, al. (2004) give values of c(Hβ) ≃ 0.88, T ([O])≃11845K, 50,60,70,80,and90%ofthepeakflux(6.3×10−3Jy).Thehalf- T ([N])≃12097K,andN ([S])≃2600cme−3. powerbeamwidth(13′.′9indiameter)isshowninthebottom-left e e Wehavealsoestimatedionicandelementalabundancesfor corner. some regions using IRAF and the ICF (Ionisation Correction Factors)method(Kingsburgh&Barlow1994),althoughweare N aware that recently, Gonc¸alves et al. (2006) have noticed that E elementalabundancesderivedbyusingthismethodareoveres- J K timatediftheyareobtainedfromnarrow,long-slitspectra.The G resultsareshowninTables2and3. H L RegionsR1andR2aresimilarinphysicalconditionsaswell as in ionic abundances. In both regions, the abundances of the I threespeciesofoxygenaswellasHe+,Ar+2,N+,S+,andCl+2 areenhancedwithrespecttotheotherregions.Theoppositeoc- A cursforAr+3andHe+2. B Withreferencetoelementalabundances,theseareconsistent C with the mean values for PNe and Type I PNe, within uncer- tainties (see Table 3). The exception is N, which show a defi- D ciency, more in agreement with less-evolved objects, but con- E sistent with previous estimates (Armour & Kingsburgh 2001). F Given the values of these abundances, NGC6309 would be a Type II PN (intermediate population), according to the classi- fication of Peimbert (1978). This is reinforcedby the low N/O ratio,whichis in agreementwith theexpectedvaluefora low- masscentralstar(0.6M⊙,accordingtoKwok2000).Ifthisin- terpretationoftheabundancesisright,NGC6309wouldrepre- sentanothercaseofanon-TypeIPNwithbipolaroutflows(see Va´zquezetal.1999a).Thisstrengthenstheideapointedoutby Fig.5.Slitsusedinspectroscopyoverimposedon[O]unsharp Va´zquezetal.thatsomelow-masscentralstarsmayalsodevelop maskingimage. bipolarmorphologies,incontrasttothefactthatbipolarPNeare usuallyassociatedwithrelativelymassivecentralstars(Corradi &Schwarz1995). LevelAtomDiagnosticsPackage(nebular)fromIRAF5 (apply- ingtheextinctionlawbyHowarth1983fordereddening)forthe regionsR1,R2,R3,R4,E2,W1,andW1. 2.5.Longslithigh-dispersionspectroscopy Physical conditions can only be determined for the re- Weobtainedhigh-dispersionopticalspectrawiththeManchester gions of the central ellipse. Electron temperature and densi- EchelleSpectrometer(MES)inthe2.1mtelescope(f/7.5)atthe ties obtained from the high-excitation emission lines appears SanPedroMa´rtirobservatory(OAN-UNAM)duringtheperiod of 2001 May 22-23. We used a CCD SITe with 1024× 1024 5 TheImageReductionandAnalysisFacility(IRAF)isdistributedby pixels was used as detector, and set the slit width to 150-µm theNationalOpticalAstronomyObservatories,whichareoperatedby theAssociationofUniversitiesforResearchinAstronomy,Inc.,under (1.6′′). A 2 × 2 binning was used, resulting in a spatial scale cooperativeagreementwiththeNationalScienceFoundation. of0′.′6pixel−1andaspectralscaleof0.1Åpixel−1.Wecentered 6 Va´zquezetal.:ThephysicalstructureofNGC6309 the spectral range at the Hα emission line. The spectra were Table4.Basickinematicaldataforthemainmorphologicalfea- wavelengthcalibratedwitha Th-Ararc lampto anaccuracyof turesinNGC6309.Angulardistanceandpositionangle(PA)are ±2kms−1.Theachievedspectralresolution,asindicatedbythe measuredfromthecentralstar.Radialvelocityismeasuredwith FWHMofthecomparisonlines,was12kms−1.Severalspectra respecttothesystemicvelocity(–32kms−1)fromtheemission wereobtainedwiththeslitorientedE-W(slitsAtoFonFig.5). lineindicatedinthelastcolumn.Uncertaintiesforthe firstrow Weobtainedon2004July29-30,asecondseriesofspectra, applytotherest. usingthesametelescopeandinstrument.Inthiscase,thespectra were centered on the [O]λ5007 emission line (slits G, H, I, andKonFig.5),andthespectralscalewas0.08Åpixel−1. Feature PA Angular Radial Emission Position-velocity(PV)mapsfortheHαand[O]λ5007are (◦) distance velocity line shown in Fig. 6. We note that the Heλ6560 line is also ob- (′′) (kms−1) servedinthePVmapsattheslitsB,C, andD.InthePVmaps R1 –15±4◦ 9 ±3′′ 0±2kms−1 [O] (Fig.6)relativepositionismeasuredwithrespecttothecentral R2 +165 10 0 [O] starwhereasradialvelocityismeasuredrelativetothesystemic R3 +75 4 +23 [O] velocity,forwhichwededuceVLSR =−32±2kms−1,basedon R4 –105 4 –23 [O] the expansionvelocityat the positionof the centralstar ([O] E1 +50 30 +35 [O] spectrafromslitsHandK).Thisvalueisclosetothatreported E2 +60 26 +36 Hα,[O] bySchneideretal.(1983)ofV ≃−33.4±2.8kms−1. E3 +70 27 +35 Hα LSR In a firststepto analysethe high-resolutionspectra,we ex- E4 +90 25 +24 Hα tract from the PV maps the spatial position and radial velocity W1 –130 27 –34 Hα W2 –120 25 –36 Hα,[O] oftheindividualregionslabeledinFig.2.Theresultsarelisted W3 –110 24 –34 Hα,[O] in Table 4. The knots in the arms present a noticeable point- W4 –90 21 –20 Hα symmetry,bothintheir positionwith respecttothe centralstar andintheirradialvelocity.Inthecaseoftheregionsinthebright ellipse,R1andR2aremovingatthesystemicvelocitywhileR3 andR4,locatedalongtheminoraxis,presentthemaximumra- On the other hand, the PV map of slit I shows the radial dialvelocityinthisstructure. velocity of feature E4 (the brightest feature) as ≃ +24kms−1, in addition to the expansion velocity of lobe SW close to ≃ Inasecondstep,weanalysetheemission-linefeaturesinthe 40kms−1. Finally, the PV map of slit C covers the region at PVmapsasawhole.SlitsHandKaretracingtheminorandma- lobe NE corresponding to the cone-like structure. This region joraxesoftheinternalellipse,respectively.InthePVmapofslit expands to ≃ 25kms−1, and is located from 5′′ to 15′′ toward H (Fig. 6), the regionsE2 and W2 can be noted as brightcon- the East from the center. The kinematics of the cone is practi- densationslocatedattheextremesoftheemission-linefeatures. callyindistinguishablefromthatoflobeNE. Maximum expansion velocity at the lobes can be measured as 2v ≃ 80kms−1 (SW lobe expansion is best viewed in panel exp I). The lobe NE shows a bulk radial velocity of ≃ +20kms−1 3. Discussion (asmeasuredat20′′fromthecenter,panelH),whereasthelobe SWpresents≃−20kms−1 (asmeasuredat20′′fromthecenter, 3.1.ThephysicalstructureofNGC6309 panelI).Thecentralregionalsoseemstobeexpanding,showing Themostreasonableexplanationforthemorphologyandkine- amaximumvelocitysplittingof2v ≃ 69±2kms−1,making exp maticsofthecentralellipseisthatsuchstructurecorrespondsto itdifficulttodeterminetheradialvelocityofthemicrostructures a tilted expandingtorus.Althoughotherpossible structuresare R3andR4accurately.However,thePVmapfromslitH([O]) possible,thisinterpretationappearstobeabetterfittoourdata. shows evidence of two additional components separated ≃ 8′′ Assuming that the torus is circular and its diameter is ≃ 20′′, and≃ 46kms−1 thatcouldbethesefeatures(locationsareindi- wededuceaninclinationangleofthetorusaxiswithrespectto catedonFig.6byapairofarrows). thelineofsightof66◦.Theexpansionvelocityofthetorus,cor- SlitKcrossesthemajoraxisoftheellipse.Inthecorrespond- rected by the inclination angle is V ≃ 25kms−1. Therefore, exp ingPVmap,avelocityellipseisobserved.FeaturesR1andR2 the size of this structure and its kinematic age are ≃ 0.2pc movewiththesystemicvelocity.However,smallregionsbeyond and3800yrrespectively,assumingadistanceof2kpc.Inaddi- theellipsearealsofoundwithradialvelocitiesof≃±30kms−1. tion,thenortheasternhalfofthetorusisblueshiftedwhereasthe Maximumexpansionvelocityisobservedatthecenteroftheel- southwesternhalfis redshifted.We notethat these calculations lipse (2v ≃ 66±2kms−1), which is nearly compatible with exp havebeenobtainedfromtheearth-basedobservations.Sincethe previousspectroscopicstudies(Sabbadin1984,≃68±3kms−1; HST imageshowsa morecomplexstructurein the torus,these Armour&Kingsburgh2001,≃64±5kms−1). resultsshouldbeconsideredasanapproximationonly. From these slits (H and K), the presence of two expanding With regard to the bipolar lobes, it is clear that a model asymmetricallobesandavelocityellipseinthecenterisevident. of a single bipolar system with a main axis cannot reproduce Theexpansionofthesebipolarlobesisconfirmedwithdatafrom theobservedmorphology,giventheapparenttwodirectionsob- the other slits, and the kinematics of their borders is traced by servedinthenebula.Therefore,wehaveconsideredaquadrupo- thatofthepoint-symmetricknots. lar modelconsisting oftwo pairsof bipolarlobes, one ofthem In the PV map from slit A, we detect an intense emission orientedatPA+76◦,coincidentwiththetorusaxis,andtheother centeredat2′′ towardthewestandrelativevelocitycenteredat atPA+40◦,coincidingwiththeapparentprotrusionsinthelobes V ≃ +20kms−1. This feature correspondsto the upper border along this axis. Each of these bipolar systems is described fol- r of the ellipse (≃ 5′′ above R1). Faint emission from the halo lowingtheformulationbySolf&Ulrich(1985), is detected to the west of this feature (up to ≃ 10′′ − 25′′) in agreementwiththeobservedsizeofthisstructure. V(φ)=Ve+(cid:16)Vp−Ve(cid:17)×sinα(|φ|), (1) Va´zquezetal.:ThephysicalstructureofNGC6309 7 East West NE SW A G B ) s / m k ( y t i c C H o l e v e v i t a l e R D I SE NW E F K Offset (arcsec) Fig.6.Position-velocitygray/contourmapscorrespondingtotheslitsAtoFinthelightofHα(leftpanels),andslitsG,H,I,and K in [O]λ5007(rightpanels).Slitorientationis indicated,beingthe same forall theleftpanels.Inthe rightpanelsorientation is indicated on panels for slits G (valid also for H and I) and K. Velocity scale is different in left and right panels. The vertical dashedlinesrepresenttheprojectedpositionofthecentralstarperpendiculartothecorrespondingslitposition.Oneachpanel,the horizontaldashedlinecorrespondstothesystemicradialvelocity(V = −32±2kms−1).ArrowsinpanelHindicatelocationof LSR twofeaturesexplainedinthetext. 8 Va´zquezetal.:ThephysicalstructureofNGC6309 whereφisthelatitudeangleabovetheequator;V andV arethe e p equatorialandpolarexpansionvelocityrespectively;andαisan exponentthatfitsthespecifichour-glassshape.Withthemainas- sumptionthattheaxisofthetorusandthatofthebipolarejection atPA+76◦arethesame,thekinematicsandmorphologyofthis outflowcanbereasonablyreproducedwithV = 25kms−1 (ex- e pansionvelocityofthetorus),V =75kms−1,andα=6.There p isnoclueabouttheinclinationangleoftheoutflowatPA+40◦. Ifweassumethesameinclinationangle,wefindreasonablefits for this bipolar system with V = 29kms−1, V = 86kms−1, e p and α = 6. In Fig. 7, we show the hour-glass shapes deduced from these fits overimposed on the unsharp-masking image of NGC6309. The observed shape, as well as the kinematics of the knots, are reasonably reproduced by the models. With the model data and the assumption of a distance of 2kpc, we find a kinematical age of 4000yr for the bipolar lobes at PA+40◦ and of 3700yr for the bipolar system at PA+76◦. These ages arenotverydifferentfromeachotherandarealsosimilartothe age deduced for the torus. This suggests that the formation of thedifferentstructuresinNGC6309hasoccurredinarelatively smalltimespan.Inaddition,asthesekindofoutflowshavebeen observedinproto-planetarynebulae(PPN,e.g.Sahai1998),our resultsimposeaminimalvalueoftime(≃ 4000yr)forthePPN to PN stage in this nebula. Other structuressuch as the “cone” Fig.7. NGC6309 and the two bipolar outflows model. The fit and the halo, are present in this nebula, but we must conduct oftwohour-glassmodelsisoverimposedonthe[O]unsharp- furtherstudiestounderstandtheirphysicalproperties. maskingimagepresentedbefore.Thecentraltorusisalsodrawn. 3.2.TheformationofNGC6309 The appearance of NGC6309, as well as the position of the point-symmetric knots perpendicular to a radial position vec- torfromthecentralstar,stronglyresemblethepoint-symmetric structures observed in Fleming1 (Lo´pez et al. 1993). Cliffe et al. (1995) studied the interaction of a precessing jet with the interstellar medium. They find that point-symmetric structures can be formed by this interaction, and with the time, the indi- vidualbow-shockscanmergeintoasingleshockstructure.The ulterior evolution of such structures will lead to the formation ofbipolarlobeswithnon-uniformbrightnessdistributionbeing point-symmetric respect to the central star. On the other hand, Garc´ıa-Segura&Lo´pez(2000)mademodelsofbipolarPNwith point-symmetric structures using a steady misalignment of the magneticcollimationaxiswithrespecttothe symmetryaxisof the bipolar outflow. In their models, such morphology is also producedbytheactionofjets. A possible scenario for the formation of NGC6309 is that 20|| the knots are the remnants of high-velocity bipolar collimated outflows that were ejected in the proto-planetarynebula (PPN) stage. There is evidence that precessing jets in young proto- PN carve bipolar or multipolar cavities in the initial stage of Fig.8. [O]/Hα ratio image. White represents high values of PNe evolution (e.g. Sahai & Trauger 1998, Sahai et al. 2005, theratio. Sa´nchez-Contrerasetal.2006).Insuchascenario,theprecess- ingjetisejectedduringtheproto-PNphaseandafterthat,subse- quently,itisstoppedandcooledbyitssurroundings.Theknots follow the thermalexpansionof the bipolarlobes. In this case, thebrightnessoftheknotscomesmainlyfromthephotoionisa- [O] emission is seen in the edge of the lobes, clearly related tionprocess,astheshocked-cooledemissionhasturnedofforit to the point-symmetricknots. It is noticeable that the emission ishiddenby theeffectofa high-excitationphotonsource.This vanishedattheendoftheSWlobe,possiblycorrespondingtoa couldexplainthelackof[N]emissioninthepoint-symmetric breakingoftheshellduetotheactionoftheoutflow.According knots. toMedinaetal.(2007),the[O] enhancementwouldbecom- In addition, we constructed a [O]/Hα ratio image from patiblewithstructuresshapedbycollimatedoutflows,asinthe images in Fig. 1. Such ratio image can be used as a diagnos- caseofIC4634.Finally,thecircularhaloprobablycorresponds tic tool, as has been shown by Medina et al. (2007). Figure 8 totheremnantofthe envelopeejectedasaslowwindfromthe showsthe[O]/Hαratioimageinwhichanenhancementofthe centralstarwhenitwasatitsAGBphase. Va´zquezetal.:ThephysicalstructureofNGC6309 9 4. Conclusions Go´rny,S.K.,Stasinska,G.,Escudero,A.V.,Costa,R.D.D.2004,A&A,427, 231 We have carried out an analysis of the planetary nebulae Grevesse,N.,Asplund,M.,Sauval,A.J.2007,SpaceSci.Rev.,130,105 NGC6309, based on ground-based and space-based imaging, Howarth,I.D.1983,MNRAS,203,301 high-andlow-dispersionspectroscopy,aswellasVLA-Dradio Icke,V.1988,A&A,202,177 Kahn,F.D.&West,K.A.1985,MNRAS,2012,837 continuum.Wesummarizethemainconclusionsofthisworkas Kingsburgh,R.L.&Barlow,M.J.1994,MNRAS,295,75 follows. Kwok,S.,Purton,C.R.,Fitzgerald,P.M.1978,ApJ,219,L125 NGC6309canbedescribedasaquadrupolarPNformedbya Kwok,S.2000,Theoriginandevolutionofplanetarynebulae.Cambridge;New brightcentraltorus,twosystemsofbipolarlobesorientedatdif- York:CambridgeUniversityPress,2000.(Cambridgeastrophysics series; 33) ferentdirections,andpoint-symmetricknotsthattracetheedges Lee,T.-H.,Kwok,S.2005,ApJ,632,340 of the lobes. The torus expands at 25kms−1, whereas the po- Livio,M.,Pringle,J.E.1996,ApJ,465,L55 larexpansionvelocityofthelobesis75kms−1forafirstbipolar Livio,M.,Pringle,J.E.1997,ApJ,486,835 systematPA76◦,and86kms−1foranotherbipolarsystematPA Lo´pez,J.A.,Meaburn,J.,Palmer,J.W.1993,ApJ,415,L135 40◦.Assumingadistanceof2kpcforthenebula,thekinematic Lo´pez,J.A.,Va´zquez,R.,Rodr´ıguez,L.F.1995,ApJ,455,L63 Maciel,W.J.1984,A&AS,55,253 ages of the structures ranges from 3700 to 4000yr, suggesting Mellema,G.1995,MNRAS,277,173 thattheyhavebeenformedinashorttimespan.Theknotsatthe Medina, J. J., Guerrero, M. A., Luridiana, V., Miranda, L. F., Riera, A., edges of the lobes suggest that the lobes have been formed by Vela´zquez, P. F. 2007, in “Asymmetrical Planetary Nebulae IV”, eds. R. rapidlyprecessingbipolarjets thatcarvedcavitiesin the previ- L.M.Corradi,A.Manchado,&N.Soker,Proceedingsinelectronicbook (referencewillbepublishedinADS). ousredgiantenvelope.Inadditiontothesestructures,wedetect Mezger,P.G.,Henderson,A.P.1967,A&A,147,471 a circular halo surrounding the torus and bipolar lobes, which Milne,D.K.,Aller,L.H.1982,A&AS,50,209 probablycorrespondstotheenvelopeejectedintheAGBphase Miranda,L.F.,Solf,J.1992A&A,260,397 bythecentralstar.Thereisalso aconelikestructureembedded Miranda,L.F.,Ayala,S.,Va´zquez,R.,Guille´n,P.F.2006A&A,456,591 inoneofthelobesandwithitsbaseonthetorus. Peimbert, M. 1978, in Planetary Nebulae, IAU Symp. 76, ed. Y. Terzian, (Dordrecht:Reidel),215 We also study internalvariationsofthe physicalconditions Perinotto,M.Scho¨nberner,D.,Steffen,M.,Calonaci,C.2004,A&A,414,993 and chemical abundances in NGC6309. The low-dispersion Phillips,J.P.,Pottasch,S.R.1984,A&A,130,91 spectra indicate a high-excitation nebula, with low to medium Ratag,M.A.,Pottasch,S.R.1991,A&AS,91,481 variations of its internal physical conditions (10,600K . Rijkhorst,E.-J.,Icke,V.,Mellema,G.2004,in“AsymmetricalPlanetaryNebulae T [O] . 10,900K; 10,100K . T [N] . 11,800K; III” editors M. Meixner, J. Kastner, N. Soker, & B. Balick, ASP Conf. e e Series,313,p.472 1440cm−3 . Ne[S] . 4000cm−3; 1700cm−3 . Ne[Cl]. Rijkhorst,E.-J.Mellema,G.&Icke,V.2005,A&AS,444,849 2600cm−3; 1000cm−3 . N [Ar] . 1700cm−3). The ra- Sabbadin,F.1984,A&AS,58,273 e dio continuum emission indicates a mean electron density of Sahai,R.,Trauger,J.T.1998,AJ,116,1357 ≃ 1900cm−3; emission measure of 5.1 × 105pccm−6; and an Sahai,R.,LeMignant,D.,Sa´nchez-Contreras, C.,Campbell,R.D.,Chafee,F. H.2005,ApJ,622,L53 ionisedmass M(H)≃ 0.07M .Thelogarithmicextinctionco- ⊙ Sa´nchez-Contreras, C.,LeMignant, D.,Sahai, R.,Chaffee, F.H.,Morris, M. efficientcHβ rangefrom 0.70to 0.97(mean value 0.87),which 2006inIAUSymp234,PlanetaryNebulaeinourGalaxyandBeyond,eds. probablyisproducedbydifferencesintheinternaldustdistribu- M.J.Barlow&R.H.Mendez,CambridgeUniversityPress,pp.71 tion. Schneider,S.E.,Terzian,Y.,Purgathofer,A.,Perinotto,M.1983,ApJS,52,399 Schwarz,H.E.,Corradi,R.L.M.,Melnick,J.1992,A&AS,96,23 Shaver,P.A.,McGee,R.X.,Newton,L.M.,Danks,A.C.,Pottasch,S.R.1983, Acknowledgements. RV, SA, LO, MEC, and PFG were supported by grants MNRAS,204,53 32214-E and 45848 (CONACYT), and by grants IN114199 and IN111903-3 Scho¨nberner,D.,Jacob,R,Steffen,M.,Perinotto,M.,Corradi,R.L.M.,Acker, (PAPIIT-DGAPA-UNAM).LFM and SA were supported by grant AYA2005- A..2005,A&A,431,963 01495oftheSpanishMEC(cofunded byFEDERfunds).JMTacknowledges Scho¨nberner,D.,Jacob,R.,Steffen,M.,Sandin,C.2007,A&A,473,467, partialfinancialsupportfromtheSpanishgrantAYA2005-08523-C03. Weare Solf,J.,Ulrich,H.1985,A&A,148,274 gratefultothestaffofalltheastronomicalfacilitiesusedinthisresearch,namely: Stanghellini,L.,Corradi,R.L.M.,Schwartz,H.E.1993,A&A,276,463 (a) Centro Astrono´mico Hispano-Alema´n, (b) Very Large Array of National Va´zquez,R.,Lo´pez,J.A.,Miranda,L.F.,Torrelles,J.M.,Meaburn,J.1999a, Radio Astronomy Observatory, (c) Hubble Space Telescope Data Archive, MNRAS,308,939 (d) Observatorio Astrono´mico Nacional, operated by Universidad Nacional Va´zquez,R.,Torrelles,J.M.,Rodr´ıguez,L.F.,Go´mez,Y.,Lo´pez,J.A.,Miranda, Auto´nomadeMe´xico,and(e)ObservatoriodeSierraNevada(IAA-CSIC).We L.F.1999b,ApJ,515,633 thanktheanonymousrefereeforcriticallyreadingthemanuscriptandforuse- Va´zquez,R.,Miranda,L.F.,Torrelles,J.M.,Olgu´ın,L.,Ben´ıtez,G.,Rodr´ıguez, fulsuggestions.WealsothankfruitfuldiscussionswithDr.Mart´ınA.Guerrero L.F.,Lo´pez,J.A.2002,ApJ,576,860 (IAA-CSIC)andProf.MauricioTapia(IA-UNAM).Thisresearchhasmadeuse oftheSIMBADdatabase,operatedatCDS,Strasbourg,France. ListofObjects References ‘NGC6309’onpage1 ‘NGC6309’onpage1 Amnuel,P.R.,Guseinov,O.H.,Novruzova,H.I.,Rustamov,Y.S.1984,Ap&SS, ‘NGC6309’onpage2 107,19 ‘IC5217’onpage3 Armour,M.H.,Kingsburgh,R.L.2001,RevMexAASC,10,38 Balick,B.1987,AJ,94,671 ‘Fleming1’onpage8 Briggs,D.S.1995,PhDthesis,NewMexicoInst.ofMiningandTechnology ‘IC4634’onpage8 Cliffe,J.A.,Frank,A.,Livio,M.,Jones,T.W.1995,ApJ,447,L49 CahnJ.H.,KalerJ.B.,StanghelliniL.1992,A&AS,94,399 CondonJ.J.,KaplanL.D.,1998,ApJS,117,361 Corradi,R.L.M.,Schwarz,H.E.1995,A&A,293,871 Daub,C.T.1982,ApJ,260,612 Garc´ıa-Segura,G.,Lo´pez,J.A.2000,ApJ,544,336 Gonc¸alves,D.R.,Corradi,R.L.M.,Mampaso,A.,Perinotto,A.2003,ApJ,597, 975 Gonc¸alves,D.R.,Ercolano,B.,Carnero,A.,Mampaso,A.,Corradi,R.L.M. 2006,MNRAS,365,1039 10 Va´zquezetal.:ThephysicalstructureofNGC6309 Table1.DereddenedspectraandphysicalconditionsfromdifferentregionsinNGC6309.IntensityvaluesarerelativetoI =100. Hβ Extinctionlaw(f )isfromHowarth(1983).Thesizeoftheintegrationregion(inarcsec)alongtheslitis7′.′4forR1,R2,R3,and λ R4,and5′.′3fortherest.Slitwidthwassetat1′.′6inallthecases. Ion λ (Å) f R1 R2 R3 R4 E2 W1 W2 0 λ [O] 3727 0.256 108 102 — — — — — [Ne] 3869 0.230 163 165 — — — — — [Ne] 3968 0.210 68 67 — — — — — [S] 4071 0.189 6.5 — — — — — — Hδ+He 4101 0.182 33 34 — — — — — Hγ 4340 0.127 55 53 26 27 52 — — [O] 4363 0.121 12 12 7.9 8.5 — — — He 4471 0.095 8.2 7.1 3.4 3.2 — — — He 4540 0.078 — — 2.8 3.3 — — — N 4640 0.054 4.3 5.0 5.2 6.1 — — — He 4686 0.043 29 31 81 79 86 106 — [Ar] 4711 0.037 6.0 5.8 12 12 — — — [Ar] 4740 0.030 4.6 4.6 9.4 9.3 — — — Hβ 4861 0.000 100 100 100 100 100 100 100 [O] 4959 -0.024 487 464 335 365 341 364 451 [O] 5007 -0.036 1504 1466 993 1081 1046 1097 1238 N 5199 -0.082 0.9 — — — — — — He 5411 -0.133 2.5 2.3 6.2 6.0 8.5 — — [Cl] 5517 -0.154 1.1 1.0 0.7 0.7 — — — [Cl] 5537 -0.157 1.0 1.0 0.7 0.6 — — — [N] 5755 -0.195 1.0 1.0 0.6 — — — — He 5876 -0.215 13 12 7.1 8.1 — — — [O] 6300 -0.282 6.8a 7.2a 2.5 1.2 — — — [S] 6312 -0.283 — — 1.8 1.7 — — — [O] 6364 -0.291 1.9 1.8 0.8 0.4 — — — [Ar] 6435 -0.302 — — 1.4 1.4 — — — [N] 6548 -0.318 24 31 9.3 4.7 — — — Hα 6563 -0.320 285 285 283 284 284 284 284 [N] 6583 -0.323 60 60 27 12 8.8 — — He 6678 -0.336 3.4 3.6 2.4 2.6 — — — [S] 6717 -0.342 8.0 9.1 2.9 1.3 — — — [S] 6731 -0.344 11 12 4.8 2.1 — — — [Ar] 7006 -0.380 — — 3.1 2.7 — — — He 7065 -0.387 3.1 3.1 1.9 2.0 — — — [Ar] 7136 -0.396 17 19 14 13 19 21 21 [Ar]+[Fe] 7170 -0.401 1 — 0.9 0.3 — — — He 7178 -0.401 — — 0.9 0.7 — — — [O] 7320 -0.419 5.6b 5.7b 2.3 1.4 — — — [O] 7330 -0.420 — — 2.0 1.3 — — — c 0.96 0.97 0.70 0.80 0.86 0.85 0.97 Hβ log I -13.4 -13.5 -13.2 -13.4 -15.2 -15.3 -15.9 Hβ T [O] (K) 10800 10900 10700 10600 — — — e T [N] (K) 10300 10100 11800 — — — — e N [S] (cm−3) 1800 1440 4000 3600 — — — e N [Cl] (cm−3) 2100 2350 2600 1700 — — — e N [Ar] (cm−3) >1000 >1500 >1700 >1500 — — — e logHα/[N] 0.533 0.499 0.889 1.244 — — — logHα/[S] 1.182 1.142 1.565 1.913 — — — log[Oiii]5007/Hα 0.723 0.711 0.545 0.580 — — — logλ6717/λ6731 0.748 0.792 0.603 0.623 — — — a Thisemissionlineisblendedwith[S]6312Å. b Thisemissionlineisblendedwith[O]7330Å. Meanuncertaintiesare∆c =±0.02,∆T =±500K,∆N =±400cm−3. Hβ e e