9 0 0 2 n a J The physical principles of 0 2 thermonuclear explosives, inertial ] h p - confinement fusion, and the quest for c o s fourth generation nuclear weapons . s c i s y h p Andre Gsponer and Jean-Pierre Hurni [ Independent Scientific Research Institute 1 v Box 30, CH-1211 Geneva-12, Switzerland 3 9 9 January 20, 2009 2 . 1 0 9 0 : v i X r a ii This document is the electronic version of the third printing (October 2002) of theseventhcorrectedandexpandededitionofareportfirstdistributedatthe1997 INESAPConference, Shanghai, China, September8–10,1997. ThesecondeditionofthisreportwastranslatedinRussianin1998bytheRussian Foreignministryin Moscow. Some minor modifications were made in order to achieve a proper linking of the figures, which could not be modified so that a double numbering scheme had to beused. Afewpapers,Refs.[591]to[596],whichappearedafter2002areappendedtothe bibliographyas additionalreferences. iii To TheodoreB. Taylor and MarekThee iv Executive summary This report is an assessment of the prospect of developing new (i.e., fourth gen- eration) nuclear weapons in the context of the Comprehensive Nuclear Test-Ban Treaty(CTBT)thatwasadoptedbytheUNGeneral Assemblyin1996andofthe current moratoriumon nucleartestingineffect in allnuclear-weapon States. The first chapter is a primer on thermonuclear weapons based on a scientific understanding of the physical principles of existing nuclear weapons and on the results of ISRINEX, a simple thermonuclear explosion simulation program spe- cially developed for independent disarmament experts. Using this insight, it is shownthattheconstructionofhydrogenbombsisinfactmuchlessdifficultthanis generally assumed. Using present-day nuclear and computer technology, almost anymodernindustrialcountrycould,inprinciple,buildsuchaweapon. Similarly, it is shown that “boosting,” i.e., the technique of using a small amount of tritium to enhance the performance of a fission bomb, is also much easier than generally assumed. In particular, usingthistechnique, buildinghighlyefficient and reliable atomic weapons using reactor-grade plutonium is straightforward. Moreover, in- dependently of the type of fissile material used, the construction of “simple” and “deliverable” tritium-boosted nuclear weapons can be easier than the construc- tion of primitive Hiroshima or Nagasaki type atomic bombs. In May 1998, both India and Pakistan showed that they had successfully developed boosted fission weapons. Moreover, India claimed to have tested an advanced hydrogen bomb concept,anditisbelievedthattwooftheirotherfourdeviceshaveusedplutonium thatwas notclassified as weapons grade. Thesecondchapterisatechnical andlegalanalysisofthenucleartestswhich are allowed by the CTBT: microexplosions and subcritical experiments. It is found that this treaty explicitly forbids only nuclear explosions in which a diver- gent fission chain reaction takes place. Therefore, it is possible to develop new typesoffissionexplosivesinwhichsubcriticalfission-burnistheyieldgeneration mechanism. Similarly, new kinds of fusion explosives, in which the trigger is no longera fissionexplosive,arelegalundertheCTBT. Thethirdchapterisdevotedtothemilitaryapplicationsofinertialconfinement fusion (ICF) and other pulsed-power technologies. The capabilities of modern v vi laboratory simulation techniques for weapons physics research are shown to sig- nificantly overlap with those of underground nuclear testing. Moreover, these technologies are found to enable the study of a number of physical processes — especially electromagnetic energy cumulation techniques and advanced nuclear processes that are not restricted by existing arms control treaties — which are useful in refining existing nuclear weapons and essential in developing fourth generationnuclearweapons. Thefourthchapterisdevotedtofourthgenerationnuclearweapons. Thesenew fissionorfusionexplosivescouldhaveyieldsintherangeof1to100tonequivalents ofTNT,i.e.,inthegapwhichtodayseparatesconventionalweaponsfromnuclear weapons. These relatively low-yield nuclear explosives would not qualify as weapons of mass destruction. Seven physical processes which could be used to makesuchlow-yieldnuclearweapons,ortomakecompactnon-fissiontriggersfor largescalethermonuclearexplosions,areinvestigatedindetail: subcriticalfission- burn, magnetic compression, superheavy elements, antimatter, nuclear isomers, metallichydrogenandsuperlasers(i.e.,ultrapowerfullaserswithintensitieshigher than1019 W/cm2). The conclusion stresses that considerable research is underway in all five nuclear-weaponStates(aswellasinseveralothermajorindustrializedStatessuch as Germany and Japan) on ICF and on many physical processes that provide the scientificbasisnecessarytodevelopfourthgenerationnuclearweapons. Substan- tial progress has been made in the past few years on all these processes, and the construction of large ICF microexplosion facilities in both nuclear-weapon and non-nuclear-weapon States is giving the arms race a fresh boost. The world runs the risk that certain countries will equip themselves directly with fourth genera- tionnuclearweapons,bypassingtheacquisitionofpreviousgenerationsofnuclear weapons. In this context, the invention of the superlaser, which enabled a factor of one millionincreaseintheinstantaneouspoweroftabletoplasers,ispossiblythemost significant advance in military technology of the past ten years. This increase is of the same magnitude as the factor of one million difference in energy density between chemicaland nuclearenergy. A major arms control problem of fourth generation nuclear weapons is that their development is very closely related to pure scientific research. The chief purpose of the CTBT is to freeze the technology of nuclear weapons as a first step toward general and complete nuclear disarmament. In order to achieve that, it is necessary to implement effective measures of preventive arms control, such as international legally binding restrictions in all relevant areas of research and development,whethertheyare claimedtobeformilitaryorcivilianpurposes. Contents Executive summary v Acknowledgments xiii Introduction xv Units, conversion factors and metricprefixes xvii 1 The PhysicalPrinciples ofThermonuclear Explosives 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 ISRINEX 2.6 physics . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Fissionexplosivesand boosting. . . . . . . . . . . . . . . . . . . 7 1.4 Modernboostedfissionexplosives(Figs.1.1–1.2) . . . . . . . . . 11 1.5 Theprincipleofthehydrogenbomb . . . . . . . . . . . . . . . . 18 1.6 TheTeller-Ulam method(Fig.1.3) . . . . . . . . . . . . . . . . . 22 1.7 “Mike,”thefirst hydrogenbomb(Figs.1.4–1.7) . . . . . . . . . . 27 1.8 B-28: Thefirst “miniature” multi-purposeH-bomb(Figs.1.8–1.10) . . . . . . . . . . . . . . 32 1.9 1970-1980thermonucleardesigns(Fig.1.11) . . . . . . . . . . . 36 1.10 Thermonucleardetonationwavesand sparkignition(Fig.1.12) . . . . . . . . . . . . . . . . . . . . . . 39 2 Nuclear WeaponsDevelopment under the CTBT 59 2.1 TheComprehensiveTestBan Treaty . . . . . . . . . . . . . . . . 59 2.2 Subcriticaltestsand treaty limitations . . . . . . . . . . . . . . . 60 2.3 Microexplosionsandtreaty limitations . . . . . . . . . . . . . . . 62 vii viii 2.4 Nuclear explosionsand the“zero-yield”CTBT . . . . . . . . . . 65 2.5 Nuclear activities not prohibited by the CTBT and advanced nu- clear processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3 Nuclear WeaponsApplicationsofInertial Confinement Fusion 71 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.2 Inertial Confinement Fusion(Fig.3.1) . . . . . . . . . . . . . . . 72 3.3 Total energy versusenergy density(Fig.3.2) . . . . . . . . . . . . 78 3.4 Equationofstate(Fig.3.3) . . . . . . . . . . . . . . . . . . . . . 80 3.5 Opacity (Figs.3.4–3.5) . . . . . . . . . . . . . . . . . . . . . . . 81 3.6 Compressibleturbulence(Figs.3.6–3.7) . . . . . . . . . . . . . . 83 3.7 Radiation-drivenhydrodynamics(Fig.3.8) . . . . . . . . . . . . . 84 3.8 Pure hydrodynamics(Fig.3.9) . . . . . . . . . . . . . . . . . . . 85 3.9 Radiativetransport(Fig.3.10) . . . . . . . . . . . . . . . . . . . 85 3.10 ICF and nuclearweapons proliferation . . . . . . . . . . . . . . . 85 4 FourthGeneration NuclearWeapons 103 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.2 Subcritical and microfissionexplosives(Figs.4.1–4.2) . . . . . . . 106 4.3 Transplutonicand superheavy elements . . . . . . . . . . . . . . 110 4.4 Antimatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.5 Nuclear isomers . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.6 Super-explosivesand metallichydrogen . . . . . . . . . . . . . . 130 4.7 Pure-fusion explosives . . . . . . . . . . . . . . . . . . . . . . . 136 4.8 Superlasers (Figs.4.3–4.4) . . . . . . . . . . . . . . . . . . . . . 146 4.9 Technologyoffourthgeneration nuclearweapons (Fig.4.5) . . . . . . . . . . . . . . . . . . . . . 152 5 Conclusion 163 6 Bibliography 171 6.1 Nuclear armamentand disarmament . . . . . . . . . . . . . . . . 171 6.2 Fissionweapons . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 6.3 Fusionweapons . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 6.4 Third andfourth generationnuclearweapons . . . . . . . . . . . 180 6.5 Inertial confinementfusion . . . . . . . . . . . . . . . . . . . . . 181 6.6 Subcritical fissionand microfission . . . . . . . . . . . . . . . . . 185 6.7 Shockwaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 6.8 Equationsofstate . . . . . . . . . . . . . . . . . . . . . . . . . . 187 6.9 Opacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 6.10 Instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 ix 6.11 Superheavy elements . . . . . . . . . . . . . . . . . . . . . . . . 189 6.12 Antimatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 6.13 Nuclearisomers . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 6.14 Super-explosivesand metallichydrogen . . . . . . . . . . . . . . 201 6.15 Pure-fusionexplosives . . . . . . . . . . . . . . . . . . . . . . . 204 6.16 Cumulationofenergy . . . . . . . . . . . . . . . . . . . . . . . . 208 6.17 High-energy-densityand pulsed-powerfacilities . . . . . . . . . . 209 6.18 Superlasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 6.19 Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 6.20 Additionalreferences . . . . . . . . . . . . . . . . . . . . . . . . 216 x
Description: