ebook img

The Oak Ridge Heat Pump Models: I. A Steady-State Computer Design Model of Air-to-Air Heat ... PDF

204 Pages·1999·10.84 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Oak Ridge Heat Pump Models: I. A Steady-State Computer Design Model of Air-to-Air Heat ...

Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161 NTIS price codes-Printed Copy: ,410 Microfiche ,401 This report was prepared as an account of work sponsored by an agency of the UnitedStatesGovernment. NeithertheUnitedStatesGovernment noranyagency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its usewould not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United StatesGovernment or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United StatesGovernment or any agency thereof. ORNL/CON-80/Rl Contract No. W-7405-eng-26 Energy Division The Oak Ridge Heat Pump Models: I. A Steady-State Computer '/ Design Model for Air-to-Air Heat Pumps i S. K. Fischer C. K. Rice : DEPARTMENT OF ENERGY Division of Building Equipment , Date Published: Auqust 1983 OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37830 operated by UNION CARBIDE CORPORATION for the DEPARTMENT OF ENERGY . - TABLE OF CONTENTS r Page LIST OF FIGURES ................................................ vii LIST OF TABLES ................................................. ix ABSTRACT ....................................................... 1 1. INTRODUCTION AND BACKGROUND. .............................. 3 2. UTILIZATION ............................................... 7 *I 3. CALCULATIONAL PROCEDUREA ND ORGANIZATION .................. 9 3.1 Modeling Procedure for the Vapor Compression Cycle ... 3.2 Organization of the Computer Program ................. 1: 3.3 Input and Output Description ......................... 16 4. COMPRESSORM ODELS ......................................... 4.1 Introduction ......................................... 4.2 General Calculational Scheme ......................... 4.3 Map-Based Compressor Model ........................... 4.4 Loss and Efficiency-Based Compressor Model ........... 5. FLOW CONTROL DEVICES ...................................... 37 5.1 Introduction ......................................... 37 5.2 Capillary Tube Model ................................. 5.3 Thermostatic Expansion Valve Model ................... z; 5.4 Short Tube Orifice Model ............................. 44 6. CONDENSERA ND EVAPORATORM ODELS ........................... 47 6.1 Introduction ......................................... 47 6.2 Single-Phase Heat Transfer Coefficients in Heat Exchanger Tubes ...................................... 50 6.3 Two-Phase Heat Transfer Coefficients in Heat Exchanger Tubes ................................................ 51 6.4 Air-Side Heat Transfer Coefficients .................. 55 6.5 Heat Exchanger Performance ........................... 6.6 Fan Motor and Compressor Shell Heat Losses ........... 2: 7. AIR-SIDE PRESSURE DROPS AND FAN POWERS .................... 65 8. PRESSURE AND ENTHALPY CHANGES IN REFRIGERANT LINES ........ iii Page . 9. MODEL VALIDATION .......................................... 73 . 9.1 Introduction ........................................ 73 9.2 Compressor Modeling ................................. 73 9.3 Heat Exchanger Calibration .......................... 74 . 9.4 Heat Pump Validation at 5.4"C (41.7OF) Ambient 9.5 Heat Pump Validation at 10.6"C (51.0°F) Ambient'::::: :: 9.6 Cooling Mode Results ................................ 81 10. RECOMMENDATIONS . . . . . . . . . . . . . ..*.......................... 83 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 APPENDIX A. DEFINITIONS OF INPUT DATA . . . . . . . . . . . . . . . . . . . . . . . . 89 APPENDIX B. SAMPLE INPUT AND OUTPUT DATA . . . . . . . . . . . . . . . . . . . . . 95 APPENDIX C. DEFINITIONS OF CONSTANTS ASSIGNED IN BLOCK DATA SUBROUTINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 APPENDIX D. DEFINITIONS OF VARIABLES IN COMMONB LOCKS . . . . . . . . 105 APPENDIX E. CROSS-REFERENCE OF COMMONB LOCKS . . . . . . . . . . . . . . . . . 131 APPENDIX F. SUBROUTINE DESCRIPTIONS AND CROSS-REFERENCE OF SUBROUTINE CALLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 APPENDIX G. ALGEBRAIC NOTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 APPENDIX H. DERIVATION OF DEHUMIDIFICATION SOLUTION . . . . . . . . . . 147 H.l Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 H.2 Heat Transfer Equations - Air to Wall . . . . . . . . . . . . . . . 147 H.3 Heat Transfer Equations - Air to Mean Surface Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 H.4 Heat Transfer Equations - Mean Surface to Refrigerant Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 H.5 Derivation of Coil Characteristic and Total Heat Flow Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 H.6 Derivation of the Solution for the Exit Effective Surface Temperature, Tf, ,(x0) . . . . . . . . . . . . . . . . . . . . . . 153 H.7 Derivation of the Soluti6n for the Exit Air Dry Bulb Temperature T (x ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 References for App%aixOH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 APPENDIX I. DESCRIPTION OF THE DEHUMIDIFICATION ALGORITHM . . . . 163 References for Appendix I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 APPENDIX J. RATIOS OF GEOMETRIC PARAMETERS USED IN HEAT EXCHANGERC ALCULATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 iv Page . APPENDIX K. AVAILABILITY AND DISTRIBUTION OF THE HEAT PUMP MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 . APPENDIX L. LISTING OF COMPUTERM ODEL ........................ 185 APPENDIX M. SAMPLE INPUT DATA ................................ 185 APPENDIX N. LISTING OF THE MAP FITTING PROGRAM . . . . . . . . . . . . . . . 185 APPENDIX 0. SAMPLE COMPRESSORM AP DATA . . . . . . . . . . . . . . . . . . . . . . . 185 APPENDIX P. LISTING OF THE INTERACTIVE SUBROUTINES . . . . . . . . . . . 185 APPENDIX Q. LISTING OF THE INTERACTIVE PREPROCESSOR. . . . . . . . . . 185 . . V . LIST OF FIGURES Page c Fig. 3.1 Pressure vs. Enthalpy Diagram for the Heat Pump Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Fig. 3.2 Block Diagram of Iterative Loops in the Main Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Fig. 4.1 Computational Sequence in the Compressor Models 21 Fig. 4.2 Components of Compressor Energy Balance . . . . . . . . 27 Fig. 4.3 Iteration on Internal Energy Balance for the Loss and Efficiency-Based Compressor Model . . . . . 31 Fig. 6.1 General Structure of the Condenser Model . . . . . . . 48 Fig. 6.2 General Structure of the Evaporator Model . . . . . . 49 Fig. 6.3 Computational Sequence in the Condenser Model . . 57 Fig. 6.4 Computational Sequence in the Evaporator Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Fig. I.1 Block Diagram of the Dehumidification Algorithm 164 Fig. J-1 Sample Tube-and-Fin Heat Exchanger . . . . . . . . . . . . . 172 vii . * . . .

Description:
data [18]. Distributor nozzles and tubes are often used with TXV's to equalize the refrigerant flow in each evaporator circuit and to assure proper for thermo-electric expansion valves, heat transfer and pressure drop correlations for dry and wet spine-fin heat exchangers, water-to-refrigerant.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.