ebook img

The origin of hydrogen line emission for five Herbig Ae/Be stars spatially resolved by VLTI/AMBER PDF

17 Pages·2008·1.11 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The origin of hydrogen line emission for five Herbig Ae/Be stars spatially resolved by VLTI/AMBER

A&A489,1157–1173(2008) Astronomy DOI:10.1051/0004-6361:200809946 & (cid:2)c ESO2008 Astrophysics The origin of hydrogen line emission for five Herbig Ae/Be stars (cid:2) spatially resolved by VLTI/AMBER spectro-interferometry S.Kraus1,K.-H.Hofmann1,M.Benisty2,J.-P.Berger2,O.Chesneau3,A.Isella4,F.Malbet2,A.Meilland1, N.Nardetto1,A.Natta5,T.Preibisch1,D.Schertl1,M.Smith6,P.Stee3,E.Tatulli2,L.Testi7,andG.Weigelt1 1 MaxPlanckInstitutfürRadioastronomie,AufdemHügel69,53121Bonn,Germany e-mail:[email protected] 2 Laboratoired’AstrophysiquedeGrenoble,UMR5571UniversitéJosephFourier/CNRS,BP53,38041GrenobleCedex9,France 3 UMR6525H.Fizeau,Univ.NiceSophiaAntipolis,CNRS,ObservatoiredelaCôted’Azur,Av.Copernic,06130Grasse,France 4 Caltech,MC105-24,1200EastCaliforniaBlvd.,PasadenaCA91125,USA 5 INAF–OsservatorioAstrofisicodiArcetri,LargoFermi5,50125Firenze,Italy 6 CentreforAstrophysics&PlanetaryScience,UniversityofKent,CanterburyCT27NH,UK 7 EuropeanSouthernObservatory,Karl-Schwarzschild-Strasse2,85748Garching,Germany Received10April2008/Accepted3July2008 ABSTRACT Context.Accretionandoutflowprocessesareoffundamentalimportanceforourunderstandingoftheformationofstarsandplanetary systems.Totracetheseprocesses,diagnosticspectrallinessuchastheBrγ2.166μmlinearewidelyused,althoughduetoalackof spatialresolution,theoriginofthelineemissionisstillunclear. Aims.EmployingtheAU-scalespatialresolutionwhichcanbeachievedwithinfraredlong-baselineinterferometry,weaimtodistin- guishbetweentheoreticalmodelswhichassociatetheBrγlineemissionwithmassinfall(magnetosphericaccretion,gaseousinner disks)ormassoutflowprocesses(stellarwinds,X-winds,ordiskwinds). Methods.UsingtheVLTI/AMBERinstrument,wespatiallyandspectrally(λ/Δλ=1500)resolvedtheinner(<∼5AU)environmentof fiveHerbigAe/Bestars(HD163296,HD104237,HD98922,MWC297,V921Sco)intheBrγemissionlineaswellasintheadjacent continuum. Fromthemeasuredwavelength-dependent visibilities,wederivethecharacteristicsizeofthecontinuumandBrγline- emittingregion.Additionalinformationisprovidedbytheclosurephase,whichwecouldmeasurebothinthecontinuumwavelength regime(forfourobjects)aswellasinthespectrallyresolvedBrγemissionline(foroneobject).Thespectro-interferometricdatais supplementedbyarchivalandnewVLT/ISAACspectroscopy. Results.Forall objects (except MWC297), wemeasure anincrease of visibilitywithintheBrγ emission line, indicatingthat the Brγ-emittingregionintheseobjectsismorecompactthanthedustsublimationradius.ForHD98922,ourquantitativeanalysisre- vealsthattheline-emittingregioniscompactenoughtobeconsistentwiththemagnetosphericaccretionscenario.ForHD163296, HD104237, MWC297,andV921Scoweidentifyanextendedstellarwindoradiskwindasthemostlikelyline-emittingmecha- nism.Sincethestarsinoursamplecoverawiderangeofstellarparameters,wealsosearchforgeneraltrendsandfindthatthesizeof theBrγ-emittingregiondoesnotseemtodependonthebasicstellarparameters(suchasthestellarluminosity),butcorrelateswith spectroscopicproperties,inparticularwiththeHαlineprofileshape. Conclusions.Byperformingthefirsthigh-resolutionspectro-interferometricsurveyonHerbigAe/Bestars,wefindevidenceforat leasttwodistinctBrγline-formationmechanisms.Mostsignificant,starswithaP-CygniHαlineprofileandahighmass-accretion rateseemtoshowparticularlycompactBrγ-emittingregions(R /R < 0.2),whilestarswithadouble-peaked orsingle-peaked Brγ cont Hα-lineprofileshowasignificantlymoreextendedBrγ-emittingregion(0.6<∼R /R <∼1.4),possiblytracingastellarwindora Brγ cont diskwind. Keywords.stars:pre-mainsequence–stars:winds,outflows–planetarysystems:protoplanetarydisks–line:formation– accretion,accretiondisks–techniques:interferometric 1. Introduction dust grains, providing (for the expected temperaturesand den- sities) the dominant source of opacity. In recent years, there Accretion disksaroundyoungstellar objects(YSOs) are atthe hasbeensubstantialprogressinconstrainingthedetailedthree- focus of astronomical research, not only because they play an dimensionalgeometryofthedustdiskusing,forexample,com- essentialroleinthestar-formationprocess,butalsobecausethey bined modeling of the spectral energy distribution (SED) and providethestagewhereplanetformationtakesplace. spatially resolved infrared interferometric observations. While Historically, these disks were discovered due to their char- thethermalemissionfromthedustdiskislikelytobethedom- acteristic infrared excess emission, which is believed to trace inant contributor to the infrared excess emission observed to- (cid:5) Based on observations made with ESO telescopes at the La Silla wardsYSOs, it isbelievedthatthe dustcontentmakesuponly Paranal Observatory under open time programme IDs 077.C-0694, a small fraction of the total mass of the system. 99% of the 078.C-0360,and078.C-0680. mass is likely contributed by gas, in particular hydrogen, and ArticlepublishedbyEDPSciences 1158 S.Krausetal.:OriginofhydrogenlineemissioninHerbigAe/Bestars can mainlybetracedbythespectrallines,whichforpre-main- magnetic field lines of the accretion disk. In contrast to the X- sequence stars are often found in emission. While some infor- windmodel,wherethewindislaunchedfromanarrowdiskan- mationaboutthekinematicsofthegascanalreadybeextracted nulus around the inner truncation radius of the accretion disk, from the line profile,the spatial originof the gasemission and diskwindsoriginatefromawiderangeofradii,likelyextending thephysicalprocessestheytracearestillstronglydebated. fromtheco-rotationradiusouttoseveralAUs. In this context, the Brackett-γ (Brγ) 2.1661 μm line is of Since mostof these processesare believedto take place on special importance. It was found that the luminosity L(Brγ) (sub-)AU scales and were therefore not accessible with direct of this line (as determined from the circumstellar component imaging techniques, most earlier studies tried to constrain the of the line equivalent width) seems to correlate with the mass spatialdistributionandkinematicsoftheline-emittinggasfrom accretionluminosityL ,asdeterminedfromUVveiling.This the shape of line profiles. However, since these line profile fit- acc empiricalL(Brγ)−L relationshiphasbeenestablishedforpre- ting techniquesare knownto be highly ambiguous(e.g.Catala acc main-sequencestarsofvariousmasses,includingbrowndwarfs etal.1999),spatiallyresolvedobservationsareurgentlyrequired (Nattaetal.2004),TTauristars(Muzerolleetal.1998b),aswell toconstrainthephysicalmechanismandspatialoriginofimpor- as intermediate-mass Herbig Ae/Be stars (Calvet et al. 2004; tant tracer lines like Brγ. Since the different emitting mecha- vandenAncker2005).Based onthisempiricalcorrelation,ob- nisms noted above can be associated to distinct spatial regions servers started to use the Brγ luminosity as an estimator for (see Fig. 1), spatially resolved observationsshould allow us to the mass accretion rate (e.g. GarciaLopez et al. 2006), which identifyandphysicallycharacterizethetrueunderlyingemitting followsfromL usingM˙ = L R /GM . mechanism. acc acc acc (cid:5) (cid:5) Therefore,it is now essential to identifythe process(es) in- The VLTI/AMBERinstrumentcombines,forthe first time, volvedinthe formationoftheBrγ emissionline in YSOs. The the milli-arcsecond spatial resolution achievable with IR long- main scenarios which have been proposed up to now include baseline interferometry with a good spectroscopic resolution massinfall,aswellasmassoutflowmechanisms: (R=λ/Δλ=1500or12000)inthenear-infraredK-band.Inthis study,weusetheuniquecapabilitiesofthisinstrumentinorder to measure the geometry and position of the Brγ line-emitting (a)Magnetosphericaccretion: thelineemissionmightemerge region relative to the continuum-emittingregion, providing di- from matter which is accreted onto the star through magneto- rectinformationabouttheprocessesinvolved. sphericaccretioncolumns(vandenAncker2005).Thisinfallis A particularly well-studied class of YSOs are the supposedtohappenveryclosetothestar,insidetheco-rotation Herbig Ae/Be stars (HAeBes). These are intermediate-mass, radius,wheretheKeplerianangularvelocitymatchesthestellar pre-main sequence stars. Over the last few years, the contin- angularvelocity. uumemissionfroma ratherlargenumberofHAeBescouldal- readybestudiedwithbroad-bandinfraredinterferometry.These (b) Gaseous inner disk: inside of the dust destruction radius, studiesrevealeda correlationbetweenthe size oftheNIRcon- thegascontinuestoaccretetowardsthestar,formingagaseous tinuum emitting region and the stellar luminosity (Monnier & inneraccretiondisk.Therecombinationlineemissionfromion- Millan-Gabet 2002), suggesting that for most Herbig Ae stars, ized hydrogen in this disk might contribute to the line emis- the NIR emission likely traces dust at the dust sublimation sion observed towards HAeBe stars. Muzerolle et al. (2004) radius. estimated that especially for high mass-accretion rates M˙ > Only very little is known about the spatial origin of the acc 10−7 M(cid:4) yr−1, the flux contribution of the inner gaseous disk hydrogen recombination line emission. First AMBER obser- mightbeofimportance. vations of the Herbig Be star MWC297 have shown that the Brγ-emitting region aroundthis star is more extended than the continuum region (Malbet et al. 2007). Surprisingly, observa- (c) Stellar wind: the P Cygni line profile observed in the hy- tions on the less luminous Herbig Ae star HD104237 did not drogen lines of several HAeBe stars might also indicate mass show any change in visibility along the Brγ line (Tatulli et al. loss through stellar winds (e.g. Mestel 1968;Catala & Kunasz 2007a). Eisner (2007) found a visibility increase within the 1987;Strafellaetal.1998).Whilemagneticallyacceleratedstel- Brγ line for the Herbig Ae star MWC480. This might sug- lar winds seem plausible for massive stars rotating close to gestthattheBrγlinetracesfundamentallydifferentmechanisms theirbreak-upvelocity,thisscenariodoesnotseemtoworkfor for Herbig Ae and Be stars. In this study, we present observa- lower-massYSOs(Ferreiraetal.2006). tions on three HAeBes, which are resolved for the first time withspectro-interferometry(HD163296,HD98922,V921Sco). For HD104237, we present new observations which were ob- (d) Stellar-field driven wind (X-wind): in the X-wind model tained at longer baseline lengths, addingsubstantial new infor- (Shuetal.1994),theoutflowsfromYSOsarelaunchedfroma mation to the initial AMBER results presentedby Tatulli et al. narrowinteractionregionwherethestellarmagnetospheretrun- (2007a).Finally, we re-reducedthe archivaldata on MWC297 cates the accretion disk. Keplerian rotation leads to a winding andHD104237inordertoprovideauniformlycalibratedsam- up of the field lines and to the formationof magneticsurfaces. ple of five stars for our interpretation. The stellar parameters Chargedparticlesfromthestellarwindwillthengettrappedin which we adopted for the stars in our sample are shown in thesesurfaces,accelerated,andcollimatedintoabeam. Table1. Thispaperisstructuredasfollows:inSect.2wediscussthe (e) Disk-field driven wind (disk wind): another mechanism spectro-interferometric and spectroscopic data and the applied which has been proposed for the launching and collimation of datareductionprocedures,followedbyanoutlineoftheobtained outflowsandjetsobservedtowardsYSOsaremagnetocentrifu- results(Sect.3).Then,wepresentthemodelswhichwerefitted gally driven disk winds (Blandford & Payne 1982; Pudritz & tothedatainordertoconstrainthegeometryofthecontinuum- Norman 1983; Ferreira 1997). Material from the disk surface (Sect.4)andBrγ-emittingregion(Sect.5).Afterinterpretingthe of the rotating disk is centrifugally accelerated along the open individualobjects in detail (Sect. 6), we discuss generaltrends S.Krausetal.:OriginofhydrogenlineemissioninHerbigAe/Bestars 1159 Fig.1.Illustrationoftheregionswhichhavebeenproposedastheoriginofthepermittedhydrogenrecombinationlineemissionobservedtowards HAeBestars(thissketchisnottoscale;readSect.1fordetailsabouttheindividualmechanisms). Table1.Targetstarsandadoptedstellarparameters. Star Spectral L d T A R (a) logL(Brγ) (b) logM˙Brγ(c) vsini Hα(d) Ref. (cid:5) (cid:5) V (cid:5) L(cid:4) acc type [L(cid:4)] [pc] [K] [R(cid:4)] [M(cid:4)yr−1] [kms−1] profile HD104237 A5 30 116(f) 8000 0.31 2.9 −2.74 −7.45 12±2(g) D(h) (i) HD163296 A3 26 122(f) 8700 0.12 2.2 −2.78 −7.12 120+20(j) D(h) (k) −30 HD98922 B9 890 540(e) 10600 0.3 9.1 −1.56 −5.76 – P(h) (l) MWC297 B1.5 10600 250 23700 8 6.1 >−0.6 – 350±50(m) S(h) (m) V921Sco B0 19950 800 30900 5.0 5.0 >−0.7 – – D(n) (n) Notes–(a)ThestellarradiusR iscomputedusingthegiveneffectivetemperatureandbolometricluminosity;(b)luminosityoftheBrγemission (cid:5) line, as determined by GarciaLopez et al. (2006) from ISAAC spectra; (c) mass accretion rate, as determined from the L(Brγ)−L relation acc (GarciaLopez et al. 2006); (d) thiscolumn described the Hα-line profile shape of the starsin our sample using the classifications: D: double- peaked profile; P: P-Cygni profile; S: single-peaked profile; (e) for HD98922, we assume the minimum distance given by GarciaLopez et al. (2006). References:(f)vandenAnckeretal.(1998);(g)Donatietal.(1997);(h)Ackeetal.(2005);(i)Tatullietal.(2007a); (j)Finkenzeller(1985); (k)vandenAnckeretal.(2000);(l)GarciaLopezetal.(2006);(m)Drewetal.(1997);(n)Habartetal.(2003). which we findin oursmall sample of HAeBe stars (Sect.7) in ofAMBER(R=1500)andfoundgoodagreement(seeFigs.3a Sect.8. to7a,toppanel). 2.2.ArchivalISOandSpitzer/IRSspectroscopy 2. Observationsanddatareduction InordertooptimallyconstraintheSEDforthestarsinoursam- 2.1.VLT/ISAACspectroscopy ple, we obtained near- to mid-infraredspectroscopicdata from The profile of the emission lines carries importantinformation the ISO and Spitzer Space Telescope archive. The Spitzer/IRS about the kinematics of the emitting gas. Therefore, we com- spectra were pre-processed by the S13.2.0 pipeline version at plement the spatially resolved AMBER spectro-interferometry the Spitzer Science Center (SSC) and then extracted with the with high-spectralresolution (R ∼ 9000) spectra obtained with SMARTsoftware,Version6.2.5(Higdonetal.2004). theVLT/ISAACinstrument. Besides archival ISAAC data (ESO programme 2.3.VLTI/AMBERspectro-interferometry 073.C-0184, P.I. Habart), we also obtained new spectroscopic data (for HD163296 and V921Sco, ESO programme 077.C- AMBER (Petrov et al. 2007) is the NIR beam-combiner of 0694, P.I. Kraus) in order to measure the line profile as close the Very Large Telescope Interferometer (VLTI), which is lo- in time to the AMBER observations as possible. This new cated on Cerro Paranal/Chile and operated by the European spectroscopic data covers not only the Brγ 2.1661 μm line Southern Observatory (ESO). Combining the light from up to (Fig.2,left),butalsothePaβ1.2822μmline(Fig.2,right). threeofthefour8.4munittelescopessimultaneously,AMBER The raw spectra were extracted using IRAF procedures measures not only visibility amplitudes, but also the closure and then correctedfor atmosphericfeaturesusing telluric stan- phase (CP) relation.Inthe courseofthreeESO opentime pro- dard star observations obtained during the same night. For grammes (077.C-0694, 078.C-0360, 078.C-0680, P.I. Kraus), wavelength-calibration, we aligned the raw spectra to publicly we obtained spectrally dispersed interferograms in AMBER’s available high-resolution(R = 40000)telluric spectra taken at medium resolution (MR) mode (R = 1500) on four HAeBes; the NSO/Kitt Peak Observatory. To compare the final ISAAC namely, HD163296, HD104237, HD98922, and V921Sco. spectra (Fig. 2) with the spectra extracted from the AMBER Thesenewdatasetswerecomplementedwitharchivaldatafrom data,weconvolvedtheISAACspectratothespectralresolution MWC297 and HD104237, obtained earlier during AMBER 1160 S.Krausetal.:OriginofhydrogenlineemissioninHerbigAe/Bestars Table2.ObservationlogofourVLTI/AMBERinterferometricobservationswithaspectralresolutionR=1500. Targetstar Date Time Spectral DIT Telescope Projectedbaselines Calibrator Ref. (UT) (UT) window [ms] triplet B PA B PA B PA L L L [μm] [m] [◦] [m] [◦] [m] [◦] HD104237 2005-02-26 07:14 2.12–2.20 100 UT2-UT3-UT4 35.1 71 (60.8 120) (87.9 102) HD135382 (a) HD104237 2007-01-09 08:03 1.94–2.26 200 UT1-UT3-UT4 (78.0 31) 58.5 84 (122.4 53) HD118934 HD104237 2007-01-09 07:41 1.94–2.26 500 UT1-UT3-UT4 (78.7 26) 58.0 78 (123.1 47) HD118934 HD163296 2006-04-13 06:19 2.12–2.20 50 UT2-UT3-UT4 43.9 19 52.3 99 74.1 63 HD171960 HD89682 HD98922 2007-02-04 07:19 2.12–2.20 50 UT2-UT3-UT4 42.9 46 (61.9 111) (88.9 85) HD101328 HD98922 2007-01-09 09:31 1.94–2.26 200 UT1-UT3-UT4 (90.5 42) 62.3 116 (122.8 71) HD118934 HD98922 2007-01-09 09:39 1.94–2.26 500 UT1-UT3-UT4 (89.9 43) 62.4 118 (122.0 73) HD118934 MWC297 2004-05-31 06:02 2.00–2.23 107 UT2-UT3 44.7 42 – – – – HD177756 (b) V921Sco 2006-04-14 08:09 2.12–2.20 50 UT2-UT3-UT4 45.2 42 62.1 110 (89.3 82) HD159941 Notes–Formoredetailedinformationaboutthecalibratorstars,werefertoTable3. References–(a)reprocessingofdatapresentedinTatullietal.(2007a);(b)reprocessingofdatapresentedinMalbetetal.(2007). Table3.Calibratorstarinformationfortheinterferometricobservations Inafirstdatareductionstep,theAMBERrawinterferograms presentedinTable2. wereclearedfromthecorrelateddetectornoiseeffectusingthe AMDCsoftwaretool(Version1.1,Causietal.2008).Then,the Star V K Spectral d rawdatawasreducedwith theamdlib2software1 (release2.1), UD type [mas] employingtheP2VMalgorithm(Tatullietal.2007b).Duetothe HD101328 7.44 3.75 K4III 1.00±0.01(a) absenceofafringetracker,alargefractionoftheinterferograms HD118934 7.92 4.02 K4III 0.89±0.01(a) is of rather low contrast (see discussion in Petrov et al. 2007). HD135382 2.88 2.53 A1V 1.10±0.08(b) Therefore, we removed any frames from our dataset for which HD159941 7.85 3.55 M0III 1.09±0.02(a) thelightinjectionfromthecontributingtelescopeswasunsatis- HD171960 7.29 3.38 K3II 1.13±0.02(a) fying;i.e.,theintensityratiobetweenthephotometricchannels HD177756 3.43 3.56 B9Vn 0.60±0.06(b) was larger than 4, or the fringe contrast was decreased due to Notes – The V-band magnitudes were taken from SIMBAD and the instrumental jitter (the 20% best interferograms were selected K-bandmagnitudesfromthe2MASSpointsourcecatalog. based on the Fringe SNR criteria, as defined in Tatulli et al. References – (a) UD diameter taken from the CHARM2 catalog 2007b). (Richichietal.2005).(b)UDdiametercomputedwithASPRO. Sincesomestarsinoursampleareclosetothecurrentsensi- tivitylimitofAMBER’sMRmode,weappliedspectralbinning commissioning and in guaranteed-time observations (Malbet to the raw data in order to increase the fringe SNR. For each etal.2007;Tatullietal.2007a).Re-reducingthesedatasetswith data set, the width of the sliding window was chosen so that thelatestsoftwareallowsustoensurehomogenitybothin data theresultingfringeSNRoftheinterferogramsexceedsthecrit- reductionaswellasintheappliedmodelingprocedures.Theob- icalvalueof1.5,ensuringareliablevisibilityestimation.Since servationsare summarizedin Table 2 and were obtainedunder the Brγ line for all our objects is spectrally resolved over sev- goodatmosphericconditions(seeing0.5−0.9(cid:6)(cid:6),atmosphericco- eral spectral channels at R = 1500, the resulting decrease in herencetime2−7ms).Inordertocalibratetheobtainedvisibil- spectralresolutiononlymarginallyreducesthecontrastbetween itiesandCPsforinstrumentalandatmosphericeffects,weused the spectralline andthe underlyingcontinuum.Thisprocedure interferometriccalibratorstars,takingtheintrinsicdiametersof increases the fringe SNR significantly, while the loss in spec- thesestarsintoaccount(seeTable3).Byusingdifferentdetector tral resolution (from R = 1500 to 500 or 250) results only in integrationtimes(DITs)forthedifferentobjects,weaimedfora aminordecreaseoftheline-to-continuumfluxratioFBrγ/Fcont. compromisebetween collectinga sufficientnumberof photons BaselinesforwhichaspectralbinningtoR=250wasnotsuffi- and minimizing the loss of fringe contrast due to atmospheric cienttoyieldanSNRof1.5wererejectedfromfurtheranalysis piston.Ingeneral,observationswithlongerDITshouldprovide (inTable2,thesebaselinesareputinbrackets).Thefinalvisibil- betterSNRinthedifferentialvisibilitymeasurement,whileob- ity curvesareshowninFigs.3ato7ainthesecondpanelfrom servationswithshorterDITshouldprovideabetterabsolutecali- thetop. bration.Sinceweaimedmainlyforaprecisemeasurementofthe In principle, two distinct phase quantities can be extracted differentialquantitiesintheBrγandtheadjacentcontinuum,we fromAMBERinterferograms,namelydifferentialphases(mea- usedratherlongDITformostobservations.Inordertoaccount suring the relative displacement of the line-emitting region for the resultingerrorson the absolutecalibration,we estimate with respect to the continuum-emittingregion) and the closure a rather large calibration error of 5%. The spectral calibration phase, which can indicate asymmetries in the source bright- ofthedatawasdonebycomparingthespectrumextractedfrom ness distribution. Since for most of our datasets, the fringe the AMBER data with ISAAC spectra of the same object (see SNR in individual frames is not sufficient to reliably correct Sect. 2.1), which have been convolved to the spectral resolu- for disturbing atmospheric phase contributions (atmospheric tion of AMBER. An additionalvery importantcalibration step piston), no scientifically meaningful differential phases could inthecourseofAMBERdatareductionwastherelativespectral be extracted, unfortunately. However, for some data sets we re-shifting of the photometric channels with respect to the in- could extract useful CP information, both in the continuum terferometric channel. The appropriateshift was determinedto sub-pixel accuracy by computing the auto-correlation between 1 Theamdlib2softwarepackageisavailablefromthewebsite thespectraextractedfromthesechannels. http://www.jmmc.fr/data_processing_amber.htm S.Krausetal.:OriginofhydrogenlineemissioninHerbigAe/Bestars 1161 Table4.Closurephasesextractedfromthedata. Projectedbaselines Closurephase u v u v continuum Brγline 12 12 23 23 [m] [m] [m] [m] [deg] [deg] HD104237 33.1 11.6 52.9 –30.0 9.8±6.7 – HD163296 14.5 41.4 51.6 –8.0 1.5±4.3 – HD98922 30.9 29.7 57.6 –22.6 −9±16 – V921Sco 30.2 33.7 58.3 –21.6 20±24 3.1±2.8 dereddenedthephotometricandspectroscopicdataassumingthe valuesforA giveninTable1,R =3.1,andtheextinctionlaw V V byMathis(1990).ThederivedSEDs(Figs.3bto7b)allowusto determinetheratiobetweenthestarfluxcontribution f andthe star fluxcontributionfromthecircumstellardisk f forthefitting disk ofgeometricmodels(Sect.4). TheVLT/ISAACBrγlinespectraareshowninFig.2.With the currently available resolution, all Brγ lines show a single- peakedprofile.ForHD163296andV921Sco,measurementsat twoorthreeepochsareavailable,indicatingthatthelineprofile ofV921Scohasnotsignificantlychanged,whileforHD163296 wefindsomevariability. 3.2.Spectro-interferometricvisibilities The wavelength-dependent visibilities extracted from our AMBER data are shown in the second panel from the top in Figs.3ato7a.Fourstarsinoursample(HD163296,HD104237, HD98922, V921Sco) show a visibility increase within the Brγ line. For MWC297,the visibility dropswithin the line, as alreadyreportedbyMalbetetal.(2007). Since the spectral channels which include the Brγ line additionally contain flux contributions from the photosphere and circumstellar material, the interpretation of the mea- sured wavelength-dependent visibilities requires quantitative modeling,aspresentedinSect.4. Fig.2.Left:VLT/ISAACspectrashowingtheBrγlinewithaspectral resolutionofR∼9000forthestarsinoursample.Right:VLT/ISAAC 3.3.Closurephases spectraofthePaβlinewereobtainedforHD163296andV921Sco. Closure phase measurements can provide unique information aboutdeviationsfromcentro-symmetryinthesourcebrightness (HD104237, HD163296, HD98922, V921Sco) as well as in distribution.ForYSOdiskgeometries,suchasymmetriesareex- the line regime (V921Sco). It is expected that the continuum pected in particular for systems seen under intermediate incli- CP does not change significantly over the small spectral win- nation. The strongest CP signals are predicted by disk models dow covered by our observations, which allowed us to ap- with vertical puffed-upinner rim (e.g. Dullemond et al. 2001), ply an optimized data reduction strategy for the extraction of while models with curved inner rims predict a smoother,more the continuum CPs. First, we apply some spectral binning to symmetricbrightnessdistributioncorrespondingtosmallerCPs the raw data (bracketing out the spectral channels containing (e.g.Isella&Natta2005). the emission line), followed by an averaging of the complex Giventheimportanceofthisobservable,wepresentherethe visibilities over various spectral channels (between 2.12−2.15 CPs extracted from our data, although the error bars on most and 2.175−2.185 μm). The obtained CPs will be presented in measurements are rather large, typically due to the low fringe Sect.3.3. contrastonthelongestbaselineinthetelescopetriplet.InTable4 we list the CPs measured from our datasets and give the cor- responding (u,v) baseline vector for two baselines in the em- 3. Results ployed telescope triplet (the third (u,v)-vector is given by the closurerelation).WefindthatallcontinuumCPsareconsistent 3.1.SEDandNIR-spectroscopy with a zero CP on the 1σ (HD163296, HD98922, V921Sco) In order to constrain the SED of the stars in our sample, we or 2σ level(HD104237).Thisaddssupportto the conclusions collectedphotometricandspectroscopicdatafromtheliterature drawn by Monnier et al. (2006), who used the IOTA-3T inter- andtheISOandSpitzerarchives(seeSect.2.2).Assumingthat ferometer(providingbaselinelengthsupto38m)andmeasured theline-of-sightextinctioncanbemainlyaccountedtothelarge for 12 outof 13 sourcesCPs below ∼5◦ (excludingone binary scaleenvelopes,inwhichsomeHAeBestarsareembedded,we source).SincetheCPsignalisexpectedtoincreaserapidlywith 1162 S.Krausetal.:OriginofhydrogenlineemissioninHerbigAe/Bestars Fig.3.Spectroscopic, spectro-interferometric,andphotometricdataforHD104237: ina),weshowtheBrγ spectraextractedfromour ISAAC andAMBERdata(toppanel),themeasuredwavelength-dependent visibilitiesV fordifferentbaselines(2ndpanel,thedatapointsareshown tot with statistical errors bars, whereas the estimated calibration errors are shown in the bottom-right corner), the continuum-corrected Brγ-line visibilityV (3rdpanel),theUDdiameterΘ derivedfromV (4thpanel),andthediametersD andD derivedforthecontinuum-andthe Brγ tot tot cont Brγ Brγ-emittingregionusinga2-ringmodel(5thpanel).Inb),theSEDisshown,includingphotometricdatafromtheliterature(greypoints),archival ISOspectra(magneta),andarchivalSpitzer/IRSspectra(blue).Inc),weplotthemeasuredK-bandcontinuum-visibilityasafunctionofbaseline lengthandind)thecontinuum-correctedBrγ-linevisibility.Panele)showsthederivedringdiametersforthecontinuum-andline-emittingregion plottedasfunctionofpositionangle. baseline lengths, our new observations (with baselines up to 3.1±2.8◦,consistentagainwithacentro-symmetricbrightness 89 m) providenew constraintson this issue and favouragaina distribution. centro-symmetricbrightnessdistribution.InSect.6,wediscuss someofourCPmeasurementsqualitatively,butleaveittofuture 4. Modeling:continuum-emission studiestoinvestigatewhetherourresultsarealsoinquantitative agreementwiththecurrentgenerationofrimmodels. Over the last few years, ring models with uniform brightness For V921Sco, the particularlystrongBrγ line flux allowed have emerged as the prototypical geometry for the interpre- us also to measure an accurate CP measurement within the tation of YSO interferometric data. In most cases, this pref- spectrally resolved emission line, yielding a CP signal of ered use of ring geometries instead of other simple geometries S.Krausetal.:OriginofhydrogenlineemissioninHerbigAe/Bestars 1163 Fig.4.Spectroscopic,spectro-interferometric,andphotometricdataforHD163296(similartoFig.3). (e.g. uniform disk, Gaussian, or disk geometries with constant luminosityscaling law (Monnier& Millan-Gabet2002).Inthe temperature power-law) is not explicitly required to reproduce meantime, this finding was also interpreted in theoreticalwork the details of the sampled visibility function (which typically (e.g. Natta et al. 2001; Dullemond et al. 2001; Isella & Natta covers only the first lobe and is thus rather insensitive to the 2005),attributingthe near-infraredcontinuumemissionmainly innergapinthebrightnessdistribution),butmainlybasedonin- tohotdustlocatedatthedustsublimationradius.Basedonthese directevidenceortheoreticalarguments.Forexample,someof arguments, we also prefer to use ring-like geometries for the the firstinfraredinterferometricmeasurementsonHAeBe stars interpretation of our visibility data (assuming a fractional ring (e.g. Millan-Gabet et al. 2001) already showed that classical widthof20%,Monnieretal.2005),butalsogiveuniformdisk geometrically thin accretion disk geometries extending down (UD)andGaussianFWHMdiameterstoallowcomparisonwith to several stellar radii might be consistent with interferomet- other work. In order to estimate the contribution of the stellar ric measurements for early-type Herbig Be stars, but result in photosphere to the total K-band flux, we estimate the flux ra- too compact structures for Herbig Ae and late-type Herbig Be tiousingtheSEDandtheKuruczatmospheremodelsshownin stars(Eisneretal.2004;Vinkovic´&Jurkic´2007).Ringgeome- Figs. 3b to 7b. For more details about the model fitting proce- tries,ontheotherhand,yieldsizeswhichareconsistentwiththe dure,werefertooneofourearlierstudies(Krausetal.2008). expecteddustsublimationradiiandfollowthepredictedstellar 1164 S.Krausetal.:OriginofhydrogenlineemissioninHerbigAe/Bestars Fig.5.Spectroscopic,spectro-interferometric,andphotometricdataforHD98922(similartoFig.3). Besides model fits to each individual spectral channel (see the visibilities derived for HD163296 provide sufficient posi- fourthandfifthpanelofFigs.3ato7a),wealsofittedthesemod- tion angle coverage to investigate for a possible elongation of els to continuum-visibilities,whichwere averagedoverseveral thecontinuum-emittingregion(e.g.,duetodiskinclination),we spectral channels around 2.15 and 2.18 μm and plot the corre- also fitted inclined ring geometries to this data set and derived spondingmeasurementsandmodelcurvesasafunctionofbase- aninclinationof68±10◦withaPAof144±9◦(corresponding line length (Figs. 3c to 7c). In these plots, we also show the toaninclinedringdiameterof1.02×0.37AU). upper limits, which we can put on the continuumvisibility us- ingthebaselineswhichhadtoberejectedduetolowSNR(see 5. Modeling:Brγlineemission Sect.2.3).ThefitteddiametersforGaussian,UD,andringpro- filesarelistedinTable5.Toconvertthemeasuredangularsizeto FromeachspectralchannelofourAMBERinterferograms,we physicalscales,weassumethedistanceslistedinTable1.Please can derive a value for the visibility amplitude, providing spa- notethattheerrorsgivendonottakedistanceuncertaintiesinto tial information about the brightness distribution contributing account.Byfittingthevisibilitiesmeasuredondifferentbaseline to this spectral channel. Within the Brγ line, the flux within a orientations simultaneously, we assume that the intensity pro- spectral channel is composed of the line emission plus the un- filedoesnotdependonpositionangle(e.g.face-ondisk).Since derlyingcontinuumcontribution.Tomodelsuchvisibilitydata, S.Krausetal.:OriginofhydrogenlineemissioninHerbigAe/Bestars 1165 Fig.6.Spectroscopic,spectro-interferometric,andphotometricdataforMWC297(similartoFig.3). either the composite (line and continuum) object can be mod- relation assumes a negligible (zero) differential phase (corre- eled, or the measured continuum+line visibility has to be cor- sponding to coinciding photocenters between the continuum- rected forthe continuumcontribution,yieldingthe visibility of and line-emitting regions). We compute the continuum- thepureline-emittingregion. correctionforeachspectralchanneloftheAMBERdatawhere Wecorrectthemeasuredvisibilitiesusingtherelation F is sufficientlylargeto applyEq.(1)reliablyand showthe Brγ resultingV valuesinthethirdpanelfromthetopofFigs.3a Brγ V = FtotVtot−FcontVcont, (1) to7a. Brγ F Brγ The interpretation of the derived line visibilities is diffi- where F and V are the flux and the visibility measured cult for several reasons. For instance, it is likely that the ge- tot tot within an arbitrary spectral channel. To compute the Brγ-line ometry of the line-emitting region is more complex than the fluxF := F −F ,wedeterminethecontinuumfluxF continuum-emittingregion,possiblyextendingabovetheequa- Brγ tot cont cont from Kurucz atmosphere models, taking the underlyingphoto- torialdiskplane,perhapsintroducingstronginclinationeffects. sphericBrγabsorptioncomponentintoaccount.Thenweinter- Furthermore,asindicatedbytheshort-periodlinevariabilityde- polatethecontinuumvisibilityV overtheBrγlineandderive tectedtowardsYSOsofallmasses,thekinematicsandpossibly cont the continuum-correctedvisibility V of the Brγ-emitting re- also morphologyof the line-emitting gas might change signif- Brγ gion. As discussed in Weigelt et al. (2007, Appendix C), this icantly even on short time scales of days or weeks, involving, 1166 S.Krausetal.:OriginofhydrogenlineemissioninHerbigAe/Bestars Fig.7.Spectroscopic,spectro-interferometric,andphotometricdataforV921Sco(similartoFig.3). Table5.Best-fitparametersforourgeometricmodelfits. Continuumemission Brγemission Brγemission linecenter allspectralchannel Gaussian uniformdisk ring ring ring FWHM χ2 Θ χ2 D χ2 D χ2 D χ2 cont red cont red cont red Brγ red Brγ red targetstar [AU] [AU] [AU] [AU] [AU] HD104237 0.57±0.10 1.0 0.87±0.08 0.5 0.58±0.04 0.3 0.31±0.13 0.6 0.35±0.21 0.5 HD163296 0.39±0.05 0.9 0.61±0.08 1.5 0.41±0.06 1.9 0.35±0.15 0.1 0.25±0.19 0.1 HD98922 2.45±0.26 0.5 3.70±0.27 0.2 2.47±0.16 0.2 <0.5 – <0.5 – MWC297 1.27±0.10 – 1.99±0.13 – 1.35±0.08 – 1.89±0.52 0.1 2.52±0.44 0.4 V921Sco 5.38±0.52 0.7 8.22±0.55 0.1 5.49±0.32 0.1 4.45±0.55 0.1 4.35±0.64 0.2 (cid:2)(cid:3) (cid:4) Notes–χ2 isdefinedas (V −V )/σ 2/(N−1),whereN isthenumberofmeasurements,V isthemodelvisibility,andV red meas model Vmeas model meas andσ arethemeasuredvisibilityandtotalerror,respectively. Vmeas

Description:
(a) Magnetospheric accretion: the line emission might emerge from matter though there is some dispute both about the stellar parame- ters and the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.