JournalofLowTemperaturePhysicsmanuscriptNo. (willbeinsertedbytheeditor) M. Calvo1, A. Benoˆıt1, A. Catalano1,2, J.Goupy1,A.Monfardini1,2,N.Ponthieu1,3, E.Barria1,G.Bres1,M.Grollier1,G.Garde1, J.-P.Leggeri1,G.Pont1,S.Triqueneaux1, R.Adam2,O.Bourrion2,J.-F.Mac´ıas-Pe´rez2, M.Rebolo2,A.Ritacco2,J.-P.Scordilis2, D.Tourres2,C. Vescovi2,F.-X. De´sert3, A. Adane4, G. Coiffard4, S. Leclercq4, S.Doyle5,P.Mauskopf5,6,C.Tucker5,P.Ade5 6 P.Andre´7,A.Beelen8,B.Belier9,A.Bideaud5, 1 0 N.Billot10,B.Comis2,A.D’Addabbo11, 2 C. Kramer10, J. Martino8, F. Mayet2, F.Pajot8,E.Pascale5,L.Perotto2,V.Reve´ret7, n a L.Rodriguez7,G.Savini12,K.Schuster4, J A.Sievers10,R.Zylka4 2 1 The NIKA2 instrument, a dual-band kilopixel KID array for millimetric ] M astronomy I . h p thedateofreceiptandacceptanceshouldbeinsertedlater - o r t Abstract NIKA2 (New IRAM KID Array 2) is a camera dedicated to millime- s a terwaveastronomybaseduponkilopixelarraysofKineticInductanceDetectors1 [ 1 1InstitutNe´el,CNRSandUniversite´deGrenoble,France v 2 Laboratoire de Physique Subatomique et de Cosmologie, Universite´ Grenoble-Alpes, 4 CNRS/IN2P3,53,ruedesMartyrs,Grenoble,France 7 3 Institut de Plane´tologie et d’Astrophysique de Grenoble (IPAG), CNRS and Universite´ de 7 Grenoble,France 4InstitutdeRadioAstronomieMillime´trique(IRAM),Grenoble,France 2 5AstronomyInstrumentationGroup,UniversityofCardiff,UK 0 . 6ArizonaStateUniversity,Tempe,AZ,USA 1 7LaboratoireAIM,CEA/IRFU,CNRS/INSU,UniversitParisDiderot,CEA-Saclay,91191Gif- 0 Sur-Yvette,France 6 8Institutd’AstrophysiqueSpatiale(IAS),CNRSandUniversite´ParisSud,Orsay,France 1 9Institutd’ElectroniqueFondamentale(IEF),Universite´ParisSud,Orsay,France : 10InstitutdeRadioAstronomieMillimetrique(IRAM),Granada,Spain v 11 Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Gran Sasso, Assergi (AQ), i X Italy 12 UniversityCollegeLondon,DepartmentofPhysicsandAstronomy,GowerStreet,London r a WC1E6BT,UK E-mail:[email protected] 2 (KID).Thepathfinderinstrument,NIKA2,hasalreadyshownstate-of-the-artde- tectorperformance.NIKA2buildsuponthisexperiencebutgoesonestepfurther, increasing the total pixel count by a factor ∼10 while maintaining the same per pixel performance. For the next decade, this camera will be the resident photo- metricinstrumentoftheInstitutdeRadioAstronomieMillimetrique(IRAM)30m telescopeinSierraNevada(Spain).Inthispaperwegiveanoverviewofthemain componentsofNIKA2,anddescribetheachieveddetectorperformance.Thecam- erahasbeenpermanentlyinstalledattheIRAM30mtelescopeinOctober2015. Itwillbemadeaccessibletothescientificcommunityattheendof2016,aftera one-year commissioning period. When this happens, NIKA2 will become a fun- damentaltoolforastronomersworldwide. Keywords KineticInductanceDetectors,mm-waveastronomy, 1 Introduction The IRAM 30m antenna is on of the largest and most sensitive single dish tele- scope for millimeter wavelengths currently operating worldwide. Its cabin tradi- tionally hosts both heterodyne receivers, ideally suited for high resolution spec- troscopy,andbroad-bandcontinuumphotometricinstruments,whichareusedto detectextremelyfaintsources.The30mprimarydishresultsinadiffractionlim- ited resolution of 17 and 10arcsec for the 150 and 260GHz bands respectively. Thus, in order to fully sample the 6.5arcmin correct FoV, a photometric camera forthistelescopeneedsarrayscontaining∼103 pixels,havinganintrinsicnoise comparableto,orbelow,thephotonnoiseexpectedatthetelescopesite.Onlyre- cently the developments in the field of cryogenic detectors have made arrays of thistypepossible. Coupling high sensitivities to their intrinsic suitability for frequency domain multiplexed readout, KID are the ideal candidates for this kind of application. This is why they have been the technology of choice when the project to build the pathfinder instrument, NIKA, started in 2008. NIKA has been an extremely successful instrument, being the first camera to conduct multiplexed on-sky ob- servations using KID and leading to outstanding scientific results34. In its final configuration, NIKA counted a total of 356 pixels split over the two bands. Its successhasbeenakeystepfortheapprovaloftheNIKA2projectasthecamera ofchoicefortheIRAMtelescope. 2 TheNIKA2instrument Whileinheritingalotofknow-howfromtheexperiencegainedbyNIKA,NIKA2 is a completely new instrument, whose development has implied changes at all levels, from the detector arrays themselves all the way up to the optical chain of the30mtelescope. 3 2.1 Optics TomaximizethedimensionsofthecorrectFoV,alltheopticalelementsfollowing the telescope’s primary mirror (M1) and subreflector (M2) have been modified. The M3 and M4 mirrors, which are common to all the instruments of the cabin, havebeenreplaced(thelatterbeingusedtoselectwhetherheterodyneorthecon- tinuum camera shall be used for observations). Two new dedicated mirrors (M5 and M6) have also been made, to send the light to the cryostat window. Inside the cryostat, two additional cold (∼80K) mirrors (M7 and M8) are present, fol- lowedbyHDPElensesonthecoldeststages(1Kandbelow).Thebandsplitting is achieved by means of a dichroic installed at the 0.1K stage. The light in the 260GHzbandisthenfurthersplitbyawire-gridpolarizer,thatseparatesitshor- izontal and vertical components. This enables us to make polarization sensitive observations with a very low cross-pol level. When carrying out this kind of ob- servations,arotatinghalf-waveplateisplacedinfrontofthecryostatwindowto modulatethepolarizedlight. Allopticalelementshavealreadybeeninstalled,andthecoldopticshavebeen extensivelyusedforlabtests.Theonlyexceptionistherotatinghalf-waveplate, which is in the final fabrication steps and will be tested on-site during the first technicalrun. 2.2 Cryostat The NIKA2 cryostat is precooled to ∼5K by two Pulse Tubes (PT) working in parallel.Adilutionrefrigeratoristhenusedtoreachthebaseworkingtemperature ofabout150mK,whichisachievedafter5days.Thesystem,whichiscompletely cryogenfreeandcanbefullyremotecontrolled,canthenbekeptcoldindefinitely. ThePThaveremotemotors,whichareconnectedtothecryostatbodyusingflexi- bletubesandrubberdampers.Thissuppressesthevibrationstheyinduce,thatcan otherwise add a strong 1/f noise contribution to the detectors noise. To protect Fig.1 SchematicrepresentationoftheNIKA2cryostat,withtheopticalpathtothethreearrays inevidence.Thecryostatis2.3mlongandweighsmorethan1ton. 4 thedetectorsalsofromtheeffectsofexternalmagneticfields,weaddedhighper- meabilitymaterialsateachstage:oneMumetalcylinderat300K,aCryopermone at4K,alayerofMetglastapeat100Kand50K,andasuperconductingAluminum screenat200mK. 2.3 Electronics The multiplexed readout of KID is achieved using dedicated electronics boards called NIKELv15. These board can excite and readout up to 400 pixels over a 500MHzbandwidth,andapplyaDirectDownConversionmethodontheacquired outputsignaltodeterminethevariationsofamplitudeandphaseofeachtone.11 boards were available during the first technical run, out of the 20 needed for the final,completeconfiguration. Forthereadout,themodulationtechniquedevelopedforNIKA1willbeused6. Thisallowsustoevaluatethevariationoftheresonantfrequency f withhighpre- 0 cision,leadingtoverygoodphotometricaccuracy.Theexpectederrorontheab- solutecalibrationofourdetectorsisbelow10%,asalreadyachievedwithNIKA1. 3 Detectorsdesignandperformance The NIKA2 pixels are based on Hilbert type LEKID7,8. Thanks to the fractal shapeoftheirinductor,suchpixelscanefficientlyabsorbbothpolarizations.The detectors are fabricated using thin (18–25nm) Aluminum films, in order to in- crease the kinetic inductance fraction of the superconductor and make the KID more responsive. The thin Al film also increases the normal state surface resis- tivity,makingiteasiertomatchthefreespaceimpedanceanddirectlyabsorbthe radiationintheinductor. The focal plane has a diameter of ∼80mm, and each array is fabricated on a single 4(cid:48)(cid:48) HR Silicon wafer. More details on the fabrication process can be foundelsewhereintheseproceedings9,10.Tomaintainthetelescopeangularres- olution, the focal plane sampling must be ≤1Fλ. We have tested different ap- proaches,withapitchbetweenpixelsvaryingfrom0.7to1Fλ,whichcorresponds to 2.3–2.8mm at 150GHz and 1.6–2mm at 260GHz, for a total pixels count of 600–1000and1200–2000respectively.AlthougheachNIKELboardcanreadout up to 400 pixels, for practical reasons the actual multiplexing factor is kept at a lowervalueof150–250,sothat4to8readoutlinesareneededperarray. Wehaveinvestigatedtwodifferentfeedlinegeometries:CoplanarWaveguide (CPW) and Microstrip (MS). The CPW solution is more widespread and has al- ready been tested in NIKA1. The main advantage of such an approach is that a back-illuminationconfigurationcanbeadopted,usingthesubstrateasanimpedance matchingAnti-Reflection(AR)layer.Yet,theonsetofspuriouspropagationmodes can lead to the presence of standing waves along the feedline which, in turn, re- sult in a large scatter of the coupling of the different resonators to it. This effect can be mitigated by implementing a series of bonding across the line. A simpler and more effective solution is that of recurring to a MS feedline, whose geom- etry is such that no spurious modes exist. The coupling of the detectors to the line and hence their performance are thus more uniform and predictable. On the 5 Fig.2 Reconstructedfocalplanegeometryofthe2mmCPWarray.Eachcirclecorrespondsto onepixel,andthedifferentcolorsareassociatedtothedifferentreadoutfeedlines.Weexcluded fromthisplotpixelshavingatoolargenoiseortooellipticbeams.Evenexcludingsuchpixels, theyieldobtainedisabove80%. otherhand,thebacksideofthewaferisinthiscasemetallized,inordertoactas agroundplane,andthepixelsmustbeforcefullyfront-illuminated.UsingthinAl films and choosing the appropriate substrate thickness it is nonetheless possible to have >40% absorption efficiency over a ∼20% bandwidth, a value which is goodenoughfortheaimsoftheNIKA2experiment. Tocharacterizetheperformanceofourarraysunderconditionssimilartothose found at the telescope we use a sky simulator. This consists of a copper flange, coveredwithalayerofcarbon-loadedStycasttomakeitalmostcompletelyblack at millimetric wavelengths. This simulator is cooled using a single stage PT to ∼30K.Itsopticalemissionisthussimilartothatoftheatmospherewhich,under typical observing condition, corresponds to a grey body with ∼10% emissivity andatemperatureof∼270K.Ametallicsphereof4mmdiametercanbemoved infrontoftheskysimulator,thusmimickingthepassageofaplanetcomparable toUranus.Thisallowsustoreconstructanimageofthefocalplaneandevaluate theresponsivityofeachpixel. Thebaselinearraysforthefirsttechnicalrun(October2015)havealreadybeen chosen.Forthe150GHzband,a1040pixelsarraywithCPWfeedlineandasam- plingof0.7Fλ willbeused.Thebackofthewaferhasbeendicedtoimproveits effectivenessasanARlayer.The260GHzbandwillbebasedontwoMSarrays, each containing 1200 pixels, sampling the focal plane at 1Fλ. The three arrays havebeenfullycharacterizedusingtheskysimulator.Theresultsaresummarized intable1. Theperpixelperformanceobtainedinthelabareinlinewiththosefoundfor theNIKAdetectorswhencarryingthesamekindoftests.ForNIKA,wedemon- 6 Fig.3 Noisespectraofthepixelsofonethebaseline150GHzarrayfeedlines,obtainedunder anopticalloadrepresentativeoftheoneexpectedattheIRAM30msite.Usingthesamepixels, wemeasuredashiftoftheresonantfrequencyofabout3kHzforachangeof3.6Kinthesky simulatortemperature.CombiningthistwodataitispossibletoevaluatetheSignal-to-Noise Ratio(SNR)ofeachpixel.Thenoiseatlow f ismostlycorrelatedacrossallthepixels,andcan thusbeefficientlyremovedusinganappropriatedecorrelationtechniqueduringdataanalysis. stratedanon-skysensitiviyonpoint-likesourcesof10and25mJy·s1/2at150and 260GHzrespectivelyingoodobservingconditions.Wethereforeexpecttoobtain similar values for the NIKA2 arrays. Thus, considering the larger FoV, NIKA2 willgrantafactor∼10increaseinmappingspeedwithrespecttoitspredecessor, makingitoneofthemosteffectivecamerasworldwideatthesewavelengths. The effective bandpass of the different channels is determined by the prod- uct of the transmissivity of the optical filters and of the absorption efficiency of the corresponding pixels. We measure it using a Martin-Pupplet Interferometer (MPI),withwhichwecandeterminetheshapeoftheabsorptionspectrumwitha resolution of about 3GHz. Although the absolute value of the total absorption is difficulttoknowprecisely,asitdependsuponthedetailsoftheopticsandofthe Fig.4 AbsorptionspectraoftwosamplepixelsoftheNIKA2arrays:inbluethepixelofthe 150GHzarray,andinorangethatofoneofthe260GHzarrays.Theabsorptionineachbandhas beennormalizedto1.The150GHzCPWarrayhasaflatterabsorptionbandthankstotheuseof thesubstrateasanARlayer. 7 Array Noise@1Hz Responsivity SNR@1Hz (Hz/Hz0.5) (kHz/K) (mK/Hz0.5) 150GHz 1–2 0.8 ∼1.5 260GHzH 2–3 2 ∼1.2 260GHzV 2–3 2 ∼1.2 Table 1 Overview of the performance of the baseline arrays of NIKA2. The reported values accountforabout80%ofthetotalpixels,theremaining20%beingeitherdeadpixelsorpixels thathaveabnormallyhighnoiselevels. MPI components, its shape is all that is needed to perform accurate photometric measurements.Theabsorptionspectraoftwoofthebaselinearraysareshownin Fig.4.Thechoiceofthesubstratethicknessandtheuseofλ/4backshortsallows ustofinetunethepositionoftheabsoprtionband,whichischoseninordertotake advantage of the atmospheric windows available, while at the same time avoid- ingthecontaminationduetotheemissionlinesofmolecules,inparticularwater vapourandozone. Until the end of 2016, NIKA2 will be devoted to technical runs for its com- missioning. During this time, new arrays will be fabricated and tested. If major performance improvements were to be obtained, access will be granted to the cameraforthereplacementofthecurrentbaselinearrays. 4 Conclusions NIKA2isthenextgeneration(2015-2025)residentphotometricinstrumentofthe IRAM30mtelescope.Overthelastthreeyears,wehavefabricatedalltheneeded components.Thisinclude,inparticular,adrycryostatwithadilutionrefrigerator stage,thathasalreadybeencooleddownmultipletimestoabasetemperatureof 150mK.TomaximizetheavailableFoV,wehavemadeacompletelynewoptical design and have replaced all the components of the optical chain that follow the secondarymirror.ThecorrectFoVisnow6.5arcminindiameter. In order to fully sample such a large FoV, we have increased the pixel count by a factor ∼10 with respect to NIKA, all while keeping similar per pixel per- formance,astheyalreadyapproachedthephotonnoiselimitoftheSierraNevada site. NIKA2 will thus lead to a tenfold increase of the mapping speed, and will also allow for the measurement of the linear polarization of light in the 260GHz band. With all the subsystems built and validated, NIKA2 has been installed at the telescope during a dedicated technical run that took place in October 2015. This will be followed by a one-year commissioning period, after which NIKA2 will bemadeavailabletotheexternalastronomers.Theuniquefeaturesofthiscamera willthenopenthewaytotheexplorationofnewandexcitingscientificcases. Acknowledgements ThisworkhasbeenpartiallyfundedbytheANRunderthecontractNIKA2, andhasbeenpartiallysupportedbytheLabExFOCUSANR-11-LABX-0013.Wewouldliketo thanktheIRAMstafffortheirexcellentsupportduringthecampaign.Thisworkhasbeenpar- tiallyfundedbytheFoundationNanoscienceGrenoble,theANRunderthecontracts”MKIDS” and”NIKA”.ThisworkhasbeenpartiallysupportedbytheLabExFOCUSANR-11-LABX- 0013.ThisworkhasbenefitedfromthesupportoftheEuropeanResearchCouncilAdvanced 8 GrantORISTARSundertheEuropeanUnion’sSeventhFrameworkProgramme(GrantAgree- mentno.291294).TheNIKA2cryostatandthereadoutelectronicshavebeendesignedandas- sembledbytheCryogenicsandElectronicsgroupsinGrenoble.Inparticular,weacknowledge thekeycontributionsofP.E.Wolf,A.Gerardini,G.Donnier-Valentin,H.Rodenas,O.Exshaw, G.Simiand,C.Vescovi,E.PerbetandS.Roudier.R.A.wouldliketothanktheENIGMASS FrenchLabExforfundingthiswork. References 1. P.Day,H.G.LeDuc,B.A.Mazinetal.,Nature425,817-820(2003). 2. A.Monfardini,A.Benoit,A.Bideaudatal.,ApJSuppl.Ser.194,2,24(2011) 3. R.Adam,B.Comis,J.F.Mac´ıas-Pe´rezatal.,A&A569,A66(2014) 4. A.Catalano,M.Calvo,N.Ponthieuatal.,A&A569,A9(2014) 5. O.Bourrion,C.Vescovi,J.L.Boulyatal.,JINST 7,P07014(2012) 6. M.Calvo,M.Roesch,F.X.De´sertatal.,A&A551,L12(2013) 7. S.Doyle,P.Mauskopf,J.Naylonetal.,J.LowTemp.Phys.151,530,(2008). 8. M.Roesch,A.Benoit,A.Bideaudetal.,arXiv:1212.4585,(2012). 9. J.Goupyetal.,theseproceedings,(2015). 10. A.Adaneetal.,theseproceedings,(2015).