ebook img

The optical-UV emissivity of quasars: dependence on black hole mass and radio loudness PDF

0.26 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The optical-UV emissivity of quasars: dependence on black hole mass and radio loudness

DRAFTVERSIONJANUARY12,2016 PreprinttypesetusingLATEXstyleemulateapjv.11/26/04 THEOPTICAL-UVEMISSIVITYOFQUASARS:DEPENDENCEONBLACKHOLEMASSANDRADIOLOUDNESS FRANCESCOSHANKAR1,GIORGIOCALDERONE2,CHRISTIANKNIGGE1,JAMESMATTHEWS1,RACHELBUCKLAND1,KRZYSZTOF HRYNIEWICZ3,GREGORYSIVAKOFF4,XINYUDAI5,KAYLEIGHRICHARDSON1,JACKRILEY1,JAMESGRAY1,FABIOLAFRANCA6, DIEGOALTAMIRANO1,JUDITHCROSTON1,POSHAKGANDHI1,SEBASTIANHÖNIG1,IANMCHARDY1,MATTHEWMIDDLETON7 DraftversionJanuary12,2016 6 1 ABSTRACT 0 Weanalyzedalargesampleofradio-loudandradio-quietquasarspectraatredshift1.0≤z≤1.2tocompare 2 theinferredunderlyingquasarcontinuumslopes(afterremovalofthehostgalaxycontribution)withaccretion an diskmodels.Thelatterpredictredder(decreasing)α3000continuumslopes(Lν∝ναat3000Å)withincreasing blackholemass,bluerα withincreasingluminosityat3000Å,andbluerα withincreasingspinofthe J 3000 3000 blackhole,whenallotherparametersareheldfixed. Wefindnoclearevidenceforanyofthesepredictionsin 8 thedata.Inparticularwefindthat:(i)α showsnosignificantdependenceonblackholemassorluminosity. 3000 Dedicated Monte Carlo tests suggest that the substantial observational uncertainties in the black hole virial ] A massescaneffectivelyeraseanyintrinsicdependenceofα onblackholemass,inlinewithsomeprevious 3000 studies. (ii) The mean slope α of radio-loud sources, thought to be produced by rapidly spinning black G 3000 holes, is comparableto, or evenredder than, thatof radio-quietquasars. Indeed, althoughquasarsappearto . h becomemoreradioloudwithdecreasingluminosity,westilldonotdetectanysignificantdependenceofα3000 p onradioloudness. Thepredictedmeanα3000 slopestendtobebluerthaninthedata. Diskmodelswithhigh - inclinationsand dustextinctiontend to produceredderslopescloser to empiricalestimates. Our meanα 3000 o valuesareclosetotheonesindependentlyinferredatz<0.5suggestingweakevolutionwithredshift,atleast r t formoderatelyluminousquasars. s a Subjectheadings:galaxies:active—galaxies:jets—quasars:general [ 1 1. INTRODUCTION the peak will shiftto higherfrequencieswith increasingUV v luminosity,andthespectralslopeα willbecomebluer.Fi- The current accretion paradigm on compact objects (from 3000 1 nally,atfixedblackholemassandaccretionrate,thepeakwill stellarsourcestosuper-massiveblackholes)assumesthatin- 2 shifttohigherfrequencieswithdecreasingR (i.e.increas- 0 falling matter will settle in a rotating disk in which the gas ISCO ingblackholespin),andtheslopeatUVwavelengthsisagain 2 looses its angular momentum via dynamical friction. The expectedtobecomebluer(see,e.g.,Figure2inDavis&Laor 0 diskisusuallyassumedtobegeometricallythinandoptically 2011). . thick (Shakura&Sunyaev 1973), i.e., each annulus radiates 1 According to some popular models (e.g., asablackbodywhosetemperaturedependsonitsradius.The 0 Blandford&Znajek 1977), powerful jets are produced resultingspectrumshowsabroadpeakatacharacteristicen- 6 by rapidly spinning black holes. In this framework, the ergyrelated to the temperatureat the inner radiiof the disk. 1 spectral properties of radio-loud and radio-quietquasars are : InActiveGalacticNuclei(AGN)thediskspectrumpeaksin v the UV/soft X-rays (the “Big Blue Bump”, e.g., Franketal. expected to show significant differences, and may provide i valuableinsightsfortestingtheoreticalexpectations. X 2002). ThemainpurposeofthisletteristocomparetheAGNUV Thediskmodelspectraareself–similarinlogarithmicνLν r spectralslopeswithpredictionsofstandardthin-diskmodels a plots,andthelocationofthepeakdependsontheblackhole usingan improvedmethodtomeasurethequasarcontinuum mass,theaccretionrate,andthelocationoftheinnermoststa- appliedtoaverylargesample. ble circular orbit(R , related to black hole spin). In par- ISCO ticular, at fixed accretion rate and RISCO, the peak will shift 2. DATA to lower frequencieswith increasingblackhole mass. Since ThequasarsampleusedinthisworkisasubsetoftheSDSS thepeakisexpectedtolieatwavelengths.3000Å,thepeak DR7quasarsamplediscussedinSchneideretal.(2010). The shiftresultsinareddening(decrease)ofthespectralslopeat spectral properties of this sample are discussed in the cat- 3000Å(α ,Eq.1).Also,atfixedblackholemassandspin, 3000 alog by Shenetal. (2011). However, we re-analyzed all sources with z < 2 to better account for the host galaxy 1Department of Physics and Astronomy, University of Southampton, and the iron complex contributions on each spectrum, and Highfield,SO171BJ,UK;[email protected] 2INAF–Osservatorio Astronomico diBrera, viaE.Bianchi 46, I-23807 to identify the actual broad band AGN continuum. The de- Merate(LC),Italy;[email protected] tails will be presented in a forthcomingpaper (Calderone et 3ISDCDataCentreforAstrophysics,ObservatoiredeGenève,Université al. 2016, in preparation), but we provide a brief description deGenève,Chemind’Ecogia16,1290Versoix,Switzerland here: the SDSS DR10 spectrum of each source is fitted via 4DepartmentofPhysics,UniversityofAlberta,CCIS4-183,Edmonton, a model that includes the quasar continuum (modeled as a AlbertaT6G2E1,Canada 5HomerL.DodgeDepartmentofPhysicsandAstronomy,Universityof smoothly broken power law), an elliptical host galaxy tem- Oklahoma,Norman,OK73019,USA plate (Mannuccietal. 2001), an optical (Véron-Cettyetal. 6DipartimentodiMatematicaeFisica,UniversitádegliStudiRomaTre, 2004) and UV (Vestergaard&Wilkes 2001) iron template, viadellaVascaNavale84,00146Roma,Italy anda list of commonbroadand narrowemission lines. The 7InstituteofAstronomy,MadingleyRoad,CambridgeCB30HA,UK smoothlybrokenpowerlawextendsovertheentireobserved 2 FIG.1.—Meanα3000asafunctionoftheluminosityat3000Å(restframe)forblackholesintherange7.7<logMbh/M⊙<8.3(left),8.3<logMbh/M⊙<8.8 (middle),and9.0<logMbh/M⊙<9.5(right).Thesolid,purplelinesmarkthepredictionoftheShakura&Sunyaev(1973)diskmodelforanon-rotating,zero spinblackholewithmasslogMbh/M⊙=8.0,8.5,9.25fortheleft,middle,andrightpanels,respectively. Thesolid,greenlinesshowtheresultsofthesame blackbodymodelsformaximallyspinningblackholes. ModelsareplotteduptotheEddingtonlimitcorresponding tothemeanblackholemasslabeled in eachpanel.Allradio-loudsourcestendtohaveα3000comparabletothoseofradio-quietquasarsatthehighestluminositybins,i.e.,logL3000/ergs- 1>45,and systematicallyredderatprogressivelylowerluminosities. Thehorizontaldottedlinesmarkthecanonicalaccretiondiskslopeatwavelengthssignificantlonger thanthepeakwavelengthforastandardaccretiondiskmodel.ThefilledblacksquaresaredataderivedbyDavis&Laor(2011)fromasampleofopticalquasars atz<0.5. wavelength range, providing a reasonable estimate of the We willspecificallyselectsourceslyingin theredshiftin- actual AGN continuum. The host galaxy template is cho- terval 1.0<z<1.2. This redshift window allows for more sen to be that of an elliptical galaxy since such galaxies accuratemeasurementsof theSDSS optical-UVquasarcon- are those usually observedto be the hosts of massive, lumi- tinuum spectra around 3000Å. As detailed in Calderone et nous black holes, based on direct photometric studies (e.g., al. (2016) in fact, spectral slopes measured with our proce- Falomoetal.2014)andlocalscalingrelations(e.g.,Shankar dure on quasars with z<1.0 or z>1.3 may be biased due 2009;Kormendy&Ho2013). to the limited SDSS wavelength spectral coverage. Finally, Ourcatalogthuscontainsupdatedcontinuum(isotropic)lu- Malmquistbiaseffectsandreddening/extinctionbyinterven- minosities and slopes with respect to the Shenetal. (2011) ingcosmicdust(Xieetal.2015)couldbecomeincreasingis- one, where the host galaxy and iron contributions were ne- suesathigherredshiftsand/orlargerredshiftbins,furtherbi- glected. Note that our luminosity and slopes estimates are asingthetruedistributionsofα . 3000 measuredonthesmoothlybrokenpowerlawcomponentthat 3. DISKMODELS extendsoverthewholerest-frameobservedwavelengthrange. This implies that the slopes are evaluated on a wider wave- We compare our data with predictions of the non- lengthrangewithrespecttoShenetal.(2011). relativistic, steady-state, geometrically thin, optically thick Thepurposeofour spectralanalysisis to estimate the un- standardaccretiondiskShakura&Sunyaev(1973). Inbrief, derlyingquasarcontinuumslopeα definedasfollows: the model first computes the amount of gravitational en- 3000 ergy ζ(R) released from each disk annulus of size 2πRdR dlogLν and, underthe assumptionofopticalthickness, itconvertsit α = , (1) 3000 dlogν into a blackbodytemperatureT(R)∝ζ(R)1/4. The expected frequency-dependentluminosityLν isthencomputedasasu- calculatedat3000Å(sourcerestframe). perpositionofblackbodyspectraB[ν,T(R)].Thephysicalin- In the following we will consider several sub–samples of putparametersin the standarddisk modelare the innermost the original Schneideretal. (2010) sample according to ei- stablecircularorbitR ,directlylinkedtothespin/radiative isco ther: thevirialblackholemassaslistedinShenetal.(2011) efficiency, the black hole mass M , and the mass accretion bh derived mainly from MgII in the redshift range of interest rateM˙ (e.g.,Thorne1974;Calderoneetal.2013,andrefer- acc to this work; the continuumluminosityandslopesat 3000Å encestherein). (restframe)accordingtotheresultsofournewspectralanal- WealsocompareourmainobservationalresultswithAGN- ysis;andtheradioloudnessR= f6cm/f2500(Jiangetal.2007) SPEC (Hubeny&Hubeny 1997; Hubenyetal. 2000, 2001), defined as the ratio between the flux density (fν) at 6 cm a self-consistent numerical model for AGN disk spectra as and 2500Å rest-frame respectively, available for all SDSS viewedbyanobserveratagivenanglewithrespecttotheaxis quasarsmatchedagainsttheFaintImagesoftheRadioSkyat ofrotation.Themodelproperlyconsidersdeparturesfromlo- Twenty-Centimeters(FIRST)surveyat1.4GHz(Whiteetal. cal thermodynamic equilibrium, and takes into account the 1997). Wedevotespecificattentiontothedifferenceinspec- vertical structure of the disk, as well as relativistic Doppler tralslopesbetweenradio-quietquasars,lyingwithinthefoot- shifts, gravitational redshifts and light bending in a rotating print of FIRST but with R=0, and very radio-loud sources spacetime (Hubenyetal. 2000). The direct comparison be- with R > 100, though the exact threshold chosen for radio tweenthepredictionsfrombasicdiskmodelsandAGNSPEC loudnessdoesnotalteranyofourconclusions.Wealsobriefly willallowustopindownwhichadditionalfeaturesfromthe mention results based on “radio morphology”as reportedin latter (more realistic) models are essential in describing the Shenetal.(2011),inwhichradio-loudquasarsarebroadlydi- UVspectraofquasars. videdinto“FR1”and“FR2”sources(Fanaroff&Riley1974), For completeness, all model luminosities are convertedto i.e. core– or lobe–dominated (see Jiangetal. 2007 for de- “isotropic equivalent” (e.g., Calderoneetal. 2013) via 1+ tails). cosi with i the maximum viewing angle. Unless other- 3 FIG.2.—StackedSDSSspectraofquasarswithblackholemassesintherange8.3<logMbh/M⊙<8.8,intheredshiftwindow1.0<z<1.2,andnormalized at3000Å.Weincluderadio-quiet,core-dominatedFR1,andlobe-dominatedFR2radiosources,aswellasradio-loudquasarswithR>10,fortwointervalsof L3000luminosity,aslabeled.Itisapparentthatallradio-loudsources,irrespectiveoftheirexactclassifications,showflatterprofilesthanradio-quietquasars. wise noted, in the following we will assume i = 45◦ (e.g., Thedifferencesinα betweenradio-loudandradio-quiet 3000 Urry&Padovani1995). quasars,inparticular,arenotanartifactoftheexactspectral fittingprocedureand/orontheexactdefinitionofradioloud- 4. RESULTS ness. Indeed,suchsystematicdifferencesarealreadyclearly evidentdirectly on the stacked spectra. Figure 2 reportsthe Figure 1 shows the mean (and standard deviation of the stacked spectra of radio-quiet and radio-loud quasars with mean) α3000 as a function of the luminosity at 3000Å (rest black hole masses in the range 8.3<logMbh/M⊙ <8.8 at frame) for black holes in the range 7.7 < logMbh/M⊙ < 1.0<z<1.2, and normalized at 3000Å. Irrespective of the 8.3 (left), 8.3 < logMbh/M⊙ < 8.8 (middle), and 9.0 < exactsubsampleofradiosources,eitherFR1,FR2,orsimply logMbh/M⊙<9.5(right).Wechosebins(inblackholemass based on their radio loudness (here we report sources with and/orluminosity)sufficientlylargeto enhancestatistics but R>10 to increase the statistics), all radio-detected sources stillsmallenoughtoprovidemultiplebinsacrossourparame- showsystematicallyredderprofiles(lowerα )withrespect terspace.Wenotethatnoneofourresultsdependontheexact 3000 to their radio-quietcounterparts. This differenceis however binning. Inthisandallsubsequentfigures,thetotalnumbers more marked for less luminoussources(left panel), while it of radio-quiet (red, long-dashed lines) and radio-loud (blue, progressivelydisappearsforbrightersources(rightpanel),in solid lines) sources is indicated in the legend of each plot. agreementwithFigure1. All our data gather around rather constant mean slopes of Figure3furthercomparesmodelpredictionsagainstSDSS - 0.5<α <- 0.3,quiteindependentlyofblackholemass, 3000 data by specifically plotting the behaviorof α as a func- luminosity,or the quasar radiostate. Mostof the radio-loud 3000 tionofblackholemassforquasarsinthenarrowbinsofop- sources share α3000 slopes very close to those of radio-quiet tical luminosity 44.75<logL /ergs- 1 <45.25 (left) and snoousritcieessobfelsoiwmilloagrLblack/ehrogles-m1a.ss4a5nrdadluiomsionuorsciteys.mAatylutemnid- 45.5<logL3000/ergs- 1 <46.3000(0right). Our measured α3000 3000 isratherflat,orevenslightlybluerwithincreasingblackhole towardsevenredderspectra(lowerα3000). Wealsonotethat massintherange- 0.6<α <- 0.2,inniceagreementwith themeanα3000valuesextractedfromourdataagreewellwith thevaluesforαbetween23200000- 4000 inferredbyDavisetal. thosederivedatz<0.5byDavis&Laor(2011)forasample (2007, their Figure 3), who also emphasized very weak de- of80PGmeasuredintheintervalbetween4816Åand1549Å, pendenceonblackholemass. Similarly,Selsingetal.(2015) atleastatlowerluminosities,suggestinglittleredshiftevolu- recentlyconstructedacompositespectrumforveryluminous tionintheoptical-UVspectralpropertiesofquasars. quasars at 1<z<2.1 from UV to near-infrared deriving a Wecompareourmeasurementswiththepredictionsofthe meanslopeofα=- 0.3. Shakura&Sunyaev (1973) disk model for a non-rotating, As anticipated in Figure 1 the standard disk models (up- zero spin (red lines) and maximally spinning (green lines) per panels) with zero and maximalspin (magentaand green black holes of same mass and luminosity. As already em- dottedlines)predictasteadyreddeningofα withincreas- 3000 phasizedbyanumberofpreviousgroups(e.g.,Bonningetal. ing black hole mass at fixed luminosity. The substantialun- 2007; Davisetal. 2007; Laor&Davis 2014, and references certainties in virial black hole mass estimates of &0.5 dex therein),theresultsofdirectquasarspectralfittingsareoften (e.g., Shen&Liu 2012, and references therein), could how- at variance with the theoretical expectationsof the thin disk everhaveanon-negligibleimpactonthecomparisonbetween model. Our measurementsfurtherreinforcethis by pointing models and data. To probe this, we performed a series of toratherconstantmeanα values,inapparentconflictwith 3000 MonteCarlotests. Westartedbyrandomlyextractingavery basicpredictionsfromstandardaccretiondisktheorythatre- largenumberofblackholesfromtheType1correctedactive quires a significant drop of α3000 at fixed optical luminosity black hole mass function at z∼1 by Schulzeetal. (2015). whenmovingfromlowto high-massblackholes, asevident To these we associated an Eddington ratio λ=logL /L bol Edd fromthemodelsreportedinFigure1whenmovingfromthe taken from a power-law with broad exponential cut-off dis- lefttotherightpanel. 4 FIG.3.—Meanα3000forradio-quietandradio-loudsourcesasafunctionofblackholemassintwodifferentluminositybins,44.75<logL3000/ergs- 1<45.25 (left)and45.5<logL3000/ergs- 1<46.0(right),aslabeled.ThedataintheupperandlowerpanelsarecomparedwithShakura&Sunyaev(1973)andAGNSPEC diskmodels,respectively(seeSection3). Themagentaandgreenlinesinallpanelsrefertomodelswithzeroandmaximumspinrespectively. Thedottedand solidlinesintheupperpanelsrefer,respectively,totherawmodeloutputsandtotheMonteCarlosimulationsinclusiveofstatisticalerrorsinblackholemass andluminosity(seetextfordetails). Thesolidandlong-dashedlinesinthelowerpanelsinsteadarefromMonteCarlosimulationswithlow(10◦)andextreme inclinations(70◦),respectively. tribution (Shankaretal. 2013), typical of AGN at these red- in good agreementwith those from basic blackbodymodels shifts (e.g., Bongiornoetal. 2012). We also experimented (solid lines in the upper panels), while the predicted α 3000 with different shapes for the underlying black hole mass slopestendtosignificantlydecreasewhenassumingprogres- function or Eddington ratio distribution without finding any sively higher inclinations. Interestingly, we identified a de- strong change in the main outcomes of our tests. Bolo- generacyamongmodelscharacterizedbylowinclination/low metric luminosities were then converted to L adopting spin and high inclination/high spin (purple solid and green 3000 the quasar bolometric corrections by Runnoeetal. (2012), dot-dashedlines,respectively).Whilehighspinmodelsshow logL =0.75×(0.97logL +1.85).Wethenranafewhun- bluer α slopes due to the smaller inner disk radius, the bol 3000 3000 dredrealizationsassigningateachiterationrandomGaussian redderUV slopes forviewing anglesnearthe disk planeare errors to black hole masses and luminosities with widths of mostlyduetolimbdarkeningeffects. 0.6dexand0.1dex,respectively,andthencomputedthere- We havealsocheckedthatincludingdustextinctioninthe sultingmeanα overallrealizationsasafunctionofblack predicted quasar spectra yields redder spectra further con- 3000 holemassandluminosity. Theresultsofthetest, markedby tributingtothedegeneracywithinclinationandspin. Inpar- solid,magentaandgreenlinesintheupperpanelsofFigure3, ticular,modelingtheextinctioncurveasA(λ)=0.06(5500/λ) showthatα “flattensout”,becomingsignificantlybluerat (e.g., Capellupoetal. 2015) yields ∆α ∼ 0.1. Higher 3000 3000 largeblackholemasses,aligningbetterwiththedata(though values of the extinction in quasars are also possible (e.g., stillpredictingbluerslopes,especiallyathigherluminosities). Stern&Laor 2012). Rapidly spinning black holes need in Thisisexpectedgiventhesignificantlyhighernumberdensi- generalhighinclinationsi&50◦withsomedegreeofextinc- ties of lower mass black holes coupledto the large errorsin tiontomatchthedata.Blackholeswithretrogradespinsmay black hole masses assumed in the tests. These results agree alsoyieldredderslopes. well with those by Davisetal. (2007) who also showed that Other systematics may arise fromadoptingdifferentinput large errorsin black hole virial masses can effectively erase galaxy spectra. To check for this effect, we randomly se- mostofthedependenceofUVslopesonblackholemass. lectedquasarsubsamplesofdifferentblackholemassandlu- ThelowerpanelsofFigure3showthecomparisonsofour minosityat1<z<1.2,andrefittedthequasarspectraadopt- data with the AGNSPEC disk predictions with two extreme ing the star-forming host galaxy template of Arp220 (e.g., values of the input inclinations (i = 10◦ and i = 70◦, solid Pollettaetal.2007). Despitethistemplatebeingmorepromi- and long-dashed lines, respectively). We verified that mod- nent in the UV with respect to our reference elliptical tem- els with more realistic random input orientations fall within plate(Section2),wefoundresultingslopesonaveragebluer these two extreme cases. Models with low inclinations are byarelativelymodest∆α ∼0.05- 0.15.Thiseffectcould 3000 5 FIG.4.—Left:Meanradioloudnessasafunctionofbolometricluminosity(asreportedbyShenetal.(2011))fordifferentbinsofblackholemassaslabelled. Right: Meanα3000asafunctionofradioloudnessRfordifferentbinsofblackholemass,aslabeled. Whilequasarsbecomemoreradio-loudwithdecreasing luminosity,thereisnocleardependenceofα3000onR. anywaybesignificantlyreducedbyextinction. quasars, they would in fact be expected to show bluer UV We finally note that the complexities behind the exact slopes (Section 1), in contrast to our data. Interestingly, modelingofabsorption/emissionfeaturessuchasthosefrom Punsly(2014)hasalsoreporteda“deficit”intheUVspectra FeII/III groups, may limit the precision of our continuum ofradio-loudquasarsbetween1100Åand580Å,whichmight measurements,thoughwedonotexpectthemtosignificantly reflectwhatweobserveinSDSSatlongerwavelengths.Ifthis alteranyofourresults. spectraldistortionislinkedtolocalenergydissipationduetoa In Figure 4 we further investigatethe connectionbetween large-scalemagneticflux(Punsly2014),itshouldmoderately spectraandradioloudnessinspecificallyradio-loudquasars. scalewiththespinand/orradioloudness,whilenoclearcorre- Therearecleartrends(leftpanel)thatthemeanradioloudness lationisdetectedinourdatabetweenα andradioloudness 3000 R decreases with increasing luminosity, and thus ultimately (Figure4). Additionalcausesforaweakspectraldependence accretion rate (e.g., Sikoraetal. 2007, 2013). These trends on spin and general spectral distortions may be related to holdirrespectiveofthe exactblack holemass or redshiftin- AGN wind losses (e.g., Laor&Davis 2014; Slone&Netzer terval. However,theslopeα3000 (rightpanel)showsnoclear 2012). dependence on radio loudness R, at least for the radio-loud There are a number of cases in which the quasarsintheinterval1<z<1.2. Shakura&Sunyaev (1973) models have been success- fully applied to describe quasar spectra (Shields 1978; 5. DISCUSSION Kishimotoetal. 2008; Capellupoetal. 2015). However, our Our analysis of quasar spectra at z∼1 pointed to rather resultsadd to the mountingevidencefor some disagreement constant and red mean values of the UV slope in the range between standard disk models and data derived from direct - 0.5<α <- 0.3 with a mild dependence on black hole spectral fitting (e.g., Bonningetal. 2007; Davisetal. 2007; 3000 mass. This (lackof) trend, we showed, is mostprobablyin- Slone&Netzer 2012), quasar microlensing (e.g., Daietal. ducedby the significantuncertaintiesin blackhole mass es- 2010), or lags measured from correlated X-ray/UV/optical timates(Figure3), while includinghighinclinationsandex- monitoringofAGN(e.g.,McHardyetal.2014). tinctioncanalignthepredictedα totheredderslopesde- 3000 rivedfromthedata. We also find that the vast majority of radio-loud quasars ACKNOWLEDGMENTS havecomparableor evenredderα slopeswith respectto 3000 opticalquasarsofsimilarblackholemassandaccretionrate. WethankIvanHubenyandEricAgolfortheirAGNSPEC This finding is of particular interest to the still unsolved is- and Kerrtrans9 codes and Omar Blaes for general help. We sue of the origin of radio-loudness (e.g., Sikoraetal. 2007; warmlythankShaneDavisandAriLaorforveryusefulcom- Kördingetal. 2008; Merloni&Heinz 2008; Shankaretal. ments and for sharing their data. We also thank Gordon 2010; Kratzer&Richards 2015). If radio-loud quasars are Richardsfordiscussionsandananonymousrefereeforhelp- characterizedbysystematicallyhigherspinsthanradio-quiet fulcommentsthatimprovedtheclarityofthepaper. REFERENCES Blandford,R.D.,&Znajek,R.L.1977,MNRAS,179,433 Frank,J.,King,A.,&Raine,D.J.2002,AccretionPowerinAstrophysics: Bongiorno,A.,Merloni,A.,Brusa,M.,etal.2012,MNRAS,427,3103 ThirdEdition Bonning,E.W.,Cheng,L.,Shields,G.A.,Salviander, S.,&Gebhardt, K. Hubeny,I.,Agol,E.,Blaes,O.,&Krolik,J.H.2000,ApJ,533,710 2007,ApJ,659,211 Hubeny,I.,Blaes,O.,Krolik,J.H.,&Agol,E.2001,ApJ,559,680 Calderone, G., Ghisellini, G., Colpi, M., & Dotti, M. 2013, Hubeny,I.,&Hubeny,V.1997,ApJ,484,L37 MNRAS,431,210 Jiang,L.,Fan,X.,Ivezic´,Ž.,etal.2007,ApJ,656,680 Capellupo,D.M.,Netzer,H.,Lira,P.,Trakhtenbrot,B.,&Mejía-Restrepo, Kishimoto,M.,Antonucci,R.,Blaes,O.,etal.2008,Nature,454,492 J.2015,MNRAS,446,3427 Körding,E.G.,Jester,S.,&Fender,R.2008,MNRAS,383,277 Dai,X.,Kochanek,C.S.,Chartas,G.,etal.2010,ApJ,709,278 Kormendy,J.,&Ho,L.C.2013,ARA&A,51,511 Davis,S.W.,&Laor,A.2011,ApJ,728,98 Kratzer,R.M.,&Richards,G.T.2015,AJ,149,61 Davis,S.W.,Woo,J.-H.,&Blaes,O.M.2007,ApJ,668,682 Laor,A.,&Davis,S.W.2014,MNRAS,438,3024 Falomo, R., Bettoni, D., Karhunen, K., Kotilainen, J. K., & Uslenghi, M. Mannucci,F.,Basile,F.,Poggianti,B.M.,etal.2001,MNRAS,326,745 2014,MNRAS,440,476 McHardy,I.M.,Cameron,D.T.,Dwelly,T.,etal.2014,MNRAS,444,1469 Fanaroff,B.L.,&Riley,J.M.1974,MNRAS,167,31P Merloni,A.,&Heinz,S.2008,MNRAS,388,1011 6 Polletta,M.,Tajer,M.,Maraschi,L.,etal.2007,ApJ,663,81 Sikora, M., Stasin´ska, G., Kozieł-Wierzbowska, D., Madejski, G. M., & Punsly,B.2014,ApJ,797,L33 Asari,N.V.2013,ApJ,765,62 Runnoe,J.C.,Brotherton,M.S.,&Shang,Z.2012,MNRAS,422,478 Sikora,M.,Stawarz,Ł.,&Lasota,J.-P.2007,ApJ,658,815 Schneider,D.P.,Richards,G.T.,Hall,P.B.,etal.2010,AJ,139,2360 Slone,O.,&Netzer,H.2012,MNRAS,426,656 Schulze,A.,Bongiorno,A.,Gavignaud,I.,etal.2015,MNRAS,447,2085 Stern,J.,&Laor,A.2012,MNRAS,423,600 Selsing,J.,Fynbo,J.P.U.,Christensen,L.,&Krogager,J.-K.2015,ArXiv Thorne,K.S.1974,ApJ,191,507 e-prints,arXiv:1510.08058 Urry,C.M.,&Padovani,P.1995,PASP,107,803 Shakura,N.I.,&Sunyaev,R.A.1973,A&A,24,337 Véron-Cetty,M.-P.,Joly,M.,&Véron,P.2004,A&A,417,515 Shankar,F.2009,NewAstron.Rev.,53,57 Vestergaard,M.,&Wilkes,B.J.2001,ApJS,134,1 Shankar, F., Sivakoff, G. R., Vestergaard, M., & Dai, X. 2010, White,R.L.,Becker,R.H.,Helfand,D.J.,&Gregg,M.D.1997,ApJ,475, MNRAS,401,1869 479 Shankar,F.,Weinberg,D.H.,&Miralda-Escudé,J.2013,MNRAS,428,421 Xie,X.,Shen,S.,Shao,Z.,&Yin,J.2015,ApJ,802,L16 Shen,Y.,&Liu,X.2012,ApJ,753,125 Shen,Y.,Richards,G.T.,Strauss,M.A.,etal.2011,ApJS,194,45 Shields,G.A.1978,Nature,272,706

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.