WeierstrassInstitutefor AppliedAnalysisandStochastics The parabolic Andersonmodel BasedonjointworkswithMarekBiskup(CˇeskéBudeˇjoviceandLosAngeles),JürgenGärtner(Berlin),RemcovanderHofstad (Eindhoven),StanislavMolchanov(Charlotte),PeterMörters(Bath)andNadiaSidorova(London) WolfgangKönig WIASBerlinandTUBerlin Mohrenstrasse39·10117Berlin·Germany·Tel.+4930203720·www.wias-berlin.de·Langeoog,7November2012 RandomMotionsinRandomMedia Importantmodelsforavarietyofsituationsandreal-worldapplications.Examples: (cid:4) randomwalkinrandomenvironment (cid:4) randomwalkinrandomscenery (cid:4) randomwalkamongrandomconductances TheparabolicAndersonmodel·Langeoog,7November2012·Page2(29) RandomMotionsinRandomMedia Importantmodelsforavarietyofsituationsandreal-worldapplications.Examples: (cid:4) randomwalkinrandomenvironment (cid:4) randomwalkinrandomscenery (cid:4) randomwalkamongrandomconductances Butwewillbeconcernedwith (cid:4) randommotionsinrandompotential, whicharecloselyconnectedwith (cid:4) spectraofrandomoperators. Theoperatorsthatweconsiderhaveakineticpartandarandompotential.More precisely,theyarerandomSchrödingeroperators. Welookatthetimedependentproblemandstudylong-timeproperties.Thisis closelyconnectedwithspectraltheory,inparticular,Andersonlocalisationproperties, butonlyclosetothetopofthespectrumoftherandomoperator. Warning:Weuseprobabilisticsignconvention. TheparabolicAndersonmodel·Langeoog,7November2012·Page2(29) TheParabolicAndersonModel WeconsidertheCauchyproblemfortheheatequationwithrandomcoefficientsand localisedinitialdatum: ∂ u(t,z) = ∆du(t,z)+ξ(z)u(t,z), for(t,z)∈(0,∞)×Zd, (1) ∂t u(0,z) = δ0(z), forz∈Zd. (2) TheparabolicAndersonmodel·Langeoog,7November2012·Page3(29) TheParabolicAndersonModel WeconsidertheCauchyproblemfortheheatequationwithrandomcoefficientsand localisedinitialdatum: ∂ u(t,z) = ∆du(t,z)+ξ(z)u(t,z), for(t,z)∈(0,∞)×Zd, (1) ∂t u(0,z) = δ0(z), forz∈Zd. (2) (cid:4) ξ=(ξ(z): z∈Zd)i.i.d.randompotential,[−∞,∞)-valued. (cid:4) ∆df(z)=∑y∼z f(y)−f(z) discreteLaplacian (cid:2) (cid:3) (cid:4) ∆d+ξAndersonHamiltonian(acelebratedrandomSchrödingeroperator) TheparabolicAndersonmodel·Langeoog,7November2012·Page3(29) TheParabolicAndersonModel WeconsidertheCauchyproblemfortheheatequationwithrandomcoefficientsand localisedinitialdatum: ∂ u(t,z) = ∆du(t,z)+ξ(z)u(t,z), for(t,z)∈(0,∞)×Zd, (1) ∂t u(0,z) = δ0(z), forz∈Zd. (2) (cid:4) ξ=(ξ(z): z∈Zd)i.i.d.randompotential,[−∞,∞)-valued. (cid:4) ∆df(z)=∑y∼z f(y)−f(z) discreteLaplacian (cid:2) (cid:3) (cid:4) ∆d+ξAndersonHamiltonian(acelebratedrandomSchrödingeroperator) Thesolutionu(t,·)isarandomtime-dependentshift-invariantfield. Itsa.s.existenceisguaranteedunderamildmomentconditiononthepotential. Ithasallmomentsfiniteifallpositiveexponentialmomentsofξ(0)arefinite. TheparabolicAndersonmodel·Langeoog,7November2012·Page3(29) MotivationsandComments Interpretations/Motivations: (cid:4) Randommasstransportthrougharandomfieldofsinksandsources. (cid:4) Expectedparticlenumberinabranchingrandomwalkmodelinafieldof randombranchingandkillingrates. (cid:4) AndersonHamiltonian∆d+ξdescribesconductancepropertiesofalloysof metals,oropticalpropertiesofglasseswithimpurities.Manyopenquestions aboutdelocalisedversusextendedstates. TheparabolicAndersonmodel·Langeoog,7November2012·Page4(29) MotivationsandComments Interpretations/Motivations: (cid:4) Randommasstransportthrougharandomfieldofsinksandsources. (cid:4) Expectedparticlenumberinabranchingrandomwalkmodelinafieldof randombranchingandkillingrates. (cid:4) AndersonHamiltonian∆d+ξdescribesconductancepropertiesofalloysof metals,oropticalpropertiesofglasseswithimpurities.Manyopenquestions aboutdelocalisedversusextendedstates. Comments: (cid:4) Inthespecialcaseξ(z)∈{−∞,0},wecallsiteszwithξ(z)=−∞a(hard)trap. Thenu(t,x)isequaltothesurvivalprobabilityuptotimetinx. (cid:4) Thespatiallycontinuousversion(Brownianmotioninsteadofrandomwalk)is alsohighlyinteresting. Backgroundliteratureandsurveys:[MOLCHANOV1994],[CARMONA/MOLCHANOV 1994],[SZNITMAN1998],[GÄRTNER/K.2005]. TheparabolicAndersonmodel·Langeoog,7November2012·Page4(29) Maintools Feynman-Kacformula t u(t,z)=E0hexpnZ0 ξ(X(s))dso1l{X(t)=z}i, z∈Zd,t>0, where(X(s)) isthesimplerandomwalkonZd withgenerator∆d,startingfromz s∈[0,∞) underPz. TheparabolicAndersonmodel·Langeoog,7November2012·Page5(29) Maintools Feynman-Kacformula t u(t,z)=E0hexpnZ0 ξ(X(s))dso1l{X(t)=z}i, z∈Zd,t>0, where(X(s)) isthesimplerandomwalkonZd withgenerator∆d,startingfromz s∈[0,∞) underPz. Eigenvalueexpansion t u(t,z)≈E0hexpnZ0 ξ(X(s))dso1l{X(t)=z}1l{X[0,t]⊂B(2)(t)}i =∑etλk(ξ,B(2)(t))ϕk(0)ϕk(z), k where(λk(ξ,B(2)(t)),ϕk)k isasequenceofeigenvaluesλ1>λ2≥λ3≥... and L2-orthonormaleigenfunctionsϕ1,ϕ2,ϕ3,... of∆+ξinsomebox B(2)(t)=tlog2t×[−1,1]d withzeroboundarycondition. TheparabolicAndersonmodel·Langeoog,7November2012·Page5(29)
Description: