ebook img

The parametrization of the Marchenko-Ostrovsky mapping in terms of the Dirichlet eigenvalues PDF

0.25 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The parametrization of the Marchenko-Ostrovsky mapping in terms of the Dirichlet eigenvalues

The parametrization of the Mar henko-Ostrovsky mapping in terms of the Diri hlet eigenvalues 8 ∗ 0 Maria Evgenievna Korotyaeva 0 2 February 2, 2008 n a J 5 Abstra t ] P S We onsider the inverse spe tral problem for periodi Ja obi matri es in terms of the . verti al slits on the quasi-momentum domain plus the Diri hlet eigenvalues, i.e., the h t Mar henko-Ostrovsky mapping. Moreover, we show that the gradients of the Diri hlet a m eigenvalues and of the so- alled norming onstants are linear independent. [ 1 v 7 1 Introdu tion 0 ℓ2 = ℓ2(Z) 8 0 We onsid(eryt)hn∈eZse=lf-aandyjno+in1t+Nb-npyenri+odain −J1ay no−b1i opeyra=to(rynJ)n∈oZn aℓH2ilbert spa e N 1. given by Ja = exn > 0, x ,b R. for ∈ and for the -periodi n n n 0 sequen es ∈ Furthermore, we assume 8 N v:0 q = (x,b) ≡ (xn,bn)n∈ZN ∈ H 2, H ≡ {b ∈ RN : Xbn = 0}. (1.1) n=1 i X Z = 1,2,...,N , N N, r N a For simpli ity, we use the notation { } ∈ throughout this paper. To ϕ = ϕ(λ,q) = (ϕn(λ,q))n∈Z begin, we re all some well known fa ts (see, e.g., [vM℄). Let and ϑ = ϑ(λ,q) = (ϑn(λ,q))n∈Z denote two fundamental solutions of the equation a y +b y +a y = λy , (λ,n) C Z, n−1 n−1 n n n n+1 n ∈ × (1.2) ϕ ϑ 0, ϕ ϑ 1. ∆(λ,q) = 0 1 1 0 w1(iϕth th(eλi,nqi)ti+alϑ on(dλi,tqio))ns ≡ ≡ ≡ ≡ The Lyapunov fun tion 2 N+1 σ(q) =Nλ R :is∆t(hλe,qd)is ri1minant.of the equation (1.2) and hara terizes the spe trum N { ∈ σ |= [λ+ |,λ≤−],}nof JZ T,he spe trum of J is aγbso=lu(tλel−y, λo+n)t,inuous aλn±d= oλn±si(sqt)sof bands n ∆2n(−λ1,q)n= 1 ∈ N separλat+edbyλ+th<egλa−ps nλ+ < n... <n λ−where λ+n <nλ−.are the roots of γ and satisfy N ≡ 0 1 ≤ 1 σ ,N−σ1 ≤ N−1 N That is, if a gap n degenerates, then the orresponding segments n n+1 ∗ Mathematis hes Institut, Humboldt-Universität zu Berlin, e-mail: korotiaevayahoo.de 1 λ = λ (q) [λ−,λ+] n Z merge. Moreover, there is exa tly one point n n ∈ n n for ea h ∈ N−1 su h that ∆′(λ ,q) = 0, ∆′′(λ ,q) = 0, ( 1)N−n∆(λ ,q) 1. n n n 6 − ≥ (1.3) (′) = ∂/∂λ Here and below, . Traditionally sin e [vM℄, the inverse spe tralµpr=obµlem(q)f,orntheZperio,di Ja obi operator n n N−1 has been solved using the Neumann eigenvalues ∈ given by the zeroes ϑ (λ,q) = 0. N+1 of The main goal of this pνape=r iνs (tqo),sonlve tZhe in,verse spe tral problem n n N−1 alternatively using the Diri hlet eigenvalues ∈ given by the zeroes of ϕ (λ,q) = 0. N That is, we de(cid:28)ne theµau,xνiliary[λs−p,eλ t+r]u,mn byZthe D. iri hlet spe trum instead of the Neumann spe trum. Note that n n ∈ n n ∈ N−1 To outline the plan of this note, we re all that the inverse spe tral problem onsists of the following four parts, namely, i) The uniqueness. Prove that the spe tral data uniquely determines the potential. ii) The re onstru tion. Give an algorithm to re over the potential from the spe tral data. iii) The hara terization. Give the onditions for some data to be the spe tral data of some potential. iv) The stability. Give the two-sided a priori estimates of the potential in terms of the spe tral data. ψ : H 2 R2N−2 oWpeer aotnosrtirnu tteramMs oafr thheenDkoir-iO hsltertovesigkeynvmaalupepsinνgn by ψ = (ψ→n)n∈ZN−1,foψrnt=he(ψp1e,nri,oψd2i, n)J∈a Rob2i, where ψ1,n = log((−1)N−nϕN+1(νn)), ψ2,n = (|ψn|2 −ψ12,n)21 sign(λn −νn), (1.4) cosh ψ = ( 1)N−n∆(λ ). n n | | − (1.5) ψ ψ 2 ψ 2 0 1,n n 1,n Here, is the so- alled norming onstant. It is easy to verify | | − | | ≥ sin e ϕ ϑ ϕ ϑ = 1 N+1 N N N+1 (1.4), (1.5) and the Wronskian identity − together imply ( 1)N−n∆(ν ,q) = coshψ (q). n 1,n − (1.6) ψ Note in identally that the mapping is an analogue of the Mar henko-Ostrovski mapping [MO℄ for the ontinuous ase and has similar properties (see [MO℄, [Ko℄). Firstly, we will prove the hara terization and the uniqueness showing that the mapping {potential} → {spe tral data} is a homeomorphism. ψ : H 2 R2N−2 Theorem 1.1H. T2he maRp2pNin−g2 → is a real analyti isomorphism between the Hilbert spa es and . H ,H 0 Remark. Wefre: aHll someHne essary de(cid:28)qnitioHns. Let be Hilbert spa es.HThe derHiva- 0 0 tive of a map d→f at a fpo:inHt ∈ H is a bounded linear map from into H, q 0 whi Hh we dfenote by . A map f f→−1 is a real analyti isomorphism between 0 and if is bije tive and both and are real analyti maps of the spa e. Se ondly, we will obtain the re onstru tion and the stability. We use for it the geometri interpretation of the Mar henko-Ostrovsky mapping, whi h is similar to the ontinues ase 2 mentioned in [MO℄ and [Ko℄. For this purpose, we introdu e the onformal mapping (the κ : Λ K quasi-momentum) → by cosκ(λ) = ( 1)N∆(λ,q), λ Λ, and κ(it) i as t . − ∈ → ± ∞ → ±∞ (1.7) Λ = C N−1γ K = κ : 0 6 Reκ 6 Nπ N−1κ(γ ) 1 n 1 n Here and below, \∪ is the domain, { }\∪ is Γ = (πn+i ψ ,πn i ψ ) n n n alled the quasi-momentum domain and | | − | | is an ex ised verti al slit. ψ R2N−2, q H 2 Theorem 1.2. i) For ea h ∈ there is a unique point ∈ and a unique κ : Λ K onformal mapping → su h that the following identities hold true κ(λ (q) i0) = πn i ψ (q) , κ(ν (q) i0) = πn iψ (q), n Z . n n n 1,n N−1 ± ± | | ± ± ∈ (1.8) ii) For (ψ1,n)n∈ZN−1, there is a standard algorithm to re over a,b. iii) The following two-sided estimates hold true 1 1 e2max|ψn| < (λ− λ+)2 < b2 +2a2 < N(λ− λ+)2 < 16Ne2max|ψn|. 4 4 N − 0 N − 0 (1.9) A ru ial argument in the proof of Theorem 1.1 is the fa t that the gradients of the Diri hlet eigenvalues and of the norming onstants are linear independent. More pre isely, we de(cid:28)ne the symple ti form ∧ by N f g = (f g f g ) (f g f g ) ∧ X 1,n 2,n − 2,n 1,n − 1,n−1 2,n − 2,n 1,n−1 (1.10) n=1 for f = (f1,δn,f2,n)n∈ZN, g = (g1,n,g2,n)n∈ZN ∈ C2N withn,fm1,0 ≡Zf1,N and g1,0 ≡ g1,N. Note n,m that below stands for the Krone ker symbol for all ∈ . Then we show n,m Z , N−1 Theorem 1.3. For all ∈ it holds true d ν d ν = 0, q n q m ∧ (1.11) d ψ d ψ = 0, q 1,n q 1,m ∧ (1.12) d ψ d ν = 2δ . q 1,n q m n,m ∧ (1.13) d ν , d ψ , n Z , H 2. q n q 1,n N−1 In parti ular, ∈ is a basis of Pös hel and Trubowitz [PT℄ proved an analogue of Theorem 1.3 for the Sturm-Liouville [0,1]. problem on the interval We use their arguments in our proof. Note that van Moerbeke µ n [vM℄ proved (using another approa h) that the gradients of the Neumann eigenvalues and of the norming onstants are linear independent. Namely, van Moerbeke used the Ja obi matri es with removed rows and olumns. Remark that our proof also an be applied for µ . n the ase of There are di(cid:27)erent approa hes to the inverse spe tral problem for the periodi Ja obi operator. The investigation on this topi started in 1976 by van Moerbeke [vM℄ and by Date 3 andTanaka [DT℄. Bothworks obtainedthe re onstru tion, but notthe hara terization: van Moerbeke did it using the Stieltjes inverse spe tral method from [Ah℄ or [GK℄, and Date and Tanaka did it applying the su(cid:30)x shifting by a onstant. The nonlinear Toda latti e turned out an important appli ation of these methods (see [To℄). The (cid:28)rst for us known work on the hara terization is the paper [Pe℄ by Perkolab, where some analogue of Theorem 1.2 is showed using [MO℄. Further, Korotyaev and Kutsenko [KoKu℄ showed Theorems 1.1 and 1.2 in terms of the Neumann eigenvalues applying approa h [KaKo℄. That is, [KoKu℄ extended the result of Mar henko and Ostrovski about the height-slit mapping for the Hill operator (see [MO℄, [Ko1℄) to the ase of the periodi Ja obi matrix using the Neumann eigenvalues. Lastly, the inverse problem in terms of the gap lengths was solved in [BGGK℄ based on the approa h from [GT℄ and in [Ko1℄ based on the approa h from [KaKo℄. Our note isorganizedas follows: Se tion 2 displays somepreliminarystatements interms ν . n of In Se tion 3 we prove Theorem 1.3; this is te hni ally the most di(cid:30) ult part of this note. In Se tion 4, we show Theorem 1.1 using the argument from [Ko℄ and [KoKu℄, where µ n this theorem in terms of is proved. Then Theorem 1.1 together with [KoKr℄ and [KoKu℄ dire tly implies Theorem 1.2. 2 Preliminaries q Inthisse tion, we willdeterminethegradients(withrespe t to )oftheDiri hleteigenvalues andthe norming onstants interms ofthe fundamentalsolutions. Forthis purpose, we de(cid:28)ne the Wronskian by f,g = a (f g f g ), n Z, n n n n+1 n+1 n { } − ∈ (2.1) f = (fn)n∈Z, g = (gn)n∈Z fn,gn C. for the sequen es with ∈ Below, we use the notation ∂ = ∂q = (∂xk,∂bk)k∈ZN. ν , ψ , n Z , H 2 n 1,n N−1 Lemma 2.1. Ea h from the fun tions ∈ is real analyti on and satis(cid:28)es ∂ϕ (ν (q),q) N n d ν = , q n − ϕ′ (ν (q),q) (2.2) N n ϕ′ (ν (q),q)d ν +∂ϕ (ν (q),q) d ψ = N+1 n q n N+1 n . q 1,n ϕN+1(νn(q),q) (2.3) Proof. This proof is similar to the ontinues ase [Ko℄ (see also [KoKu℄). ϕˆ = ϕ(ν (q),q),ϑˆ = ϑ(ν (q),q) (n,q) Z H 2. n n N−1 LkemZma 2.2. Let for all ∈ × Then for all N ∈ , the following identities hold (2a ϕˆ ϕˆ ,ϕˆ2) d ν = k k k+1 k , qk n − a ϕˆ ϕˆ′ (2.4) N N+1 N ′ ˆ ′ ˆ d ψ = B +(ϕˆ ϑ ϕˆ ϑ )d ν , qk 1,n n,k N+1 N − N N+1 q n (2.5) 1 ˆ ˆ ˆ B = (a (ϕˆ ϑ +ϕˆ ϑ ),ϕˆ ϑ ). n,k k k+1 k k k+1 k k a (2.6) N 4 k,j Z N Proof. We assume ∈ . i) We want to show (2.4) applying (2.2). That is, we have to determine the derivation ∂ ϕˆ . ∂ ϕˆ ϕ qk N Firstly, we al ulate xk N using the equation (1.2) for j a ϕ +(b λ)ϕ +a ϕ = 0, j−1 j−1 j j j j+1 − x k and its derivation with respe t to a ∂ ϕ +(b λ)∂ ϕ +a ∂ ϕ = a (δ ϕ +δ ϕ +δ δ ϕ ). j−1 xk j−1 j − xk j j xk j+1 − k j,k k+1 j,k+1 k k,N j,1 0 χ χ = 1 k < N χ = 0 k<N k<N k<N Below, stands for the hara teristi fun tion, i.e. for and k N N ∂ ϕ for ≥ϕ (re alling that is (cid:28)xed). Multiplyingthe (cid:28)rst equatjionZby , xk j and the se ond j N one by and taking the di(cid:27)eren e, we sum the result over all ∈ that is, 2a ϕ ϕ = a (χ 2ϕ ϕ +δ (ϕ ϕ +ϕ ϕ )) k k k+1 k k<N k k+1 k,N 0 1 N N+1 N = a (ϕ ∂ ϕ ϕ ∂ ϕ )+a (ϕ ∂ ϕ ϕ ∂ ϕ ) X j−1 j−1 xk j − j xk j−1 j j+1 xk j − j xk j+1 j=1 N = ∂ ϕ,ϕ ∂ ϕ,ϕ = ∂ ϕ,ϕ ∂ ϕ,ϕ = ∂ ϕ,ϕ X{ xk }j −{ xk }j−1 { xk }N −{ xk }0 { xk }N j=1 ϕ = 0. λ = ν ϕˆ = 0, 0 n N sin e Next, setting and re alling it gives 2a ϕˆ ϕˆ k k k+1 ∂ ϕˆ = . xk N aNϕˆN+1 (2.7) ∂ ϕˆ ϕ Se ondly, we al ulate bk N using the equation (1.2) for j a ϕ +(b λ)ϕ +a ϕ = 0, j−1 j−1 j j j j+1 − b k and its derivation with respe t to a ∂ ϕ +(b λ)∂ ϕ +a ∂ ϕ = δ ϕ . j−1 bk j−1 j − bk j j bk j+1 − j,k k ∂ ϕ ϕ Multiplying the (cid:28)rst equatjion bZy ,bk j and the se ond one by j and taking the di(cid:27)eren e, N we sum the result over all ∈ that is, N 2 ϕ = a (ϕ ∂ ϕ ϕ ∂ ϕ )+a (ϕ ∂ ϕ ϕ ∂ ϕ ) k X j−1 j−1 bk j − j bk j−1 j j+1 bk j − j bk j+1 j=1 N = ∂ ϕ,ϕ ∂ ϕ,ϕ = ∂ ϕ,ϕ ∂ ϕ,ϕ = ∂ ϕ,ϕ X{ bk }j −{ bk }j−1 { bk }N −{ bk }0 { bk }N j=1 ϕˆ2 ϕ = 0. λ = ν , ϕˆ = 0 ∂ ϕˆ = k sin e 0 Setting n we see that N implies bk N aNϕˆN+1 and by (2.7), we get (2.4). 5 ∂ ϕˆ ii) In order to prove (2.5) and (2.6), we determine qk N+1 and then substitute it into ∂ ϕˆ ϕ the identity (2.3). Firstly, we al ulate xk N+1 using the equation (1.2) for j a ϕ +(b λ)ϕ +a ϕ = 0, j−1 j−1 j j j j+1 − ϑ x j k and the derivation of the equation (1.2) for with respe t to a ∂ ϑ +(b λ)∂ ϑ +a ∂ ϑ = a (δ ϑ +δ ϑ +δ δ ϑ ). j−1 xk j−1 j − xk j j xk j+1 − k j,k k+1 j,k+1 k k,N j,1 0 ∂ ϑ ϕ Multiplying the (cid:28)rst equatjion bZy ,xk j and the se ond one by j and taking the di(cid:27)eren e, N we sum the result over all ∈ that is, a (χ (ϕ ϑ +ϕ ϑ )+δ (ϕ ϑ +ϕ ϑ )) k k<N k k+1 k+1 k k,N 1 0 N+1 N N = a (ϕ ∂ ϑ ϕ ∂ ϑ )+a (ϕ ∂ ϑ ϕ ∂ ϑ ) X j−1 j−1 xk j − j xk j−1 j j+1 xk j − j xk j+1 j=1 N = ∂ ϑ,ϕ ∂ ϑ,ϕ = ∂ ϑ,ϕ ∂ ϑ,ϕ = ∂ ϑ,ϕ X{ xk }j −{ xk }j−1 { xk }N −{ xk }0 { xk }N j=1 ∂ ϑ = ∂ ϑ = 0. λ = ν , sin e xk 0 xk 1 Setting n we get ˆ ˆ ˆ a (ϕˆ ϑ +ϕˆ ϑ ) = ∂ ϑ,ϕˆ . k k k+1 k+1 k { xk }N ϕˆ = 0 N We observe that implies ˆ ˆ ˆ ˆ ˆ a (ϕˆ ϑ +ϕˆ ϑ ) = a ϕˆ ∂ ϑ = a ϑ ∂ ϕˆ +a ϑ ∂ ϕˆ k k k+1 k+1 k N N+1 xk N − N N xk N+1 N N+1 xk N ∂ ϑ,ϕ = 0 sin e xk{ }N and hen e a k ˆ ˆ ˆ ˆ ∂ ϕˆ = (ϑ (ϑ ϕˆ +ϕˆ ϑ )+2ϑ ϕˆ ϕˆ ). xk N+1 −a N k k+1 k k+1 N+1 k k+1 (2.8) N ∂ ϕˆ ϕ Se ondly, we al ulate bk N+1 using the equation (1.2) for j a ϕ +(b λ)ϕ +a ϕ = 0, j−1 j−1 j j j j+1 − ϑ b j k and the derivation of the equation (1.2) for with respe t to a ∂ ϑ +(b λ)∂ ϑ +a ∂ ϑ = δ ϑ . j−1 bk j−1 j − bk j j bk j+1 − j,k k ∂ ϑ ϕ Multiplying the (cid:28)rst equatjion bZy ,bk j and the se ond one by j and taking the di(cid:27)eren e, N we sum the result over all ∈ that is, N ϕ ϑ = a (ϕ ∂ ϑ ϕ ∂ ϑ )+a (ϕ ∂ ϑ ϕ ∂ ϑ ) k k X j−1 j−1 bk j − j bk j−1 j j+1 bk j − j bk j+1 j=1 6 N = ∂ ϑ,ϕ ∂ ϑ,ϕ = ∂ ϑ,ϕ ∂ ϑ,ϕ = ∂ ϑ,ϕ X{ bk }j −{ bk }j−1 { bk }N −{ bk }0 { bk }N j=1 ∂ ϑ = ∂ ϑ = 0. λ = ν , ϕˆ = 0 sin e bk 0 bk 1 We set n then N implies ˆ ˆ ˆ ˆ ϕˆ ϑ = a ϕˆ ∂ ϑ = a ϑ ∂ ϕˆ +a ϑ ∂ ϕˆ , k k N N+1 bk N − N N bk N+1 N N+1 bk N ∂ ϑ,ϕ = 0. ∂ ϕˆ = a−1(ϕˆ ϕˆ ϑˆ ϑˆ ϕˆ2) by bk{ }N Therefore, bk N+1 N N+1 k k − N+1 k and (2.8) yield 1 ˆ ˆ ˆ ˆ 2 ∂ ϕˆ = ϕˆ (a (ϕˆ ϑ +ϕˆ ϑ ),ϕˆ ϑ ) ϑ (2a ϕˆ ϕˆ ,ϕˆ ) . qk N+1 a (cid:16) N+1 k k+1 k k k+1 k k − N+1 k k k+1 k (cid:17) N Substituting this expression into the identity (2.3), one obtains (2.5) and (2.6). 3 The proof of Theorem 1.3. d ν , d ψ , n Z , H 2 q n q 1,n N−1 In this Se tion, we will show that ∈ is a basis of using the symple ti form de(cid:28)ned in (1.10). First of all, we display some identities for the Wronskian de(cid:28)ned in (2.1). ˆ ˜ ϕˆ = ϕ(ν (q),q),ϑ = ϑ(ν (q),q) ϕ˜ = ϕ(ν (q),q),ϑ = ϑ(ν (q),q), n,m n n m m LZemm,qa3H.1.2L.et k Z , and ∈ N−1 N ∈ Then for all ∈ the following identities hold true N k ϕˆ ϕ˜ = 0, ϕ˜,ϕˆ = (ν ν ) ϕˆ ϕ˜ , X j j { }k n − m X i i (3.1) j=1 i=1 N ˜ ˆ k ϑ,ϑ ˆ ˜ N ˜ ˆ ˆ ˜ ϑ ϑ = { } , ϑ,ϑ = (ν ν ) ϑ ϑ , X j j (ν ν ) { }k n − m X i i (3.2) j=1 n − m i=1 N ˆ k a (1 ϕ˜ ϑ ) ˆ 0 N+1 N ˆ ˆ ϑ ϕ˜ = − , ϕ˜,ϑ = a +(ν ν ) ϑ ϕ˜ , X j j (ν ν ) { }k − 0 n − m X i i (3.3) j=1 n − m i=1 N ˜ k a (ϑ ϕˆ 1) ˜ 0 N N+1 ˜ ˜ ϕˆ ϑ = − , ϑ,ϕˆ = a +(ν ν ) ϕˆ ϑ , X j j (ν ν ) { }k 0 n − m X i i (3.4) j=1 n − m i=1 N 2 ′ ϕˆ = a ϕˆ ϕˆ . X j 0 N+1 N (3.5) j=1 n,m Z j,k Z N−1 N Proof. We assume ∈ and ∈ . ϕˆ ϕ˜ j j i) To show (3.1), we onsider the equation (1.2) for and respe tively a ϕˆ +b ϕˆ +a ϕˆ = ν ϕˆ , j−1 j−1 j j j j+1 n j a ϕ˜ +b ϕ˜ +a ϕ˜ = ν ϕ˜ . j−1 j−1 j j j j+1 m j 7 ϕ˜ ϕˆ j j Multiplying the (cid:28)rst equation by and the se ond one by and taking the di(cid:27)eren e, we get a (ϕ˜ ϕˆ ϕ˜ ϕˆ )+a (ϕ˜ ϕˆ ϕ˜ ϕˆ ) = (ν ν )ϕˆ ϕ˜ j−1 j j−1 j−1 j j j j+1 j+1 j n m j j − − − or equivalently, by the de(cid:28)nition (2.1) of the Wronskian, ϕ˜,ϕˆ ϕ˜,ϕˆ = (ν ν )ϕˆ ϕ˜ . j j−1 n m j j { } −{ } − (3.6) j Z ϕ˜ = ϕˆ = ϕ˜ = ϕˆ = 0, N 0 0 N N Summing (3.6) over all ∈ and using we get the (cid:28)rst identity in (3.1) N (ν ν ) ϕˆ ϕ˜ = ϕ˜,ϕˆ ϕ˜,ϕˆ = 0. n − m X j j { }N −{ }0 j=1 k. k = 1, Next, we show the se ond identity in (3.1) by indu tion on For the identity holds ϕ˜,ϕˆ = 0. k 1, 0 a ording to (3.6) sin e { } Assuming that the identity holds for − we will k : verify it for By (3.6) and the indu tion hypothesis, it follows k−1 k ϕ˜,ϕˆ ϕ˜,ϕˆ k k−1 { } = { } +ϕˆ ϕ˜ = ϕˆ ϕ˜ +ϕˆ ϕ˜ = ϕˆ ϕ˜ . (ν ν ) (ν ν ) k k X i i k k X i i n − m n − m i=1 i=1 This establishes the se ond identity in (3.1). ˜ ˆ ϑ,ϑ = 0. 0 ii) The proof of (3.2) is similar to that of (3.1) sin e { } ˆ ϑ ϕ˜ j j iii) To show (3.3), we onsider again the equation (1.2) for and respe tively ˆ ˆ ˆ ˆ a ϑ +b ϑ +a ϑ = ν ϑ , j−1 j−1 j j j j+1 n j a ϕ˜ +b ϕ˜ +a ϕ˜ = ν ϕ˜ . j−1 j−1 j j j j+1 m j ˆ ϕ˜ ϑ j j Multiplying the (cid:28)rst equation by and the se ond one by and taking the di(cid:27)eren e, we get ˆ ˆ ˆ ˆ ˆ a (ϕ˜ ϑ ϕ˜ ϑ )+a (ϕ˜ ϑ ϕ˜ ϑ ) = (ν ν )ϑ ϕ˜ j−1 j j−1 j−1 j j j j+1 j+1 j n m j j − − − or equivalently ˆ ˆ ˆ ϕ˜,ϑ ϕ˜,ϑ = (ν ν )ϑ ϕ˜ . j j−1 n m j j { } −{ } − (3.7) j Z ϕ˜,ϑˆ = a , a = a , ϕˆ = 0, N 0 0 0 N N Next, summing (3.7) over all ∈ and using { } − the (cid:28)rst statement in (3.2) follows N ˆ ˆ ˆ ˆ (ν ν ) ϑ ϕ˜ = ϕ˜,ϑ ϕ˜,ϑ = a (1 ϕ˜ ϑ ). n − m X j j { }N −{ }0 0 − N+1 N j=1 k. k = 1, We proveˆthe se ond identityˆ (3.2) by indu tion on For it holds a ording to (3.7), ϕ˜,ϑ = a ϕ˜ ϑ = 0. k 1, k. 0 0 1 1 sin e { } − and Supposing the identity is truth for − prove it for (3.7) and the indu tion hypothesis together imply k−1 ˆ ˆ ˆ ˆ ˆ ϕ˜,ϑ = ϕ˜,ϑ +(ν ν )ϑ ϕ˜ = (ν ν ) ϑ ϕ˜ +(ν ν )ϑ ϕ˜ a = { }k { }k−1 n − m k k n − m X i i n − m k k − 0 i=1 8 k ˆ = (ν ν ) ϑ ϕ˜ a . n − m X i i − 0 i=1 So the se ond identity in (3.2) follows. ˜ ˜ ϑ,ϕˆ = a ϑ,ϕˆ = 0 0 N ˜iv)The proof˜of (3.4) issimilartothat of (3.3), sin e we have { } and { } a ϑ ϕˆ = a ϑ ϕˆ . N N N+1 0 N N+1 ϕ (λ) λ j v) To verify (3.5), we use the equation (1.2) for and its gradient with respe t to a ϕ (λ)+(b λ)ϕ (λ)+a ϕ (λ) = 0, j−1 j−1 j j j j+1 − ′ ′ ′ a ϕ (λ)+(b λ)ϕ (λ)+a ϕ (λ) = ϕ (λ). j−1 j−1 j − j j j+1 j ′ ϕ (λ) ϕ (λ) j j Multiplyingthe(cid:28)rstequationby andthese ondoneby andtakingthedi(cid:27)eren e, we get ′ ′ ′ ′ 2 a (ϕ (λ)ϕ (λ) ϕ (λ)ϕ (λ))+a (ϕ (λ)ϕ (λ) ϕ (λ)ϕ (λ)) = ϕ (λ) j−1 j j−1 − j−1 j j j j+1 − j+1 j j or equivalently ′ ′ 2 ϕ (λ),ϕ(λ) ϕ (λ),ϕ(λ) = ϕ (λ). { }j −{ }j−1 j (3.8) j Z ϕ ϕ′ 0, N 1 1 Next, summing (3.8) over all ∈ and using ≡ ≡ we obtain N 2 ′ ′ ′ ϕ (λ) = ϕ (λ),ϕ(λ) ϕ (λ),ϕ(λ) = ϕ (λ),ϕ(λ) . X j { }N −{ }0 { }N j=1 λ = ν ϕˆ = 0, N ϕˆ2 = ϕˆ′,ϕˆ = a ϕˆ ϕˆ′ . Setting n and re alling N it be omes Pj=1 j { }N N N N n Z N−1 Nowwe willapplythede(cid:28)nition(1.10)ofthesymple ti form: For ∈ , we onsider ddqννn = (ddqkννn)k∈ZNBgivenBin (2.4) andnBnZ= (Bn,k)k∈qZN=dqe(cid:28)n.ed in (2.6). We observe that q0 n ≡ qN n and n,0 ≡ n,N for all ∈ N−1 sin e 0 N So we an de(cid:28)ne a symple ti d ν B q n n form for and . n,m Z , N−1 Theorem 3.2. For all ∈ the following identities hold d ν d ν = 0, q n q m ∧ (3.9) B B = 0, n m ∧ (3.10) B d ν = 2δ . n q m n,m ∧ − (3.11) n,m Z ϕˆ = N−1 Pϕ(rνoo(qf.),qW),eϑˆa=ssuϑm(νe(q),q)∈ ϕ˜ =. ϕF(uνrth(qe)r,mqo),rϑe˜,=weϑ(uνse(qt)h,eq)followingq abHbre2v.iations n n m m and for all ∈ n = m n = m i) To verify the identity (3.9), let 6 sin e the aseC = 2(a2isϕˆobviϕˆo′usϕ˜. Apϕp˜l′y)in−g1,the N N+1 N N+1 N de(cid:28)nition (1.10) of the symple ti form and introdu ing we have N 2 2 2 2 d ν d ν = C a (ϕˆ ϕˆ ϕ˜ ϕˆ ϕ˜ ϕ˜ ) a (ϕˆ ϕˆ ϕ˜ ϕˆ ϕ˜ ϕ˜ ) . q n ∧ q m X(cid:16) k k k+1 k − k k k+1 − k−1 k−1 k k − k k−1 k (cid:17) k=1 9 Using the de(cid:28)nition (2.1) of the Wronskian, this equals N d ν d ν = C ϕˆ ϕ˜ ( ϕ˜,ϕˆ + ϕ˜,ϕˆ ). q n ∧ q m X k k { }k { }k−1 k=1 By (3.1), it follows N k−1 k N k−1 N k d ν d ν q n q m ∧ = ϕˆ ϕ˜ ( ϕˆ ϕ˜ + ϕˆ ϕ˜ ) = ϕˆ ϕ˜ ϕˆ ϕ˜ + ϕˆ ϕ˜ ϕˆ ϕ˜ . C(ν ν ) X k k X i i X i i X k kX i i X k kX i i n − m k=1 i=1 i=1 k=1 i=1 k=1 i=1 Below, we need the following simple identities N k N N N k−1 N−1 N z w = w z , z w = w z X kX i X kX i X kX i X k X i (3.12) k=1 i=1 k=1 i=k k=2 i=1 k=1 i=k+1 for all z = (zk)k∈ZN,w = (wk)k∈ZN ∈ CN. Then we an use (3.12) and (3.5) to obtain N k−1 N N N N d ν d ν q n q m ∧ = ϕˆ ϕ˜ ϕˆ ϕ˜ + ϕˆ ϕ˜ ϕˆ ϕ˜ = ϕˆ ϕ˜ ϕˆ ϕ˜ = 0, C(ν ν ) X k kX i i X k kX i i X k kX i i n − m k=1 i=1 k=1 i=k k=1 i=1 whi h vanishes by the sum identity in (3.1). n = m, ii)We verify the identity (3.10) in the same manner like (3.9). Again, we onsider 6 n = m sin e the ase is obvious, and get N 1 ˆ ˆ ˜ ˆ ˜ ˜ B B = a (ϕˆ ϑ +ϕˆ ϑ )ϕ˜ ϑ ϕˆ ϑ (ϕ˜ ϑ +ϕ˜ ϑ ) n ∧ m a2 X k(cid:16) k+1 k k k+1 k k − k k k+1 k k k+1 (cid:17) N k=1 ˆ ˆ ˜ ˆ ˜ ˜ a (ϕˆ ϑ +ϕˆ ϑ )ϕ˜ ϑ ϕˆ ϑ (ϕ˜ ϑ +ϕ˜ ϑ ) k−1(cid:16) k k−1 k−1 k k k k k k k−1 k−1 k (cid:17) − − N 1 ˆ ˜ ˆ ˜ ˆ ˜ = a ϕ˜ ϕ˜ (ϑ ϑ ϑ ϑ )+ϑ ϑ (ϕˆ ϕ˜ ϕˆ ϕ˜ ) a2 X k(cid:16) k k k+1 k − k k+1 k k k+1 k − k k+1 (cid:17) N k=1 ˆ ˜ ˆ ˜ ˆ ˜ +a ϑ ϑ (ϕˆ ϕ˜ ϕˆ ϕ˜ )+ϕˆ ϕ˜ (ϑ ϑ ϑ ϑ ) k−1(cid:16) k k k k−1 k−1 k k k k k−1 k−1 k (cid:17) − − N N 1 ˆ ˜ ˜ ˆ ˜ ˆ = ( ϑ ϑ ( ϕ˜,ϕˆ + ϕ˜,ϕˆ )+ ϕˆ ϕ˜ ( ϑ,ϑ + ϑ,ϑ )). a2 X k k { }k { }k−1 X k k { }k { }k−1 N k=1 n=1 Using(cid:28)rstly representations of theWronskian in(3.1)and(3.2) andapplying3.12, we obtain a2 (B B ) N k−1 k N k−1 k N n ∧ m = ϑˆ ϑ˜ ( ϕˆ ϕ˜ + ϕˆ ϕ˜ )+ ϕˆ ϕ˜ ( ϑˆ ϑ˜ + ϑˆ ϑ˜) (ν ν ) X k k X i i X i i X k k X i i X i i n − m k=1 i=1 i=1 k=1 i=1 i=1 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.