ebook img

The NH$_2$D hyperfine structure revealed by astrophysical observations PDF

0.13 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The NH$_2$D hyperfine structure revealed by astrophysical observations

Astronomy&Astrophysicsmanuscriptno.NH2D˙spectro-7 (cid:13)c ESO2016 January5,2016 LettertotheEditor The NH D hyperfine structure revealed by astrophysical 2 ⋆ observations F.Daniel1,2,L.H.Coudert3,A.Punanova4,J.Harju4,5,A.Faure1,2,E.Roueff6,O.Sipila¨4,P.Caselli4,R.Gu¨sten7, A.Pon4,8,andJ.E.Pineda4 1 Univ.GrenobleAlpes,IPAG,F-38000Grenoble,France 2 CNRS,IPAG,F-38000Grenoble,France 6 3 LISA,UMR7583CNRS-UniversitesParisEstCre´teiletParisDiderot,61AvenueduGe´ne´raldeGaulle,F-94010Cre´teil,France 1 4 MaxPlanckInstituteforExtraterrestrialPhysics(MPE),Giessenbachstr.1,85748Garching,Germany 0 5 DepartmentofPhysics,P.O.Box64,00014UniversityofHelsinki,Finland 2 6 LERMA,ObservatoiredeParis,PSLResearchUniversity,CNRS,UMR8112,F-75014,Paris,France 7 MaxPlanckInstituteforRadioastronomie,AufdemHu¨gel69,53121Bonn,Germany n 8 DepartmentofPhysicsandAstronomy,TheUniversityofWesternOntario,London,Canada,N6A3K7 a J Received;accepted 2 ABSTRACT ] A Context.The1 -1 linesoforthoandpara–NH D(o/p-NH D),respectivelyat86and110GHz,arecommonlyobservedtoprovide 11 01 2 2 G constraintsonthedeuteriumfractionationintheinterstellarmedium.Incoldregions,thehyperfinestructureduetothenitrogen(14N) nucleusisresolved.Todate,thissplittingistheonlyonewhichistakenintoaccountintheNH Dcolumndensityestimates. . 2 h Aims.We investigate how the inclusion of the hyperfine splitting caused by the deuterium (D) nucleus affects the analysis of the p rotationallinesofNH2D. - Methods.Wepresent30mIRAMobservationsoftheabovementionedlines,aswellasAPEXo/p-NH2Dobservationsofthe101-000 o linesat 333 GHz. The hyperfine patternsof theobserved lineswerecalculated taking into account thesplitting induced by theD r nucleus.TheanalysisthenreliesonlineliststhateitherneglectortakeintoaccountthesplittinginducedbytheDnucleus. t s Results.Thehyperfinespectraarefirstanalyzedwithalinelistthatonlyincludesthehyperfinesplittingduetothe14Nnucleus.We a findinconsistenciesbetweenthelinewidthsofthe1 -0 and1 -1 lines,thelatterbeinglargerbyafactorof∼1.6±0.3.Suchalarge 01 00 11 01 [ differenceisunexpectedgiventhetwosetsoflinesarelikelytooriginatefromthesameregion.Wenextemployanewlycomputed linelistfortheo/p-NH Dtransitions,wherethehyperfinestructureinducedbybothnitrogenanddeuteriumnucleiisincluded.With 1 2 thisnewlinelist,theanalysisofthepreviousspectraleadstolinewidthswhicharecompatible. v Conclusions.Neglecting thehyperfine structure owing to D leads tooverestimate the linewidths of the o/p-NH D lines at 3mm. 2 2 The error for a cold molecular core is about 50%. This error propagates directly to the column density estimate. It is therefore 6 recommendedtotakeintoaccountthehyperfinesplittingscausedbyboththe14NandDnucleiinanyanalysisrelyingontheselines. 1 0 Keywords.Astrochemistry—Radiativetransfer—ISM:molecules—ISM:abundances 0 . 1 0 1. Introduction CDMS2), the line lists of the NH D microwave spectra are 2 6 based on the measurements by DeLucia&Helminger (1975), 1 Thefirstfirmidentificationofsinglydeuteratedinterstellaram- Cohen&Pickett(1982)andFusinaetal.(1988).Thesedatasets : v monia, NH2D, was reported by Olbergetal. (1985) towards onlyconsiderthenitrogenquadrupolehyperfinestructure.Inthis i three molecular clouds at 86 and 110 GHz, the frequencies of letter,anewtheoreticalanalysisoftheNH Dhyperfinestructure X 2 the JKa,Kc=111-101linesofo/p-NH2D,respectively.Theidentifi- is presented which takes into account the nitrogen quadrupole r cationwasunambiguousthankstothenarrowlinewidthswhich interaction, the deuteron quadrupole interaction and the nitro- a allowedtoresolvethehyperfinesplittingduetothenitrogennu- gen spin-rotation interaction. It is based on the measurements cleus. These two lines have since been detected in a variety of by Kukolich (1968), Cohen&Pickett (1982), and Fusinaetal. cold astronomical sources and they are routinely employed to (1988). We show thatthe inclusionof the three couplingterms derivethe(D/H)ratioinammonia(seee.g.Roueffetal.2005). intheanalysisprovidesasimpleexplanationfortheoriginofdif- Thisratioisasensitivetracerofthephysicalconditionsandpro- ferentlinewidthsinthe1 -0 and1 -1 linesofNH D,asob- 01 00 11 01 2 videsstrongconstraintstodeuteriumfractionationmodels. servedrecentlytowardstheprestellarcoreH-MM1.Historically, In the previous studies by Coudert&Roueff (2006, the first astronomicalobservationresolvingthe hyperfinesplit- 2009) and in the current spectroscopic databases (JPL1 and ting owing to the D quadrupole coupling was presented by Caselli&Dore(2005)forDCO+. Thepaperisorganizedasfollows.InSect.2,wedescribethe ⋆ BasedonobservationscarriedoutwiththeIRAM30mTelescope. IRAMandAPEXobservationsoftheo/p–NH Dlinesdetected 2 IRAM is supported by INSU/CNRS (France), MPG (Germany) and towards H-MM1. Sect. 3 gives the details of the spectroscopy IGN(Spain). 1 spec.jpl.nasa.gov 2 http://www.astro.uni-koeln.de/cdms/ 1 Danieletal.:NH Dhyperfinestructure 2 calculations. In Sect. 4, we discuss the impact of the new line consistsofmicrowaveandfarinfraredtransitionsinvolvingthe list on the derivation of radiative transition parameters and we twoinversionsubstatesofthegroundvibrationalstate.Thisfirst concludeinSect.5. setincludes174microwavetransitions(Cohen&Pickett1982) and 297 far infrared transitions (Fusinaetal. 1988) for which no hyperfine structure is resolved. The second set involves the 2. Observations 76microwavetransitionslistedinTableIXofCohen&Pickett (1982) forwhich the nitrogenatom quadrupolecouplingstruc- Thetargetof thepresentNH D observationsis thedense,star- 2 ture is resolved. The last data set comprises the 21 hyperfine less core H-MM1 lying in the eastern part of Lynds 1688 in componentsmeasured by Kukolich (1968) for the para 4 -4 Ophiuchus (Johnstoneetal. 2004; Pariseetal. 2011). The po- 14 04 sition observed,α=16h27m59s.0, δ=−24◦33′33′′, was chosen as rotation-inversiontransitionat25023.8MHz.Forthislastdata set, the quadrupolecoupling structure due to both the nitrogen the H column density peak, as derived from pipeline-reduced 2 anddeuteriumatomsisresolved. Herschel far-infrared maps. These were downloaded from the HerschelScienceArchive3. Rotation-inversionenergieswerecomputedwiththehelpof asemi-rigidrotatorHamiltonianforbothinversionsubstatesand 2.1.APEX12m a second order Coriolis coupling term between these substates (Cohen&Pickett1982).Molecule-fixedcomponentsofthehy- The ground-state 101–000 transitions of o/p-NH2D at ∼333 perfinecouplingtensorsarewrittenusingtheIAMaxissystem GHz were observed using the upgraded version of the First ofthisreference.Quadrupoleandmagneticspin-rotationhyper- Light APEX4 Submillimeter Heterodyne instrument (FLASH; fine couplings were taken into account leading to a hyperfine Heymincketal. 2006) on APEX (Gu¨stenetal. 2006). The two Hamiltoniandependingonfourcouplingconstants:two forthe lines separated by about 40 MHz were covered by one of the quadrupole coupling of the nitrogen and deuterium atoms and MPIfR Fast Fourier Transform Spectrometers (XFTTS) con- twoforthemagneticspin-rotationcouplingofthesameatoms. nected to the 0.8 mm receiver. The original spectral resolution Using equationssimilar to Eqs. (3) and (17) of Thaddeusetal. at 333 GHz is about 35 ms−1; the spectra shown in this paper (1964), these four constants can be expressed as diagonal ma- areHanningsmoothedtoaresolutionof69ms−1(76kHz).The trix elements of four operators involving four rank two hy- APEX beam size (FWHM) is ∼20′′ at 333 GHz. The observa- perfine coupling tensors: the zero trace χN and χD, describing tions were carried out between 29 and 31 May, 2015 in stable quadrupole coupling of the nitrogen and deuterium atoms, re- and fairly good weather conditions (PWV 0.7-1.2 mm), using spectively,andCN andCD,correspondingtothemagneticspin- positionswitchingforskysubtraction.Theaveragesystemtem- rotationcouplingofthesameatoms. peratureat333 GHz was 260 K. The resulting RMS noise ata resolutionof69ms−1is0.017KontheT∗ scale. Hyperfine energies were calculated taking the coupling A scheme: J + I = F and F + I = F where J is the rota- N 1 1 D tionalangularmomentum,andI and I are angularmomenta N D 2.2.IRAM30m of the nitrogen and deuterium nuclei, respectively. The corre- The1 -1 linesofo/p-NH Dat∼86and∼110GHzwereob- spondingcoupled basis set functions|J,IN;F1,ID;F,MFi were 11 01 2 servedattheIRAM30mtelescopeusingtheEMIR090receiver5 usedtosetupthehyperfineHamiltonianmatrix.Matrixelements weretakenfromThaddeusetal.(1964). andtheVESPAautocorrelator.Thespectralresolutionofthisin- strument, 20 kHz, is 68 ms−1 at 86 GHz and 53 ms−1 at 110 Theinversion-rotationtransitionsbelongingtothefirstdata GHz. At these frequencies,the beam sizes of the telescope are set were analyzed first allowing us to determine a set of spec- 29′′ and23′′,respectively.Theobservationswereperformedon troscopic parameters analogous to that listed in Table III of July5,2015,inacceptableweatherconditions(PWV8–10mm). Cohen&Pickett(1982).Componentsofthefourhyperfinecou- The observing mode was position switching. The integration pling tensors were then fitted to the frequencies of transitions times for the o/p-NH D lines were 15 and 22 minutes, and the 2 belongingtothesecondandthirddatasetsevaluatingthehyper- average system temperatures at 86 and 110 GHz were 170 K fine couplingconstantswith theeigenfunctionsretrievedin the and250K, respectively.TheresultingRMS noise levelsof the first analysis. For lines belongingto the first (second) data set, o/p–NH Dspectrawere0.07Kand0.08KontheT∗ scale. 2 A an experimentaluncertaintyvalue of 0.1MHz (1 kHz) was as- sumedandcompareswellwitharootmeansquaredeviationof the observed minus calculated residual of 8.4 kHz (1.5 kHz). 3. Hyperfinepatterncalculations Table 1 reports the values obtained for fitted components of JustlikeinNH3,thenitrogennucleusinNH2Dcantunnelacross the hyperfine couplingtensors. These componentsare given in theplanemadebytheHandDnuclei.Eachrotationaltransition theaxissystemofCohen&Pickett(1982).Duetothefactthat isthussplitintoadoubletbythisinversionmotion.Theresulting the rotation-inversion transition measured by Kukolich (1968) rotation-inversionlevelsareeithersymmetricoranti-symmetric is characterized by ∆J = 0, calculated hyperfine frequencies undertheexchangeofthetwoprotonsandtheywilleithercor- mainly depend on the sum χD +χD. For this reason, only χD xx yy yy respondtoparaorortholevel. wasvariedintheanalysisandχD wasconstrainedtoavaluere- xx Hyperfine patterns were calculated from a fit of high- trievedfromthedeuteroncouplingconstant(eq Q) reportedby ξ D resolution data that can be divided into three sets. The first set Kukolich (1968) and using the fact that angle between the ND 3 www.cosmos.esa.int/web/herschel/science-archive bondandthez-axis(Cohen&Pickett1982)is78.98◦.Magnetic 4 This publication is based on data acquired with the Atacama spin-rotation coupling effects could only be retrieved for the Pathfinder Experiment (APEX). APEX is a collaboration between nitrogen atom. As all three diagonal components of the corre- the Max-Planck-Institut fur Radioastronomie, the European Southern sponding tensor could not be determined separately, they were Observatory,andtheOnsalaSpaceObservatory constrained to be equal, as for the normal species (Kukolich 5 www.iram.es/IRAMES/mainWiki/EmirforAstronomers 1967). 2 Danieletal.:NH Dhyperfinestructure 2 Table1:Hyperfineparameters. Parameter Value Parameter Value χN/MHz 1.906(84) χD/kHz 274.67a xx xx χN/MHz 2.040(98) χD/kHz −114.9(15) yy yy CN/kHz 4.993(100)b xx Notes.Numbersinparenthesesareonestandarddeviationinthesame unitsasthelastdigit.(a)Constrainedvalue.(b)Thethreediagonalcom- ponentsofthistensorwereconstrainedtobeequal. Theresultsoftheaboveanalysiswereusedtopredicthyper- fine patterns of other rotation-inversion transitions, evaluating hyperfineintensitieswithEq.(29)ofThaddeusetal.(1964).We note that hyperfineeffects due to the two hydrogenatomsmay beimportantfororthotransitions.Theseeffectswereevaluated Fig.1:Theleftcolumnshowsthefitoftheo-NH Dlinesat86 2 taking into accountthe spin-spin coupling,calculated from the GHz (upperpanel)and333GHz (lower panel)with the hyper- equilibriumstructureofthemolecule,andthespin-rotationcou- finestructureduetotheDnucleus.Therightcolumnshowsthe pling, evaluatingthe coupling constant for J=1 from Kukolich fitofthep-NH Dlinesat110GHz(upperpanel)and333GHz 2 (1967) and Garveyetal. (1976). Inclusion of these additional (lowerpanel).Notethatfitsofsimilarqualityareobtainedifthe hyperfinecouplingswerefoundtoaffectmarginallythelinepa- hyperfinestructureduetoDisomitted. rametersand in particular,the linewidth is atmostaltered bya fewpercents(seeSection4).Therefore,theseeffectshavebeen neglectedinthefollowing. the 14N nucleus. Doing so, the HFS method applied to the H- MM1observationsdescribedintheprevioussectionleadtode- 4. Modelling rivethefollowingparametersforthep-NH2Dlines: The HFS method of the CLASS software6 allows to quickly – 110GHz:τtot =2.2±0.6and∆v=0.33±0.02kms−1 analyse hyperfinespectra. In particular,it givessome basic pa- – 333GHz:τtot =2.0±0.8and∆v=0.20±0.02kms−1 rametersofthelinesasthewidth∆voftheindividualtransitions andfortheo-NH Dlines: or the opacity summed over all the hyperfine components τ . 2 tot The total column density of a molecule can be inferred from – 86GHz:τ =5.1±0.3and∆v=0.37±0.01kms−1 tot theparametersobtainedwiththeHFSfitusingrelation(seee.g. – 333GHz:τ =2.2±0.3and∆v=0.24±0.01kms−1 tot Bacmannetal.2010;Mangum&Shirley2015) Differenttransitionsofamoleculeshouldhavesimilarintrinsic 8πν3 Q(T ) exp Eu linewidths if they originate from the same region of the cloud. N = c3 guAeuxl exp(cid:16)kb(cid:16)hTkνebxT(cid:17)ex−(cid:17)1Z τuldv. (1) Ifilinlnleeasdst:wroiiftphthhdyeisffisceoarulernsctoecurhricatiercbsa,olutdhreissndscieotninesdsitiaytiroeonrfotiresmmnepodetrinnateducireffesesgrareranidltyipefanurttsls-, As explained in Bacmannetal. (2010), the integration of the ofthecloud.Thefactor∼1.6±0.3foundbetweenthelinewidths opacity over velocity for the u → l component can be related ofthe 1 -1 and 1 -0 transitionsof o/p-NH D is, however, 11 01 01 00 2 tothetotalopacityτ givenbytheHFSfit,through tot puzzling because all four transitions have high critical densi- ties(7104–7105cm−3),alltheobservationshavesimilarspatial Z τuldv∝τtotsul∆v, (2) resolutions (see Sect. 2), and finally, because NH2D should be stronglyconcentratedonthecentreofthecoreforchemicalrea- where s is the line-strength associated with the isolated hy- sons.Wewouldthusexpecttheselinestoprobethesamevolume ul perfinetransition.Thelinewidthwhichentersthisexpressionis ofgasandweshould,inprinciple,derivesimilarvaluesfor∆v. associated to thermal and non-thermal processes, i.e. the mo- BytakingintoaccountthesplittinginducedbytheDnucleus tionofmoleculesatmicroscopic(temperature)andmacroscopic (seeTable2and3),theparametersderivedfromtheHFSmethod (turbulence)scales. Such an expressionis routinelyused in as- are,forp–NH2D: trophysicalapplications.IntheparticularcaseofNH D,sucha 2 – 110GHz:τ =2.2±0.7and∆v=0.23±0.02kms−1 relation is often applied to the analysis of the 86 or 110 GHz tot – 333GHz:τ =1.4±0.8and∆v=0.19±0.02kms−1 lines, with the aim to putconstraintson the deuteriumfraction tot (seee.g.Olbergetal.1985;Tine´etal.2000;Roueffetal.2005; andfortheo-NH D: 2 Busquetetal.2010;Fontanietal.2015). InthecaseofNH2D,thehyperfinestructureinducedbythe – 86GHz:τtot =5.2±0.5and∆v=0.24±0.01kms−1 Dnucleusisnotresolvedinastrophysicalmediasincethebroad- – 333GHz:τtot =2.3±0.4and∆v=0.23±0.01kms−1 eningofthelinesduetonon-thermalmotionsislargerthanthe Thecorrespondingfitsoftheo/p-NH Dhyperfinetransitionsare hyperfine splitting. Hence, it seems reasonable to analyze the 2 compared to the observationsin Fig. 1. For both spin isomers, linesjusttakingintoaccountthehyperfinestructureinducedby we find that the differences between the linewidths are largely 6 the HFS acronym stands for ”HyperFine Structure” reduced,thedifferencesbeingnowatmost∼20%.Inparticular, and a description of the method is available at wefindthattheeffectismostimportantforthe86and110GHz www.iram.es/IRAMES/otherDocuments/postscripts/classHFS.ps lineswhilethetwolinesat333GHzhavesimilarlinewidthswith 3 Danieletal.:NH Dhyperfinestructure 2 111 101 p-NH2D o–NH2D F1 F F1’ F’ ν(MHz) Aul(s−1) ν(MHz) Aul(s−1) 0 1 1 0 110151.982 1.95(6) 85924.691 9.23(7) 0 1 1 2 110152.040 9.18(6) 85924.749 4.35(6) 0 1 1 1 110152.072 5.20(6) 85924.781 2.46(6) 0 1 2 2 110152.565 6.21(8) 85925.273 2.93(8) 0 1 2 1 110152.662 1.52(7) 85925.370 7.17(8) 2 1 1 0 110152.935 1.99(6) 85925.644 9.43(7) 2 2 1 2 110152.954 6.05(7) 85925.662 2.87(7) 2 3 1 2 110152.980 4.44(6) 85925.688 2.10(6) 2 2 1 1 110152.986 2.52(6) 85925.694 1.20(6) 2 1 1 2 110152.993 4.85(8) 85925.702 2.30(8) 2 1 1 1 110153.025 3.36(6) 85925.734 1.59(6) 2 2 2 2 110153.478 8.81(6) 85926.186 4.18(6) 0 1 0 1 110153.484 2.82(10) 85926.191 1.33(10) 2 3 2 2 110153.504 1.07(6) 85926.212 5.09(7) Fig.2:Line-strengths,normalizedandcenteredonrestfrequen- 2 1 2 2 110153.517 2.72(6) 85926.225 1.29(6) cies,forthe86GHzand333GHzlinesofo–NH D.Inblack,the 1 1 1 0 110153.534 1.58(6) 85926.243 7.47(7) 2 2 2 2 3 110153.536 2.09(6) 85926.244 9.92(7) spectroscopy accountsfor the coupling with D while the spec- 2 3 2 3 110153.562 1.10(5) 85926.270 5.23(6) troscopyobtainedjustaccountingforNisshowninred. 1 2 1 2 110153.574 2.92(6) 85926.282 1.38(6) 2 2 2 1 110153.576 2.48(6) 85926.284 1.18(6) 1 0 1 1 110153.580 2.73(6) 85926.288 1.30(6) 1 1 1 2 110153.592 2.10(6) 85926.301 9.96(7) 1 2 1 1 110153.606 1.04(6) 85926.314 4.91(7) orwithouttakingintoaccountthehyperfinestructureinducedby 2 1 2 1 110153.615 8.30(6) 85926.323 3.94(6) theDnucleus.Thisdifferencebetweenthelinescomesfromthe 1 1 1 1 110153.625 1.15(6) 85926.333 5.42(7) 1 2 2 2 110154.098 1.45(6) 85926.806 6.87(7) spectroscopyandisillustratedinFig.2fortheo-NH Dspiniso- 2 1 1 2 2 110154.117 5.18(6) 85926.825 2.46(6) mer(thedescriptionthatfollowswouldbesimilarforp-NH D). 1 2 2 3 110154.156 5.63(6) 85926.864 2.67(6) 2 Inthisfigure,weseethatthenumberofhyperfinecomponentsis 1 0 2 1 110154.170 9.22(6) 85926.877 4.37(6) 1 2 2 1 110154.196 1.11(7) 85926.904 5.25(8) limited for the 101-000 transitions.Additionally,for these lines, 1 1 2 1 110154.215 6.91(7) 85926.922 3.28(7) thespreadinvelocityofthehyperfinecomponentsisreducedby 2 2 0 1 110154.397 2.64(8) 85927.104 1.25(8) 2 1 0 1 110154.437 1.24(7) 85927.143 5.85(8) comparisontothespreadofhyperfinesinthe1 -1 transitions. 11 01 1 0 0 1 110154.991 4.59(6) 85927.698 2.18(6) Hence,forthelattertransitions,takingintoaccountthecoupling 1 2 0 1 110155.017 5.40(6) 85927.724 2.56(6) withDleadstoareduced∆v.Finally,weseethatforthe86and 1 1 0 1 110155.036 5.85(6) 85927.743 2.77(6) 110GHztransitions,theestimatesofτ aresimilarwiththetwo tot setsoflinelists.Asaresult,accordingtoEq.1and2,theerror Table 2:Line list ofthe 1 -1 o/p-NH D transitions,with the madeinthelinewidthestimatewilltranslatedirectlytothecol- 11 01 2 hyperfinestructure due to both the nitrogenand deuterium nu- umn density estimate. In the case of the H-MM1 observations, clei. The A coefficientsare givenin the formata(b)such that thetwoestimateswilltypicallydifferbyafactorof∼1.5,which A =a10−bul. iswellabovecalibrationerrors. ul 101 000 o-NH2D p–NH2D 5. Conclusion F1 F F1’ F’ ν(MHz) Aul(s−1) ν(MHz) Aul(s−1) 0 1 1 2 332780.875 4.68(6) 332821.618 4.37(6) Wehaveobservedthe1 -1 and1 -0 linesofo/p-NH Dto- 0 1 1 1 332780.875 2.26(6) 332821.618 2.11(6) 11 01 01 00 2 0 1 1 0 332780.875 1.20(6) 332821.618 1.12(6) wardsthe prestellarcore H-MM1,andcalculatedthe hyperfine 2 1 1 2 332781.695 3.14(7) 332822.439 2.93(7) patternsoftheobservedtransitions.Wefoundthatwhenthehy- 2 1 1 1 332781.695 4.54(6) 332822.439 4.24(6) 2 1 1 0 332781.695 3.29(6) 332822.439 3.07(6) perfinesplittinginducedbytheDnucleusisneglected(asdone 2 3 1 2 332781.735 8.14(6) 332822.479 7.60(6) inpreviousstudies),thelineanalysisleadstoinconsistentresults 2 2 1 2 332781.793 1.59(6) 332822.537 1.48(6) pertaining the linewidths of the two transitions of o/p-NH D. 2 2 1 1 332781.793 6.56(6) 332822.537 6.12(6) 2 1 1 1 1 332782.285 1.35(6) 332823.029 1.25(6) For both spin isomers, the widths of the 1 -1 and 1 -0 11 01 01 00 1 1 1 2 332782.285 3.15(6) 332823.029 2.94(6) linesdifferbyafactorof1.6±0.3iftheDcouplingisnottaken 1 1 1 0 332782.285 3.65(6) 332823.029 3.41(6) intoaccount.Onthecontrary,thenewlinelistgivescomparable 1 2 1 1 332782.317 1.59(6) 332823.062 1.48(6) 1 2 1 2 332782.317 6.56(6) 332823.062 6.12(6) linewidthsfor all the transitions. An error in the linewidth will 1 0 1 1 332782.375 8.14(6) 332823.120 7.60(6) be transferredto the column density estimate, and the effect is particularlypronouncedforthe1 -1 linesoforthoandpara- 11 01 NH2D at 86 and 110 GHz. In the case of H-MM1, the column Table 3: Same as Table 2 but for the 101-000 o/p-NH2D transi- density estimates derived from these lines with or without the tions. hyperfinestructureowingtoDdifferbyafactorof∼1.5. Acknowledgements. This work has been supported by the Agence Nationale delaRecherche(ANR-HYDRIDES),contractANR-12-BS05-0011-01andby Caselli,P.&Dore,L.2005,A&A,433,1145 theCNRSnationalprogram“Physico-ChimieduMilieuInterstellaire”.AP,PC Cohen,E.A.&Pickett,H.M.1982,J.Mol.Spectrosc.,93,83 and JP acknowledge the financial support of the European Research Council Cohen,E.A.&Pickett,H.M.1982,JournalofMolecularSpectroscopy,93,83 (ERC;projectPALs320620).JHacknowledgessupportfromtheMPEandthe Coudert,L.H.&Roueff,E.2006,A&A,449,855 AcademyofFinlandgrant258769.PartialsalarysupportforAPwasprovidedby Coudert,L.H.&Roueff,E.2009,A&A,499,347 aCanadianInstituteforTheoreticalAstrophysics(CITA)NationalFellowship. DeLucia,F.C.&Helminger,P.1975,JournalofMolecularSpectroscopy,54, 200 Fontani,F.,Busquet,G.,Palau,A.,etal.2015,A&A,575,A87 References Fusina, L., Di Lonardo, G., Johns, J. W. C., & Halonen, L. 1988, J. Mol. Spectrosc.,127,240 Bacmann,A.,Caux,E.,Hily-Blant,P.,etal.2010,A&A,521,L42 Garvey,R.M.,Lucia,F.C.D.,&Cederberg,J.W.1976,Molec.Phys.,31,265 Busquet,G.,Palau,A.,Estalella,R.,etal.2010,A&A,517,L6 Gu¨sten,R.,Nyman,L.Å.,Schilke,P.,etal.2006,A&A,454,L13 4 Danieletal.:NH Dhyperfinestructure 2 Heyminck, S.,Kasemann, C.,Gu¨sten, R.,deLange, G.,&Graf,U.U.2006, A&A,454,L21 Johnstone,D.,DiFrancesco,J.,&Kirk,H.2004,ApJ,611,L45 Kukolich,S.G.1967,Phys.Rev.,156,83 Kukolich,S.G.1968,J.Chem.Phys.,49,5523 Mangum,J.G.&Shirley,Y.L.2015,PASP,127,266 Olberg,M.,Bester,M.,Rau,G.,etal.1985,A&A,142,L1 Parise,B.,Belloche,A.,Du,F.,Gu¨sten,R.,&Menten,K.M.2011,A&A,528, C2 Roueff,E.,Lis,D.C.,vanderTak,F.F.S.,Gerin,M.,&Goldsmith,P.F.2005, A&A,438,585 Thaddeus,P.,Krisher,L.C.,&Loubser,J.H.N.1964,J.Chem.Phys.,40,257 Tine´,S.,Roueff, E.,Falgarone, E.,Gerin, M.,&Pineau des Foreˆts, G.2000, A&A,356,1039 5 This figure "nh2d_observations.png" is available in "png"(cid:10) format from: http://arxiv.org/ps/1601.00162v1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.