ACCEPTEDBYAPJ PreprinttypesetusingLATEXstyleemulateapjv.5/2/11 THEOUTFLOWSACCELERATEDBYTHEMAGNETICFIELDSANDRADIATIONFORCEOFACCRETIONDISKS XINWUCAO KeyLaboratoryforResearchinGalaxiesandCosmology,ShanghaiAstronomicalObservatory,ChineseAcademyofSciences, 80NandanRoad,Shanghai,200030,China;[email protected] acceptedbyApJ ABSTRACT The inner region of a luminous accretion disk is radiation pressure dominated. We estimate the surface 4 1 temperatureof a radiationpressure dominatedaccretiondisk, Θ=c2s/r2Ω2K ≪(H/r)2, which is significantly 0 lowerthan thatof a gaspressuredominateddisk, Θ∼(H/r)2. Thismeansthatthe outflowcan be launched 2 magneticallyfromthephotosphereoftheradiationpressuredominatediskonlyiftheeffectivepotentialbarrier along the magnetic field line is extremely shallow or no potential barrier is present. For the latter case, the n slowsonicpointintheoutflowmayprobablybeinthedisk,whichleadstoaslowcirculardenseflowabove a J the disk. This implies that hot gas (probably in the corona) is necessary for launching an outflow from the radiation pressure dominated disk, which provides a natural explanation on the observational evidence that 8 therelativisticjetsarerelatedtohotplasmainsomeX-raybinariesandactivegalacticnuclei. Weinvestigate 1 the outflowsaccelerated from the hot coronaabove the disk by the magnetic field and radiation force of the ] accretiondisk.Wefindthat,withthehelpoftheradiationforce,themasslossrateintheoutflowishigh,which E leadstoaslowoutflow. Thismaybethereasonwhythejetsinradio-loudnarrow-lineSeyfertgalaxiesarein H generalmildrelativisticcomparedwiththoseinblazars. . Subjectheadings:accretion,accretiondisks,galaxies:jets,magneticfields,galaxies:active h p - 1. INTRODUCTION sub-Keplerian (Ogilvie&Livio 1998, 2001; Cao&Spruit o 2002; Cao 2012). The radiation-magnetohydrodynamic r The acceleration of the gas by the magnetic field lines t simulations have been carried out on the global struc- s threading the rotating disks is considered as a promising ture of the accretion disks and outflows around black a explanation for jets/outflows observed in different types of [ the sources, i.e., young stellar objects, X-ray binaries, and holes (e.g., Moscibrodzkaetal. 2007; Mos´cibrodzkaetal. active galactic nuclei (AGNs) (see reviews in Spruit 1996; 2009; Mos´cibrodzka&Proga 2009; Takeuchietal. 2010; 2 Ohsuga&Mineshige 2011; Vaidyaetal. 2011). It is found Konigl&Pudritz 2000; Pudritzetal. 2007; Spruit2010). In v thatthemagneticforce,togetherwiththeradiationforceex- 0 this model, a fraction of gas is driven form the disk along erted by accretion disks, can efficiently drive outflows from 2 thefieldlineco-rotatingwiththediskbythecentrifugalforce luminousaccretiondisks.Cao(2012)investigatedthelaunch- 3 (Blandford&Payne1982). Thejets/outflowsaredominantly ing condition for the cold outflows driven by the magnetic 2 poweredby the rotationalkinetic energyof the disk through field and radiation force of an accretion disk, in which the . theorderedlargescalefieldthreadingtheaccretiondisk. 1 diskissub-Keplerianduetotheforceexertedbythemagnetic It has been also suggested that the outflow can be 0 field. Ithasbeenfoundthattheforceexertedbytheradiation accelerated by the radiation pressure of the disk (e.g., 4 fromthe disk does help to launch the outflow. The cold gas Bisnovatyi-Kogan&Blinnikov 1977; Shlosmanetal. 1985; 1 can be driven from the disk surface even if the field line is Murrayetal.1995). Thisscenarioisattractiveespeciallyfor v: thejetsinthesourcesaccretingathighmassrates.Indeed,jets inclinedatanglegreaterthan60◦withrespecttothedisksur- i havebeenobservedintheblackholesystemsaccretingathigh face,whichisobviouslydifferentfromthepuremagnetically X drivencoldoutflow(Blandford&Payne1982). rates, such as, some narrow-lineSeyfertI galaxies(NLS1s), r young radio galaxies, and microquasars (e.g., Zhouetal. In this work, we explore the outflow accelerated from the a hotcoronaabovethediskbythemagneticfieldandradiation 2003; Doietal. 2006; Yuanetal. 2008; Gu&Chen 2010; forceofthedisk. Inourmodel,thediskstructure,especially Czernyetal. 2009; Wu 2009; Fenderetal. 2004). The radi- thecircularmotionvelocityofthegasesinthedisk,isaltered ation pressure may also play an important role in the mag- inthepresenceofastronglarge-scaleorderedmagneticfield neticallydrivenoutflowsespeciallyfromluminousaccretion threadingthedisk. WedescribethemodelandresultsinSec- disks. Proga(2000)performednumericalsimulationsonthe tions 2 and 3, and the discussion is in Sections 4. The final radiation-driven outflows from a luminous Keplerian accre- sectioncontainsasummary. tion disk threaded by a strong large-scale ordered magnetic field. It has been found that the radiation force is essential in driving outflows from the disk if the thermal energy of the gas is low or the field lines make an angle greater than 2. MODEL 60◦ withrespecttothediskmidplane. Strictlyspeaking,the Weconsidertheoutflowacceleratedbythelargescalemag- circularmotion of the gas in the accretiondisk always devi- neticfieldandtheradiationforceofaradiationpressurepres- ates from Keplerian motion in the presence of a large scale suredominatedaccretiondisk. Therotationalvelocityofthe magneticfield,whichusuallyexertsaradialforceagainstthe gas in the disk is sub-Keplerian in the presence of a mag- gravitationofthecentralobject.Therefore,theaccretiondisk neticfield, dueto a radialmagneticforceagainstthegravity threaded by ordered magnetic field lines is therefore always of the central object. The outflow is fed by the gas at the 2 XinwuCao disksurface. Thepropertiesofthetransitionregionbetween Thepressureatthemid-planeofanaccretiondiskis thediskandoutflowarestillquiteuncertain,thoughsomeef- 4σ forts have been devoted on this issue (e.g., Ogilvie&Livio p = T4, (3) 1998, 2001). In this work, we consider the outflows fed by d 3c c the hotcoronaabovethe disk, and the temperatureand den- where T is the centraltemperatureof the disk. The flux ra- c sityofthecoronaaredescribedastheinputmodelparameters. diatedfromthe unitarea of the disk surface is relatedto the Alargescalemagneticfieldthreadingthediskisakeyingre- temperatureanddensityofthediskby dient in our model calculations, however, the origin of such afieldisstillnotwellunderstood. Thefieldcanbeadvected 8σT4 f = c . (4) inwardsbytheaccretionmatterfromtheinterstellarmedium rad 3Σ κ d T or a companion star (Bisnovatyi-Kogan&Ruzmaikin 1974, 1976). The inward advection of the field lines is balanced Substituting Equations (1), (3), and (4) into Equation (2), by the outward movementof field lines caused by magnetic wefind ˜ diffusion(e.g.,vanBallegooijen1989;Lubowetal.1994). In 1- Ω˜2= 2βHd , (5) principle,thefieldconfigurationcanbecalculatedifthestruc- κ (1+H˜2)3/2 0 d tureofthediskisknown. Lubowetal.(1994)foundthatthe advectionofthefieldinaconventionalviscouslydriventhin wherethedimensionlessquantitiesΩ˜,H˜ ,andβ,aredefined d accretiondiskisratherinefficient. Itwasarguedthattheac- as cretion velocityof the gas in the region away from the mid- plane of the disk can be larger than that at the midplane of Ω˜ = Ω ; Ω = GM 1/2; H˜ = H; β= B2z/p . (6) the disk, which makes the field dragged in by the accretion Ω K r3 d r 8π d K (cid:18) i (cid:19) i disk more efficiently(Lovelaceetal. 2009; Guilet&Ogilvie 2012, 2013). Cao&Spruit (2013)’s calculations show that 2.2. Magneticfieldconfiguration the external field can be advected inwards efficiently if the Weuseamagneticfieldconfigurationwith angularmomentumofthediskispredominatelyremovedby tihsethoeutdflyonwasm.oApnroaclteesrsneastivinetfhoertdhieskosr,igainndotfhmeaoguntfletoicwfisecladns B (r, z=0)= 1+ r 2 - 1/2, (7) be driven by the dynamo generated magnetic fields of the z r " (cid:18) 0(cid:19) # disks (vonRekowskietal. 2003; Campbell 2003). To avoid the complexity of the detailed physics of the disk field for- at the mid-plane of the disk (Cao&Spruit 1994), which is mation,weuseananalyticmagneticfieldconfigurationofan similar to the self-similar disk given in Blandford&Payne accretiondiskgiveninCao&Spruit(1994)toinvestigatethe (1982) (see Spruit 1996, for the detailed discussion). The dynamicsoftheoutflowdrivenbythemagneticfieldandra- streamfunctionofthepotentialfieldinthespaceabove/below diationpressureofthedisk. thedisksatisfyingtheboundarycondition(7)isgivenby 2.1. Structureofaradiationpressuredominatedaccretion r 2 z 2 1/2 z Φ= + 1+ - 1+ . (8) disk r r r "(cid:18) 0(cid:19) (cid:18) (cid:12) 0(cid:12)(cid:19) # (cid:18) (cid:12) 0(cid:12)(cid:19) The structure of a radiation pressure dominated accretion (cid:12) (cid:12) (cid:12) (cid:12) diskwithalargescalemagneticfieldhasbeenstudiedindetail It satisfies the conditions ▽(cid:12)(cid:12)×B(cid:12)(cid:12) =0 and ▽·B(cid:12)(cid:12) =(cid:12)(cid:12)0, and it is byCao(2012). Webrieflysummarizethemainresultsinthis usedinthisworktostudythedynamicsoftheoutflowabove subsection. thedisk. Thecomponentsofthefieldinthespaceabovethe Thehalf-thicknessH ofaradiationpressuredominatedac- diskaregivenby d cretiondiskisestimatedbyassumingtheverticalcomponent 1∂Φ B (r, z)= , (9) ofgravitytobebalancedwiththeradiationforceandtheverti- z r ∂r calcomponentmagneticforceatthedisksurface. Thecurva- and tureofthefieldlineatthedisksurfaceisusuallyverysmall, 1∂Φ and the vertical magnetic force can be neglected compared B (r, z)=- . (10) r r ∂z withtheradiationforceatz=H . Thediskthicknesscanbe d calculatedwith In principle, the radial magnetic field will be sheared into azimuthal field by the differential rotation of the gas in the GMH f κ d = rad T, (1) disk,whichleadstomagnetorotationalinstability(MRI)and (r2+H2)3/2 c i d the MRI-driven turbulence (Balbus&Hawley 1991, 1998). This is the most promising mechanism for angular momen- where f is the flux from the unit surface area of the disk, rad tum transportationin accretion disks. In this work, we con- andκ istheThompsonscatteringcross-section. TheTangularvelocityΩofthediskiscalculatedwith siderthepropertiesofthediskastheboundaryconditionsfor drivingtheoutflows,andthereforewedonotneedtoconsider BSB B2 thedetailedphysicsoftheazimuthalfieldin thediskcaused riΩ2K- riΩ2= 2πrΣzr = 2πΣzrκ , (2) bythedifferentialrotation. d i d i 0 whereBSandB aretheradialandverticalcomponentsofthe 2.3. Radiationoftheaccretiondisk r z field at the disk surface, respectively, κ =B /BS, and Σ is The radiation force exerted by the disk is in z-direction at 0 z r d thesurfacedensityofthedisk. Thefootpointofthefieldline the disk surface, which can be determined locally, F (z= rad atthedisksurfaceislocatedatr=r andz=H . H ) = f κ ρ/c , where ρ is the density of the gas at i d d rad T i i Theoutflowsacceleratedbythemagneticfieldsandradiationforce 3 the disk surface. In the space above the disk, the ra- 2.4. Outflowsdrivenbythemagneticfieldandradiation diation force exserted by the disk has to be calculated pressure by integrating over the contribution from the whole disk Anisothermaloutflowdrivenbythemagneticfieldandra- (Bisnovatyi-Kogan&Blinnikov1977). diation force of the disk along the field line is described by The r and z-components of the radiation force exerted on thefollowingEquations(cf.Cao&Spruit1994): thegaselementwithdensityρat(r, z)abovethediskare F (r, z)= κTρ p=ρc2s,i, (17) rad,r c f v = B , (18) p p f (r′)µ′(1- µ′2)1/2(r- r′cosφ′) ρ × rad r′dr′dφ′, (11) πl(h2+l2) (vφ- Ωr)Bp=vpBφ, (19) rZ′ φZ′ B B and r vφ- p φ =ΩrA, (20) F (r, z)= κTρ frad(r′)h2 r′dr′dφ′, (12) (cid:18) 4πρvp(cid:19) rad,z c π(h2+l2)2 and Zr′ φZ′ v2p+1(v - Ωr)2+c2 ln ρ +Ψ (r, z)=E, (21) where 2 2 φ s,i ρA eff h=z- H˜dr, wheretheeffectivepotentialalongthefieldlinethreadingthe accretiondiskwithangularvelocityΩatthefieldfootpointr l=[(r- r′cosφ′)2+r′2sin2φ′]1/2, is i and GM 1 µ′= h . Ψeff(r, z)=- (r2+z2)1/2- 2Ω(ri)2r2+Ψrad(r, z). (22) (h2+l2)1/2 ThelastterminEquation(22)iscontributedbytheradiation We haveassumedthatthe relativedisk half-thicknessH˜ re- force from the disk (see Equation 13). Equation (18) is the d mains constant with radius for a thin disk, which is taken mass conservationof the outflow along the field line, where as an input parameter in our model. The flux from the vp andBp arethe poloidalvelocityandfieldstrengthrespec- unit surface of a standard thin disk is roughly f (r)∝r- 3 tively,and f describesthemasslossrateintheoutflow. The rad (Shakura&Sunyaev 1973). A pseudo potential Ψ con- conservationofangularmomentumisdescribedbyEquation rad tributed by the radiation force along the field line is defined (20), in which rA is the Alfvén radius of the outflow. The fieldlineandthemotionoftheoutflowareparallelintheco- as c c rotating field line frame (Equation19). Equation (21) is the Ψrad=- Frad,rdr- Frad,zdz, (13) BernoulliEquationoftheisothermaloutflow. κ ρ κ ρ T Z T Z Substituting Equations (17)-(20) into Equation (21), we whichareintegratedalongthefieldlinefromthedisksurface. have ThefieldlineshapeisdescribedbyEquation(8)withaspec- ifiedvalueofΦ. SubstituteEquation(1)intoEquations(11), H(r, ρ, r , ρ )= B2p ρA 2+ Ω2(rA2 - r2)2 wecanre-writethesetwoequationsindimensionlessform, A A 8πρ ρ 2r2(1- ρ/ρ )2 A(cid:18) (cid:19) A F˜rad,r(r, z)=Frad,r(r, z)GMcrκi2 ρ +c2s,ilnρρA +Ψeff=E, (23) T wherec isthesoundspeedofthegasatthedisksurface/the = 1 µ′(1- µ′2)1/2(r- r′cosφ′)H˜d ri 3r′dr′dφ′, bottomos,iftheoutflow,andρA isthedensityoftheoutflowat π l(h2+l2)(1+H˜2)3/2 r′ the Alfvén radius rA. It can be re-written in dimensionless Zr′ φZ′ d (cid:16) (cid:17) formas and (14) H˜(x, y, xi, yi)= ri H(r, ρ, rA, ρA) GM F˜rad,z(r, z)=Frad,z(r, z)GMcrκi2Tρ = βiyyi2Θi+2(x12-x2x(21)-2Ω˜y2)2+Θilny+Ψ˜eff=E˜, (24) i 1 h2H˜ r 3 = d i r′dr′dφ′, (15) where π (h2+l2)2(1+H˜2)3/2 r′ c2 Zr′ φZ′ d (cid:16) (cid:17) x=r/rA; y=ρ/ρA; Θi= r2Ωs,i2 ; i K where r is the footpointof the field line at the disk surface. The dimiensionless pseudo potential along a magnetic field β = B2p,i/p = B2p,i/ρc2 , (25) linecontributedbytheradiationforceis i 8π i 8π i s,i Ψ˜rad(˜r, ˜z)=Ψrad(r, z)GrMi =- F˜rad,rdr˜- F˜rad,zd˜z, (16) athnedbtohtetosmubosfcrtihpetsou“it"florwef.er to the values of the quantities at Z Z Substituting Equation(1) into Equation(22), the effective wherer˜=r/r and˜z=z/r. potentialalongthefieldlinethreadingtheaccretiondiskwith i i 4 XinwuCao angularvelocityΩatradiusr canbere-writtenindimension- Substituting Equations (1) and (32) into Equation (33), we i lessform, have Ψ˜eff(˜r, ˜z)=Ψeff(r, z)GrMi =- (˜r2+1˜z2)1/2- 21Ω˜2˜r2+Ψ˜rad(˜r(,2˜z6)), ri2cΩ2s,i2K =(cid:20)(1.895M⊙)26π02GκT3(1r+iΩH˜2Kd2H˜)3d/2(cid:21)1/4GMriµ where ˜r=r/ri, ˜z=z/ri, and the last term is calculated with =4.946×10- 6µ- 1(r/r )1/2H˜1/4m- 1/4(1+H˜2)- 3/8, (34) Equation(16). i S d d Foragivenmagneticfieldconfiguration,theoutflowalong where a field line passes through three critical points, i.e., the 2GM M slow sonic, Alfvén, and fast sonic points (Sakurai 1985; r = , m= , (35) S c2 M Cao&Spruit 1994). At the two sonic points, the function ⊙ ˜ H(x, y, xi, yi)satisfies and(¯hc/G)3/2m-p2=1.895M⊙ isused. Themolecularweight ˜ ˜ µ=0.5forpurehydrogenplasma. ∂H ∂H = =0, (27) Thesurfacetemperatureofagaspressuredominatedaccre- ∂x ∂y tiondiskis and ˜ ˜ ˜ c2s,i = 4 1/4 c2s,c = 4 1/4H˜2, (36) H(xs, ys, xi, yi)=H(xf, yf, xi, yi)=E. (28) ri2Ω2K (cid:18)3τ(cid:19) ri2Ω2K (cid:18)3τ(cid:19) d Anadditionalcondition, wherec isthesoundspeedofthegasatthemid-planeofthe s,c disk, andτ is theopticaldepthof thedisk in the verticaldi- ˜ ˜ H(x, y, xi, yi)=E, (29) rection. Theopticaldepthτ isintherangeof∼102- 105for athinaccretiondiskaccretingatdifferentrates,whichmeans is imposed at the disk surface, i.e., x =xi, y =yi. A set of thesurfacetemperatureofthedisk,c2 /r2Ω2 ∼0.06- 0.34H˜2 sevenEquations(27),(28),and(29),canbesolvedforseven s,i i K d ˜ (Cao&Spruit 2013). Compared with a gas pressure domi- variables, x , y , x, y, x, y, and E, for an outflow along a s s f f i i nated accretion disk, the surface temperature of a radiation given magnetic field line, when the temperature and density ofthegasatthebottomoftheoutflowarespecified. pressuredominatedaccretiondiskismuchlower,c2s,i/ri2Ω2K≪ Withthederivedoutflowsolution,themasslossrateinthe H˜2(seeEquation34).Theaccretiondiskisgaspressuredom- d outflowfromtheunitsurfaceareaisavailable, inatedintheouterregionor/anditsmassaccretionrateislow (Laor&Netzer 1989; Shakura&Sunyaev 1973). This im- B κ m˙ =ρv z =ρv 0 , (30) plies gas pressure gradient in the outflow from the inner re- w i p,iB i p,i(1+κ2)1/2 gionofaluminous(radiationpressuredominated)diskisal- p,i 0 mostnegligible,andthereforethecoldgasapproximationisa whichcanbere-writtenindimensionlessformas goodapproximation(Cao2012). Inthiscase,theoutflowwill m˙ βH˜ (1+κ2)1/2 besuppressedif the field line is inclinedat anangle slightly w = d 0 . (31) largerthanthecriticalone,becausetheinternalenergyofsuch ΣdΩK κ0[2βiΘiyi(1+H˜d2)3]1/2 coldgasatthedisksurfaceistoolowtoovercometheeffec- tivepotentialbarrieralongthefieldline. Iftheangleislower Here,Equations(1),(3),(4)and(24)areused.Thereciprocal than the critical one, the slow sonic point may probably go ofm˙w/ΣdΩK representsthenumberoforbitsinwhichallthe intothedisk,andthedensityofthegasinthediskisusually gasinthediskischanneledintotheoutflow. high,whichusuallyleadstoaslowdensecircularflowabove thedisk(seeCao&Spruit1994;Spruit1996,forthedetailed 2.5. Boundaryconditions discussion). It implies that hot gas is needed for feeding an outflowfromaradiationpressuredominatedaccretiondisk. Thesolutionofanoutflowalongagivenfieldlineisavail- Theobservedultraviolet(UV)/opticalemissionofAGNis ablebysolvinga setofsevennon-linearalgebraicequations thought to be the thermal emission from the standard geo- withsuitableboundaryconditionsatthedisksurface.Thedi- mensionlesstemperatureΘ ofthegasisaninputparameter, metrically thin, optically thick accretion disks (e.g., Shields i 1978;Malkan&Sargent1982;Sun&Malkan1989).Theob- andthedensityofthegasisdescribedbyβ ifthevalueofβis i servedpower-lawhardX-rayspectraofAGNaremostlikely specified(seeEquation25).Fortheoutflowcanbeefficiently due to the inverse Compton scattering of soft photons on a drivenbythemagneticfield,thegaspressureshouldbelower population of hot electrons in the coronas above the disk thanthemagneticpressure,i.e.,β &1isrequired. Formost i (Galeevetal. 1979; Haardt&Maraschi 1993; Haardtetal. calculationsinthiswork,β =1isused. i 1994). It has been found that the temperature of the hot The temperature of the photosphere roughly equals to the electrons in the corona is roughly around 109 K, which can surfacetemperatureofthedisk,T,whichisgivenby i successfully reproduce a power-law hard X-ray spectrum as f1/4 observed(e.g., Liuetal. 2003; Cao 2009). In this work, we T = rad . (32) considerahotcoronaaboveathinaccretiondisk, whichisa i σ1/4 reservoirto supplyhotgas to feed the outflowdrivenby the Thesoundspeedofthegasinthephotosphereofthediskis magnetic field and radiation force of the disk. The detailed propertiesofthecoronaarestillquiteunclear.Forsimplicity, kT 1/2 we use two parameters, the temperature Θi and the density i c = . (33) of the corona, in our model calculations. As the magnetic s,i µm (cid:18) p(cid:19) Theoutflowsacceleratedbythemagneticfieldsandradiationforce 5 field strengthat thedisk surfaceis describedbythe valueof 100 β specified,thedensityofthecoronaisgivenbytheratioof magnetictogaspressureinthecorona(β)forgiventemper- i atureΘianddiskfieldstrengthβ (seeEquation25). 10−2 2)K 2Wc/( r s,ii10−4 10−6 3. RESULTS Wecomparethetemperaturesofthephotospheresbetween 10−8 theradiationpressuredominateddisksandgaspressuredom- 0 0.1 0.2 0.3 0.4 0.5 H/ r inated accretion disks in Figure 1. As discussed in Section d i 2.5, the temperature of the photosphere of a radiation pres- FIG.1.—Thetemperature ofthephotosphere ofthedisk. Thecoloured suredominatedaccretiondiskisindeedmuchlowerthanthat lines represent theresults forradiation pressure dominated accretion disks (seeSection 2.5forthe detailed discussion). Theredlines are theresults ofagaspressuredominatedaccretiondisk. We notethatthe calculatedwithablackholemassM=10M⊙,whilethegreenlinesarefora surfacetemperatureoftheradiationpressuredominateddisk massiveblackholewithM=108M⊙.Thesolidlinesindicatethetemperature decreaseswithincreasingblackholemass. atradiusr=10rS,andthedashedlinesareforr=100rS.Theblacksolidline We use the magnetic field configuration above the disk representthetemperature ofthephotosphere ofanisothermalgaspressure dominatedaccretion disk, whilethedashedanddottedlinesaretheresults given in Section 2.2, of which the field line is given by set- calculatedwithτ=100and105,respectively. tingΦ=const.Inourcalculations,therelativediskthickness ˜ 20 H isassumedtobeindependentofradius,whichisaninput d parameter. Theangularvelocityofthediskcanbecalculated withEquation(5),ifthestrengthofthemagneticfieldβatthe 18 ˜ disksurface,thediskthicknessH ,andthefieldlineinclina- d tionκ arespecified. Thefieldlineinclinationκ atthedisk 0 0 16 surfaceisafunctionofr/r . 0 WiththespecifiedvaluesofΘ andβ ofthecorona,wecan i i calculatethedynamicsoftheoutflowalongagivenmagnetic 14 field line as described in Section 2. In Figures 2-4, we plot thelocationofthecriticalpointsintheoutflowsolutionsde- 12 rivedwithdifferentvaluesofthemodelparameters.Weshow howtheresultsvarywiththemagneticfieldstrengthβinFig- 0 ure 2. The rotational velocity Ω˜ of the disk decreases with z/r 10 increasingfieldstrengthβ (seeEquation5),andtheeffective potentialbarrierincreaseswithdecreasingΩ˜. Thus,thecriti- 8 calpointsgofarawayfromthedisk. InFigure3,weplotthe resultscalculatedwithdifferentvaluesofcoronatemperature Θ. Inordertoshowtheroleoftheradiationforceontheac- 6 i celerationoftheoutflows,wecomparetheresultswiththose of the purely magnetically driven outflowsin Figure 4. The 4 locationofthecriticalpointsinthepuremagneticallydriven outflows is farther away from the disk compared with those 2 oftheoutflowsdrivenbythemagneticfieldtogetherwiththe radiation force. This is because the effective potential bar- rierbecomesdeepforapuremagneticallydrivenoutflow(see 0 0 2 4 6 8 10 Figure5). r/r We can calculate the mass loss rate in the outflow with 0 Equation (31) when the outflow solution is derived. In Fig- FIG.2.—Thelocationsofthecriticalpointsoftheoutflowsolutions(red: ures 6, we plot the mass loss rates as functions of the field slow sonic points; green: Alfvén points; blue: fast sonic points). The line inclination κ0 at the disk surface. The velocities of the disk thickness H˜d =0.1, the dimensionless temperature of the hot corona outflows along the field lines are given in Figures 7 and 8. Θi=0.01, andthe ratio ofmagnetic togaspressure inthecorona βi=1, Themasslossratesdecreasewithκ , whilethevelocitiesof areadoptedinthecalculations. Differenttypesoflinesrepresenttheresults 0 fordifferentvaluesofβ=0.75(solid)and1(dashed),respectively. the outflows increase with the field line inclination κ (see 0 Figures 6-8). We find that the dynamical properties of the outflowsaredifferentnearthedisksurface,whilethepoloidal velocitiesconvergeatlargedistancesalongthefieldlineswith the same κ for low-κ case. It is found that the velocities 0 0 of the flows increase with decreasing density of the corona (large-β), if the values of all the other parameters are fixed i (seeFigures7and8). 6 XinwuCao −1.35 20 −1.4 −1M/ r)i G ( eff 15 Y −1.45 0 r z/ −1.5 1 1.1 1.2 1.3 1.4 1.5 10 r/ r i FIG.5.—Theeffectivepotentialalongthefieldlinethreadingadiskwith ˜ Hd=0.1andβ=0.75. Thesolidlinesrepresenttheresultsforthefieldline inclinationκ0=1.5atthedisksurface,whilethedashedlinesareforκ0=3. Forcomparison,weplottheresultscalculatedwithoutconsideringradiation pressureeffectsasgreenlines. 5 100 10−1 0 0 2 4 6 8 10 K10−2 r/r Ω 0 Σd / FIG.3.—ThesameasFigure2. Inallcalculations, β=0.75isadopted. ˙mw10−3 DifferenttypesoflinesrepresenttheresultsfordifferentvaluesofΘi=0.005 (solid),0.01(dashed),and0.02(dotted),respectively. 10−4 10−5 1 1.5 2 2.5 3 3.5 4 20 k ( B/ BS) 0 z r FIG.6.—Thedimensionlessmasslossratesintheoutflowsasfunctionsof fieldlineinclinationκ0=Bz/BSr atthedisksurface. Inallthecalculations, ˜ β=0.75andHd=0.1areadopted.Thesolidlinesrepresenttheresultscalcu- latedwithβi=1.0,whilethedashedlinesareforβi=3.Thedifferentcolors 15 arefordifferentcoronatemperature, Θi=0.01(red)and0.02(green). For comparison,weplottheresultforpurelymagneticallydrivenoutflowswith Θi=0.02asblacklines(solidline:βi=1,anddashedlines:βi=3). 0 r z/ 10 5 0 0 2 4 6 8 10 r/r 0 FIG.4.—Thelocationsofthecriticalpointsoftheoutflowsolutions(red: slowsonicpoints; green: Alfvénpoints; blue: fastsonicpoints). Thedisk thickness H˜d =0.1, the dimensionless temperature of the hotcorona Θi= 0.02, and the ratio of magnetic to gas pressure in the corona βi =1, and β=0.75areadoptedinthecalculations. Forcomparison,theresultswithout consideringtheeffectsofradiationpressurearealsoplotted(dashedlines). Theoutflowsacceleratedbythemagneticfieldsandradiationforce 7 1 that for a gas pressure dominated accretion disk with the 10 ˜ same relative disk thickness H (see Figure 1). The sur- d face temperatureof the radiation pressure disk is insensitive 0 10 to the disk thickness H /r, while it decreases with increas- d K ing black hole mass. The gas pressure gradient may help Wr i 10−1 accelerating the outflow. The importance of the gas pres- / p sure on driving the outflow can be estimated by comparing v 10−2 c2s with the effective potential barrier ∆Ψeff = Ψmeffax- Ψeff,i alongthefieldline.Inthemagneticallydrivenoutflowmodel, the mass loss rate in the outflow m˙ ∝exp(- ∆Ψ /c2) (see −3 w eff s 10 Spruit1996;Ogilvie&Livio1998,forthedetails). Forsuch 1.5 2 4 6 8 alow-temperaturephotosphereatthesurfaceoftheradiation pressuredominateddisk,anextremelyshallowpotentialbar- rier(small-∆Ψ )isrequiredforlaunchinganoutflow,which eff meansthevaluesofβ andκ shouldbeinthenarrowranges K 1 0 close to those of the cold gas launching condition given in Wr i Cao (2012). Itimpliesstrict constraintsonthe outflowsthat / can be driven from the disk surface, especially for massive vf 0.5 blackholecases,asthetemperaturesofthespheresareabove twoordersofmagnitudelowerthanthoseofstellarblackhole accretiondisks(see Figure1). The outflowcan be launched 0 along the field line if the effective potential Ψeff monotoni- 2 4 6 8 cally decreasesalongthe field line. In this case, the outflow r/ r is alternativelyaccelerated within the disk, which is, for ex- i ample,similartothesolutionsoftheoutflowsalongthefield FIG.7.—Thepoloidal andazimuthal velocities oftheoutflowalongthe linesinclinedatsmallangleswithrespecttothedisksurface fieldline.Theratioofmagnetictogaspressureinthecoronaβi=1,andβ= giveninCao&Spruit(1994). Thegasovercomesapotential 0.75,areadoptedinallthecalculations. Thesolidlinesrepresenttheoutflow alongthefieldlinewithκ0=1.5atthedisksurface,whilethedashedlines barrieralongthefieldlineinthedisk,andtheslowsonicpoint areforκ0=3.Thecoloredlinesrepresentfortheresultswithdifferentvalues islocatedwithinthedisk. Thus,theslowdensecircularflows ofmodelparameters(redlines: Θi=0.01,andgreenlines: Θi=0.02). The areusuallypresentabovethedisksinthiscase(Cao&Spruit blackdashedlines aretheresults calculated withpuremagnetically driven outflowmodel(κ0=3andΘi=0.02).Thedotsindicatethecriticalpointsin 1994).Suchcalculationscanbedonewithaknownfieldcon- theoutflow,i.e.,slowsonic,Alfvén,andfastsonicpoints(fromlefttoright). figurationwithin the disk, which is beyondthe scope of this work,andwewillnotinvestigatethiskindofsolutionsinthis 101 paper. As discussed in Section 2.5, the outflow can be driven from the hot gas in the corona above the disk. The 0 10 field configuration can be derived with the detailed physics K of advection and diffusion of magnetic fields considered W/ r pi 10−1 (2v0a0n9B; aGlluegiloeoti&jenOg1i9lv8i9e; 2L0u1b2o,w2e0t1a3l;. 1C9a9o4&; LSopvrueliatce20e1t3a)l., v whichisbeyondthescopeofthiswork.Weusetheconfigura- 10−2 tionofthefieldgiveninSection2.2,ofwhichthestrengthat thedisk surfacedecreaseswith increasingradius. Aswe fo- 10−3 cusonhowthehotgasatthedisksurfaceisacceleratedalong thefieldlinewiththehelpwiththeradiationforceofthedisk, 1.5 2 4 6 8 the above mentioned field configuration is sufficient for our presentinvestigation. The location of the critical pointsof the outflow solutions K 1 withdifferentvaluesoftheaccretiondisk/coronaparameters Wr i isplottedinFigures2-4. Itisfoundthattheslowsonicpoints / arealways close to the disk surface. In the centralregionof vf 0.5 thedisk,thefieldlinesareinclinedatlargeangleswithrespect tothedisksurface.Themasslossrateintheoutflowdecreases with increasing inclinationκ (see Figure 6), because of the 0 effectivepotentialbarrierincreaseswithκ (seeFigure5)and 0 0 2 4 6 8 m˙w ∝exp(- ∆Ψeff/c2s). The Alfvén and fast sonic points go r/ r farther away from the disk when κ is large (see Figures 2- i 4), whichiscausedbya tenuouslo0w-m˙ outflow. Themass w FIG.8.—ThesameasFigure7,butβi=3isadopted. loss rate in the outflowincreases with the temperatureΘi of the gas in the corona, if the values of all other parameters 4. DISCUSSION arefixed. Inordertoillustratetheroleoftheradiationforce ontheaccelerationoftheoutflow,wecomparetheresultsof Wefindthatthetemperatureofthephotosphereatthesur- puremagneticallydrivenoutflowsinFigure6. Themassloss face of a radiation pressure disk is significantly lower than 8 XinwuCao ratesintheoutflowsdrivenbythemagneticfieldandradiation anoutflowfromtheradiationpressuredominateddisk,which pressurearesignificantlyhigherthanthoseforpuremagnet- providesa naturalexplanationonthe observationalevidence ically driven outflows, because the radiation pressure makes thatthe relativistic jets are related to hotplasma in some X- theeffectivepotentialbarriershallow. raybinariesandactive galacticnuclei(Zdziarskietal. 2011; Less mass is loaded in the outflow in high-κ cases, and Wuetal.2013). 0 the outflowcan be drivento a relativehigh velocity,while a Weinvestigatetheoutflowsacceleratedfromthehotcorona slow dense outflow is present when κ is small. It is found abovethediskbythemagneticfieldandradiationforceofthe 0 thatthepoloidalvelocitiesoftheoutflowsalmostconvergeat accretion disk, and find that the outflow can be driven from largedistancesalongthefieldlinewithagivenκ forlow-κ the corona with the help of radiation force even if the field 0 0 cases. Thisimpliesthatthegasinthedenseoutflowsisdomi- line is inclined at a large angle (>60◦) with respect to the nantlyacceleratedbytheradiationpressureofthedisk,which disk surface. The potential barrier decreases due to the ra- is almost independent of the values of the disk parameters. diation force of the disk, and therefore the mass loss rate in However,the situationisdifferentfortheazimuthalvelocity the outflow increases. We find that slow outflows with high of the outflows, which is independent of the radiation pres- masslossratesarepresentifthefieldlineinclinationκ .2. 0 sure. Wefindthattheoutflowswithlowmasslossrates,i.e., This may be the reason why the jets in radio-loud narrow- low-Θ,or/andhigh-κ asdiscussedabove,canbeaccelerated lineSeyfertgalaxiesareingeneralmildrelativisticcompared i 0 toalargevelocityintheazimuthaldirection. with those in blazars (Komossaetal. 2006; Doietal. 2006; Gu&Chen2010;Doietal.2011). 5. SUMMARY We estimate the temperatureof the photosphereabovethe radiation dominated accretion disk, and find that Θ ≪H˜2. This work is supported by the NSFC (grants 11173043, d Therefore,itisdifficultfortheoutflowsdrivenfromthepho- 11121062, and 11233006), the CAS/SAFEA International tospheresoftheradiationdominateddisks. Thisimpliesthat Partnership Program for Creative Research Teams (KJCX2- hot gas (probably in the corona) is necessary for launching YW-T23),andShanghaiMunicipality. REFERENCES Balbus,S.A.,&Hawley,J.F.1991,ApJ,376,214 Moscibrodzka,M.,Proga,D.,Czerny,B.,&Siemiginowska,A.2007,A&A, Balbus,S.A.,&Hawley,J.F.1998,ReviewsofModernPhysics,70,1 474,1 Bisnovatyi-Kogan,G.S.,&Blinnikov,S.I.1977,A&A,59,111 Murray,N.,Chiang,J.,Grossman,S.A.,&Voit,G.M.1995,ApJ,451,498 Bisnovatyi-Kogan,G.S.,&Ruzmaikin,A.A.1974,Ap&SS,28,45 Ogilvie,G.I.,&Livio,M.1998,ApJ,499,329 Bisnovatyi-Kogan,G.S.,&Ruzmaikin,A.A.1976,Ap&SS,42,401 Ogilvie,G.I.,&Livio,M.2001,ApJ,553,158 Blandford,R.D.,&Payne,D.G.1982,MNRAS,199,883 Ohsuga,K.,&Mineshige,S.2011,ApJ,736,2 Campbell,C.G.2003,MNRAS,345,123 Proga,D.2000,ApJ,538,684 Cao,X.2009,MNRAS,394,207 Proga,D.2003,ApJ,585,406 Cao,X.2012,MNRAS,426,2813 Proga,D.,&Begelman,M.C.2003,ApJ,592,767 Cao,X.,&Spruit,H.C.1994,A&A,287,80 Proga,D.,Stone,J.M.,&Kallman,T.R.2000,ApJ,543,686 Cao,X.,&Spruit,H.C.2002,A&A,385,289 Pudritz,R.E.,Ouyed,R.,Fendt,C.,&Brandenburg,A.2007,Protostars Cao,X.,&Spruit,H.C.2013,ApJ,765,149 andPlanetsV,277 Czerny,B.,Siemiginowska,A.,Janiuk,A.,Nikiel-Wroczyn´ski,B.,& Sakurai,T.1985,A&A,152,121 Stawarz,Ł.2009,ApJ,698,840 Shakura,N.I.,&Sunyaev,R.A.1973,A&A,24,337 Doi,A.,Asada,K.,&Nagai,H.2011,ApJ,738,126 Shields,G.A.1978,Nature,272,706 Doi,A.,Fujisawa,K.,Habe,A.,etal.2006,PASJ,58,777 Shlosman,I.,Vitello,P.A.,&Shaviv,G.1985,ApJ,294,96 Fender,R.P.,Belloni,T.M.,&Gallo,E.2004,MNRAS,355,1105 Spruit,H.C.1996,NATOASICProc.477,EvolutionaryProcessesin Galeev,A.A.,Rosner,R.,&Vaiana,G.S.1979,ApJ,229,318 BinaryStars,ed.R.A.M.J.Wijers,M.B.Davies,&C.A.Tout Gu,M.,&Chen,Y.2010,AJ,139,2612 (Dordrecht:Kluwer),249 Guilet,J.,&Ogilvie,G.I.2012,MNRAS,424,2097 Spruit,H.C.2010,TheJetParadigm,ed.T.Belloni(LectureNotesin Guilet,J.,&Ogilvie,G.I.2013,MNRAS,430,822 Physics,Vol.794;Berlin:Springer),233 Haardt,F.,&Maraschi,L.1993,ApJ,413,507 Sun,W.-H.,&Malkan,M.A.1989,ApJ,346,68 Haardt,F.,Maraschi,L.,&Ghisellini,G.1994,ApJ,432,L95 Takeuchi,S.,Ohsuga,K.,&Mineshige,S.2010,PASJ,62,L43 Koide,S.,Shibata,K.,&Kudoh,T.1999,ApJ,522,727 Vaidya,B.,Fendt,C.,Beuther,H.,&Porth,O.2011,ApJ,742,56 Komossa,S.,Voges,W.,Xu,D.,etal.2006,AJ,132,531 vanBallegooijen,A.A.1989,AccretionDisksandMagneticFieldsin Konigl,A.,&Pudritz,R.E.2000,ProtostarsandPlanetsIV,759 Astrophysics,Vol.156,ed.G.Belvedere(Dordrecht:Kluwer),99 Laor,A.,&Netzer,H.1989,MNRAS,238,897 vonRekowski,B.,Brandenburg,A.,Dobler,W.,Dobler,W.,&Shukurov,A. Liu,B.F.,Mineshige,S.,&Ohsuga,K.2003,ApJ,587,571 2003,A&A,398,825 Lovelace,R.V.E.,Rothstein,D.M.,&Bisnovatyi-Kogan,G.S.2009,ApJ, Wu,Q.2009,ApJ,701,L95 701,885 Wu,Q.,Cao,X.,Ho,L.C.,&Wang,D.-X.2013,ApJ,770,31 Lubow,S.H.,Papaloizou,J.C.B.,&Pringle,J.E.1994,MNRAS,267,235 Yuan,W.,Zhou,H.Y.,Komossa,S.,etal.2008,ApJ,685,801 Malkan,M.A.,&Sargent,W.L.W.1982,ApJ,254,22 Zdziarski,A.A.,Skinner,G.K.,Pooley,G.G.,&Lubin´ski,P.2011, Mos´cibrodzka,M.,Gammie,C.F.,Dolence,J.C.,Shiokawa,H.,&Leung, MNRAS,416,1324 P.K.2009,ApJ,706,497 Zhou,H.-Y.,Wang,T.-G.,Dong,X.-B.,Zhou,Y.-Y.,&Li,C.2003,ApJ, Mos´cibrodzka,M.,&Proga,D.2009,MNRAS,397,2087 584,147