ebook img

The parabolic Anderson model PDF

83 Pages·2012·0.42 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The parabolic Anderson model

WeierstrassInstitutefor AppliedAnalysisandStochastics The parabolic Andersonmodel BasedonjointworkswithMarekBiskup(CˇeskéBudeˇjoviceandLosAngeles),JürgenGärtner(Berlin),RemcovanderHofstad (Eindhoven),StanislavMolchanov(Charlotte),PeterMörters(Bath)andNadiaSidorova(London) WolfgangKönig WIASBerlinandTUBerlin Mohrenstrasse39·10117Berlin·Germany·Tel.+4930203720·www.wias-berlin.de·Langeoog,7November2012 RandomMotionsinRandomMedia Importantmodelsforavarietyofsituationsandreal-worldapplications.Examples: (cid:4) randomwalkinrandomenvironment (cid:4) randomwalkinrandomscenery (cid:4) randomwalkamongrandomconductances TheparabolicAndersonmodel·Langeoog,7November2012·Page2(29) RandomMotionsinRandomMedia Importantmodelsforavarietyofsituationsandreal-worldapplications.Examples: (cid:4) randomwalkinrandomenvironment (cid:4) randomwalkinrandomscenery (cid:4) randomwalkamongrandomconductances Butwewillbeconcernedwith (cid:4) randommotionsinrandompotential, whicharecloselyconnectedwith (cid:4) spectraofrandomoperators. Theoperatorsthatweconsiderhaveakineticpartandarandompotential.More precisely,theyarerandomSchrödingeroperators. Welookatthetimedependentproblemandstudylong-timeproperties.Thisis closelyconnectedwithspectraltheory,inparticular,Andersonlocalisationproperties, butonlyclosetothetopofthespectrumoftherandomoperator. Warning:Weuseprobabilisticsignconvention. TheparabolicAndersonmodel·Langeoog,7November2012·Page2(29) TheParabolicAndersonModel WeconsidertheCauchyproblemfortheheatequationwithrandomcoefficientsand localisedinitialdatum: ∂ u(t,z) = ∆du(t,z)+ξ(z)u(t,z), for(t,z)∈(0,∞)×Zd, (1) ∂t u(0,z) = δ0(z), forz∈Zd. (2) TheparabolicAndersonmodel·Langeoog,7November2012·Page3(29) TheParabolicAndersonModel WeconsidertheCauchyproblemfortheheatequationwithrandomcoefficientsand localisedinitialdatum: ∂ u(t,z) = ∆du(t,z)+ξ(z)u(t,z), for(t,z)∈(0,∞)×Zd, (1) ∂t u(0,z) = δ0(z), forz∈Zd. (2) (cid:4) ξ=(ξ(z): z∈Zd)i.i.d.randompotential,[−∞,∞)-valued. (cid:4) ∆df(z)=∑y∼z f(y)−f(z) discreteLaplacian (cid:2) (cid:3) (cid:4) ∆d+ξAndersonHamiltonian(acelebratedrandomSchrödingeroperator) TheparabolicAndersonmodel·Langeoog,7November2012·Page3(29) TheParabolicAndersonModel WeconsidertheCauchyproblemfortheheatequationwithrandomcoefficientsand localisedinitialdatum: ∂ u(t,z) = ∆du(t,z)+ξ(z)u(t,z), for(t,z)∈(0,∞)×Zd, (1) ∂t u(0,z) = δ0(z), forz∈Zd. (2) (cid:4) ξ=(ξ(z): z∈Zd)i.i.d.randompotential,[−∞,∞)-valued. (cid:4) ∆df(z)=∑y∼z f(y)−f(z) discreteLaplacian (cid:2) (cid:3) (cid:4) ∆d+ξAndersonHamiltonian(acelebratedrandomSchrödingeroperator) Thesolutionu(t,·)isarandomtime-dependentshift-invariantfield. Itsa.s.existenceisguaranteedunderamildmomentconditiononthepotential. Ithasallmomentsfiniteifallpositiveexponentialmomentsofξ(0)arefinite. TheparabolicAndersonmodel·Langeoog,7November2012·Page3(29) MotivationsandComments Interpretations/Motivations: (cid:4) Randommasstransportthrougharandomfieldofsinksandsources. (cid:4) Expectedparticlenumberinabranchingrandomwalkmodelinafieldof randombranchingandkillingrates. (cid:4) AndersonHamiltonian∆d+ξdescribesconductancepropertiesofalloysof metals,oropticalpropertiesofglasseswithimpurities.Manyopenquestions aboutdelocalisedversusextendedstates. TheparabolicAndersonmodel·Langeoog,7November2012·Page4(29) MotivationsandComments Interpretations/Motivations: (cid:4) Randommasstransportthrougharandomfieldofsinksandsources. (cid:4) Expectedparticlenumberinabranchingrandomwalkmodelinafieldof randombranchingandkillingrates. (cid:4) AndersonHamiltonian∆d+ξdescribesconductancepropertiesofalloysof metals,oropticalpropertiesofglasseswithimpurities.Manyopenquestions aboutdelocalisedversusextendedstates. Comments: (cid:4) Inthespecialcaseξ(z)∈{−∞,0},wecallsiteszwithξ(z)=−∞a(hard)trap. Thenu(t,x)isequaltothesurvivalprobabilityuptotimetinx. (cid:4) Thespatiallycontinuousversion(Brownianmotioninsteadofrandomwalk)is alsohighlyinteresting. Backgroundliteratureandsurveys:[MOLCHANOV1994],[CARMONA/MOLCHANOV 1994],[SZNITMAN1998],[GÄRTNER/K.2005]. TheparabolicAndersonmodel·Langeoog,7November2012·Page4(29) Maintools Feynman-Kacformula t u(t,z)=E0hexpnZ0 ξ(X(s))dso1l{X(t)=z}i, z∈Zd,t>0, where(X(s)) isthesimplerandomwalkonZd withgenerator∆d,startingfromz s∈[0,∞) underPz. TheparabolicAndersonmodel·Langeoog,7November2012·Page5(29) Maintools Feynman-Kacformula t u(t,z)=E0hexpnZ0 ξ(X(s))dso1l{X(t)=z}i, z∈Zd,t>0, where(X(s)) isthesimplerandomwalkonZd withgenerator∆d,startingfromz s∈[0,∞) underPz. Eigenvalueexpansion t u(t,z)≈E0hexpnZ0 ξ(X(s))dso1l{X(t)=z}1l{X[0,t]⊂B(2)(t)}i =∑etλk(ξ,B(2)(t))ϕk(0)ϕk(z), k where(λk(ξ,B(2)(t)),ϕk)k isasequenceofeigenvaluesλ1>λ2≥λ3≥... and L2-orthonormaleigenfunctionsϕ1,ϕ2,ϕ3,... of∆+ξinsomebox B(2)(t)=tlog2t×[−1,1]d withzeroboundarycondition. TheparabolicAndersonmodel·Langeoog,7November2012·Page5(29)

Description:
In particular, we have control on their differences, i.e., the spectral gaps. □ The corresponding eigenfunctions are exponentially localised in islands Brt
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.