The one-loop analysis of the beta-function in the Schroedinger Functional for Moebius Domain Wall Fermions 7 1 0 2 Yuko Murakami∗ n GraduateschoolofScience,HiroshimaUniversity,Higashi-Hiroshima,Hiroshima739-8526, a Japan J E-mail: [email protected] 5 2 Ken-Ichi Ishikawa ] GraduateschoolofScience,HiroshimaUniversity,Higashi-Hiroshima,Hiroshima739-8526, t a Japan, l - CoreofResearchforEnergeticUniverse,HiroshimaUniversity,Higashi-Hiroshima,Hiroshima p 739-8526,Japan e h E-mail: [email protected] [ 1 WeproposedaconstructionoftheSchroedingerfunctionalschemefortheMoebiusdomainwall v 9 fermions(MDWF)byintroducingaproperboundaryoperatortotheoriginalMDWFinthelast 3 conference. Thespectrumoftheeffectivefour-dimensionaloperatorwasinvestigated. Thisyear 1 7 we investigate the fermionic contribution to the beta-function with the Moebius domain wall 0 fermionwiththeSFboundarytermuptotheone-looplevelandfindthatourconstructionproperly . 1 reproducetheone-loopbeta-function. 0 7 1 : v i X r a The33rdInternationalSymposiumonLatticeFieldTheory 14-18July2015 KobeInternationalConferenceCenter,Kobe,Japan* ∗Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommons Attribution-NonCommercial-NoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0). http://pos.sissa.it/ Theone-loopanalysisofthebeta-functionintheSFforMDWF YukoMurakami 1. Introduction ThechiralsymmetryisimportantnotonlyinQCDbutalsointhestandardmodel. Toextract hadronic observables based on the chiral symmetry, we need both the lattice field theory and the chiral symmetry. The lattice chiral symmetry is now realized by the overlap and domain wall fermions and extensive efforts have been devoted to the accurate values for hadronic observables sensitive to the chiral symmetry[1, 2]. In this sense the non-preturbative renormalization for the latticefermionswiththelatticechiralsymmetrybecomesimportant. TheSchroedingerfunctional(SF)scheme[3]hasbeensuccessfullyappliedtorenormalizethe lattice QCD with the Wilson fermions non-perturbatively [4]. Although it was not simple for the latticechiralfermionstoapplytheSFscheme,theSFmethodsforthelatticechiralfermionshave beendevelopedinRefs.[5,6,7,8]. In the last lattice conference, we proposed a construction of the SF scheme for Moebius do- main wall fermions (MDWF) [9]. The operator is modified by adding a temporal boundary op- erator based on Takeda’s implementation for the standard domain wall fermion [8]. The form of the boundary operator is determined by the symmetry argument of Ref. [5] so that the term holds thediscretesymmetries(C,P,T,Γ -Hermiticity)andbreaksthedomainwallchiralsymmetry[10] 5 at the temporal boundary. We investigated the properties of the effective four-dimensional opera- tor induced from the MDWF with the boundary operator and found that it reproduced the proper continuumtheorywiththeSFboundaryonlyintheinfinitefifthlatticeextentN →∞. 5 In this paper, we extend our previous work to obtain the proper operator for the SF scheme even at a finite N . To do this we properly renormalize the effective four-dimensional operator 5 sincetheexplicitbreakingofthelatticechiralsymmetryatafiniteN inducestheadditiveresidual 5 mass[11]asseeninWilsontypefermionsevenatthetree-level. Afterrenormalizingtheeffective four-dimensional operator we investigate the eigenvalues in the SF boundary condition. In order to check the consistency of our construction, we also investigate the fermionic contribution to the one-loopbeta-functionintheSFschemeatafiniteN . 5 Thispaperisorganizedasfollows. Inthenextsection,webrieflyexplaintherenormalization factors for the MDWF at the tree-level without the SF boundary condition. The renormalization factorsareappliedtothecaseoftheSFscheme. ThenweintroducetheMDWFwiththeSFbound- arytermgivenbyourpreviouswork[9]. Thelowesteigenvaluesoftheeffectivefour-dimensional operatorareinvestigated. Insection3,weconfirmthattheproperlyrenormalizedMDWFoperator withtheSFboundarytermreproducestheproperone-loopbeta-function. Thescalingviolationon thestepscalingfunctionisalsoexaminedattheone-looplevel. Wesummarizethisworkinthelast section. 2. ThesetupoftheSFschemefortheMDWF The Moebius domain wall fermion (MDWF) [12] is one of the lattice chiral fermion and 2 Theone-loopanalysisofthebeta-functionintheSFforMDWF YukoMurakami definedasthefifthdimensionaloperatorasfollows. D (n,s;m,t)=D+(n;m)δ +D−(n;m)M (s;t), (2.1) MDWF s s,t s 5 D+(n;m)=b D (n;m)+1, (2.2) s s WF D−(n;m)=c D (n;m)−1, (s=1,···,N ) (2.3) s s WF 5 M (s;t)=P δ +P δ −m [P δ δ +P δ δ ], (2.4) 5 L s+1,t R s−1,t f L s,t 1,t R s,1 N5,t where(s,t)isthelatticeindexinthefifthdirection,(n,m)isthefour-dimensionallatticesiteindex, m is the mass parameter, D is the Wilson fermion operator with a negative mass (m ), P is f WF 0 R/L the chiral projection: P =(1±γ )/2, (b ,c ) are the Moebius parameters, and N is the lattice R/L 5 s s 5 sizeinthefifthdirection. TheMDWFisageneralizationofthedomainwallfermionsandincludes thestandarddomainwallfermion(SDWF)[10],theBoricidomainwallfermion(BDWF)[13],the optimalShamirdomainwallfermion[14]andtheoptimalChiudomainwallfermion(CDWF)[15] by adjusting (b ,c ). The Moebius parameters for the optimal type domain wall fermions can be s s derivedfromtheZolotarevsignfunctionapproximation[16]. Theeffectivefour-dimensionaloperatorcalculatedfromtheMDWFoperatoryieldstheover- lap fermion operator [17, 18] at the infinite extent of the fifth direction [19, 20] (N →∞). At a 5 finiteN theeffectiveoperatordoesnotsatisfytheGinsparg-Wilsonrelation[21]andanO(a)error 5 is expected, so that the relation to the pole mass and the bare mass m can be differ in this case. f (N ) Theeffectivefour-dimensionaloperator,D 5 ,atafiniteN withouttheSFboundaryconditionis eff 5 evaluatedas aD(N5)≡PTD−1D (am )P eff PV MDWF f 1+am 1−am = f − fγ R (H ), (2.5) 2 2 5 N5 W R (H )= ∏Ns=51(1+ωsHW)−∏Ns=51(1−ωsHW), (2.6) N5 ω ∏Ns=51(1+ωsHW)+∏Ns=51(1−ωsHW) aD H = WF , (2.7) W a D +2 5 WF a =b −c , ω =b +c , (2.8) 5 s s s s s P(s)=P δ +P δ , (2.9) L s,1 R s,N5 whereD =D (am =1.0). Thecoefficientsa andω mustbetunedtoproperlyreproduce PV MDWF f 5 s the sign function as R (x) → sign(x) in the limit of N → ∞. The ordering of (b ,c ) in the N5 5 s s fifth direction is irrelevant for the effective four-dimensional operator without the SF boundary condition. Inthecontinuumlimittheeffectivefour-dimensionaloperatorbehavesas aD(N5)≈Z (aD/+am ), (2.10) eff N5 res (1−am )R (α) f N Z = 5 , (2.11) N 5 (am )(2−(am )a ) 0 0 5 (cid:20) (cid:21) 1+am 1 (am )(2−(am )a ) f 0 0 5 am = −1 , (2.12) res 1−am R (α) 2 f N 5 (am ) 0 α = , (2.13) (2−(am )a ) 0 5 3 Theone-loopanalysisofthebeta-functionintheSFforMDWF YukoMurakami where D/ is the Dirac operator in the continuum, Z is the normalization factor and m is the N5 res residualmassatthetree-level[11]. Evenatm =0theresidualmassdoesnotvanishasR (α)(cid:54)=1 f N 5 atafiniteN <∞. Inordertoinvestigatethepropertyoftheeffectiveoperatoratthevanishingpole 5 mass,werenormalizetheeffectiveoperatorasfollows, R (α)−1 aD(N5)=Z−1aD(N5)(am ), where am = N5 . (2.14) R N5 eff cr cr RN (α)+1 5 Now we consider the effective four-dimensional operator in the SF scheme. In our previous work,weproposedthefollowingoperatorfortheMDWFintheSFscheme[9]. DSF (n,s;m,t)=D (n,s;m,t)+c B (n,s;m,t), (2.15) MDWF MDWF SF SF B (n,s;m,t)= f(s)δ δ δ γ (δ P +δ P ), (2.16) SF s,N5−t+1 nnn,mmm n4,m4 5 n4,1 − n4,T−1 + (cid:40) −1 (for1≤s≤N /2) f(s)= 5 , (2.17) +1 (forN /2+1≤s≤N ) 5 5 where P is the projection: P =(1±γ )/2. We introduce the boundary operator B to satisfy ± ± 4 SF the SF boundary condition, which explicitly breaks the domain wall chiral symmetry [10] at the temporalboundary,assuggestedinRefs.[5,8]. InordertokeepthediscretesymmetriesC,P,T,and Γ -Hermiticity we require the parity symmetry in the fifth direction because the ordering of the 5 coefficients (b ,c ) in the fifth direction is relevant in this case. A quasi optimal choice for ω s s s with the parity symmetry are determined according to Ref. [9]. We call the domain wall fermion operators with the quasi optimal choice for ω having the parity symmetry in the fifth direction s asthepalindromicShamirdomainwallfermion(PSDWF)andthepalindromicChiudomainwall fermion (PCDWF) depending on the choice for the kernel operator. We use the same form as Eq. (2.14) for the normalization factor and the pole mass with the SF boundary condition, though wecannotobtaintheeffectivefour-dimensionaloperatorinasimpleclosedformlikeEq.(2.5)and thecorrespondingbehaviorinthecontinuumlimitlikeEq.(2.10). We investigate the lowest eigenvalues of 25 the effective four-dimensional operator derived ) 5 N 20 from Eq. (2.15) at the tree-level. We use ( R D L=T and the standard boundary condition for † 15 ) the gauge field [4] yielding a constant back- )5 (N 10 ground chromoelectric field. The generalized DR ( periodicboundaryconditionwiththephasean- 2 5 L gle θ = π/5 is used for the spatial boundary 0 0 0.04 0.08 0.12 condition. In order to study the effect of the a/L SDWF PSDWF renormalization with a finite fifth dimensional BDWF Continuum extent at the tree-level, we set m0 = 1.5 and Figure 1: The scaling behavior of the lowest (b ,c )=(1.0,0.0)fortheSDWFandm =1.5 fiveeigenvaluesoftheHermitiansquaredeffective s s 0 and(b ,c )=(1.0,1.0)fortheBDWFandm = four-dimensionaloperator. s s 0 1.0forthePSDWFatN =8andc =1.0. 5 SF Figure1showsthelowestfiveeigenvaluesoftheHermitiansquaredeffectivefour-dimensional operator L2(D(N5))†D(N5) for each operator type. The yellow dot points at the continuum limit R R 4 Theone-loopanalysisofthebeta-functionintheSFforMDWF YukoMurakami are quoted from Ref [22]. We confirm that the operator involving the tree-level renormalization properlyreproducesthecontinuumtheory. 3. Theone-loopbeta-function We calculate the fermoinic contribution to the one-loop beta-function using the MDWF with theSFboundarycondition. TherenormalizedcouplingconstantintheSFscheme[3]isdefinedby (cid:12) 1 1∂Γ(cid:12) = (cid:12) , (3.1) g2 k∂η(cid:12) SF η=ν=0 where Γ is the effective action with the SF boundary condition, η and ν are parameters for the SF boundary condition, and k is a normalization factor based on the tree-level analysis. For the MDWFintheSFscheme,thefermioniccontributiontotheone-loopbeta-functioncanbeobtained fromthefollowingterm; (cid:12) (cid:12) p1,1= 1k∂∂Γη1(cid:12)(cid:12)(cid:12) = 1k∂∂η (cid:2)lndet(DSMFDWF(DSPFV)−1)(cid:3)(cid:12)(cid:12)(cid:12) , (3.2) η=ν=0 η=ν=0 whereΓ istheone-loopeffectiveactionofthefermionpartandDSF =DSF (am =1.0). The 1 PV MDWF f cut-offdependenceof p canbewritteninthefollowingformasymptotically; 1,1 p = ∑(a/L)n[A +B ln(L/a)]=A +B ln(L/a)+(a/L)(A +B ln(L/a))+O(a2). (3.3) 1,1 n n 0 0 1 1 n=0 B contains the information of the fermionic contribution to the one-loop beta-function and it 0 should be B = 2b = −1/(12π2) = −0.008443.... We numerically calculate p using the 0 0,1 1,1 MDWF with the SF boundary of Eq. (2.15) and the proper renormalization at the vanishing pole mass, and fit them with the function Eq. (3.3) up to O(a). Table 1 shows the result of the fitting. The values for c are determined with the O(a) improvement procedure based on the PCAC re- SF lation [23] at the tree-level. We find that B are consistent with the 2b =−0.008443... within 0 0,1 the fitting error for each DWF type and confirm that the MDWF with the SF boundary term we constructed at the tree-level properly reproduces with the fermionic contribution to the one-loop beta-function. Operator m c N Fitrange[L /a,L /a] B (×10−3) 0 SF 5 min max 0 SDWF 1.5 0.520 8 [18:48] −8.43±0.01 16 [26:48] −8.441±0.004 BDWF 1.5 0.312 8 [18:48] −8.37±0.08 16 [34:48] −8.46±0.05 PSDWF 1.0 0.820 8 [10:48] −8.2±0.3 0.630 16 [16:48] −8.44±0.03 Table1: ThefitresultsforB . 0 We investigate the lattice cut-off dependence for the step scaling function (SSF) [24]. The deviationoftheSSFatafinitecut-offfromthatinthecontinuumlimitisdefinedby Σ(s,u,a/L)−σ(s,u) δ = =δ u+δ u2+···, (3.4) 1 2 σ(s,u) 5 Theone-loopanalysisofthebeta-functionintheSFforMDWF YukoMurakami × 10-3 4.0 SDWF BDWF 3.0 PSDWF 2.0 1 , 1 δ 1.0 0 -1.0 0 0.05 0.1 0.15 0.2 0.25 0.3 a/L Figure2: ThedeviationoftheSSFbetweenthelatticeandthecontinuumtheoryasafunctionofthelattice spacing. (N =16,2b =−1/(12π2)) 5 0,1 where u is the SF scheme coupling constant u=g2 (L) renormalized at L, Σ(s,u,a/L)=g2 (sL) SF SF is the SSF at a finite lattice cut-off, σ(s,u)=g2 (sL) is that in the continuum theory, and s is a SF scale factor. δ can be expanded as a polynomial of u perturbatively as shown in the equation. δ 1 mustvanishinthecontinuumlimitattheone-looplevelanalysis. Thefermioniccontributiontoδ 1 isgivenby δ =δ +δ n , (3.5) 1 1,0 1,1 f δ = p (a/(2L))−p (a/L)−2b ln2, (3.6) 1,1 1,1 1,1 0,1 wherewesets=2. The lattice cut-off dependence of Eq. (3.6) with the MDWF atN =16 is shown in Figure2, 5 where 2b =−1/(12π2) is imposed. Although rather complicated cut-off dependence of δ is 0,1 1,1 seen,itgoestovanishinthecontinuumlimit. ThereforeweconcludethattherenormalizedMDWF withtheSFschemeisconsistentwiththecontinuummasslessDiracoperatorattheone-looplevel. Thecut-offdependenceincludestheO(a)errorfromA andB termsofEq.(3.3). Theformercan 1 1 beremovedbytuningtheboundaryoperatorofthegaugeaction,whilethelatterrequiresthebulk O(a)-improvement term such as the clover term for the Wilson fermion because the lattice chiral symmetryisbrokenexplicitlyatafiniteN . 5 4. Summary We investigated the Schroedinger Functional (SF) scheme with the Moebius domain wall fermions (MDWF). The MDWF with the SF boundary term was introduced and the spectrum of themasslessDiracoperatorwiththeSFboundaryconditionisreproducedfromtheMDWFatthe tree-level after applying the proper renormalization even at a finite fifth dimensional extent. We alsoconfirmedthattheMDWFoperatorwiththeSFboundarytermreproducedthefermionicpart oftheuniversalone-loopbeta-functionintheSFscheme. Fromtheseanalysisattheone-looplevel, we expectthat the SFscheme is applicable to theMDWF at afiniteN , whichcan be regardedas 5 akindofbetterWilsonfermions,byaddingtheSFboundaryterm. 6 Theone-loopanalysisofthebeta-functionintheSFforMDWF YukoMurakami Wewillchecktheconsistencyofthestepscalingfunctionofthecouplingcalculatedfromthe MDWFwiththeSFboundarytermnon-perturbativelyinthefuturework. Acknowledgment WethanktoS.Takedaforthehelpfuladvice. Apartofnumericalcomputationsisperformed ontheINSAM(InstituteforNumericalSimulationsandAppliedMathematics)GPUClusterat HiroshimaUniversity. ThisworkwassupportedinpartbyaGiant-in-AidforScientificResearch (C)(No. 24540276)fromtheJapanSocietyforthePromotionofScience(JSPS)andtheMEXT programforpromotingtheenhancementofresearchuniversities,Japan. References [1] J.M.Flynn,T.Izubuchi,T.Kawanai,C.Lehner,A.Soni,R.S.VandeWaterandO.Witzel,Phys. Rev.D91,no.7,074510(2015)[arXiv:1501.05373[hep-lat]]. [2] S.Aokietal.,Eur.Phys.J.C74,2890(2014)[arXiv:1310.8555[hep-lat]]. [3] M.Lüscher,Nucl.Phys.B254,52(1985) [4] M.Luscher,R.Sommer,P.WeiszandU.Wolff,Nucl.Phys.B413,481(1994)[hep-lat/9309005]. [5] M.Luscher,JHEP0605,042(2006)[hep-lat/0603029]. [6] Y.Taniguchi,JHEP0512,037(2005)[hep-lat/0412024]. [7] Y.Taniguchi,JHEP0610,027(2006)[hep-lat/0604002]. [8] S.Takeda,Phys.Rev.D87,no.11,114506(2013)[arXiv:1010.3504[hep-lat]]. [9] Y.MurakamiandK.I.Ishikawa,PoSLATTICE2014,331(2014)[arXiv:1410.8335[hep-lat]]. [10] V.FurmanandY.Shamir,Nucl.Phys.B439,54(1995)[hep-lat/9405004]. [11] S.Capitani,PoSLAT2007,066(2007)[arXiv:0708.3281[hep-lat]]. [12] R.C.Brower,H.NeffandK.Orginos,Nucl.Phys.Proc.Suppl.140,686(2005)[hep-lat/0409118]. [13] A.Borici,hep-lat/9912040. [14] A.Borici,hep-lat/0211001. [15] T.W.Chiu,Phys.Rev.Lett.90,071601(2003)[hep-lat/0209153]. [16] T.W.Chiu,T.H.Hsieh,C.H.HuangandT.R.Huang,Phys.Rev.D66,114502(2002) [hep-lat/0206007]. [17] R.NarayananandH.Neuberger,Nucl.Phys.B443,305(1995)[hep-th/9411108]. [18] H.Neuberger,Phys.Lett.B417(1998)141[hep-lat/9707022]. [19] Y.KikukawaandT.Noguchi,doi:10.1016/S0920-5632(00)91758-4hep-lat/9902022. [20] A.Borici,hep-lat/0402035. [21] P.H.GinspargandK.G.Wilson,Phys.Rev.D25,2649(1982). [22] S.SintandR.Sommer,Nucl.Phys.B465,71(1996)[hep-lat/9508012]. [23] M.Luscher,S.Sint,R.SommerandP.Weisz,Nucl.Phys.B478,365(1996)[hep-lat/9605038]. [24] M.Luscher,P.WeiszandU.Wolff,Nucl.Phys.B359,221(1991) 7