ebook img

The neutral gas extent of galaxies as derived from weak intervening CaII absorbers PDF

0.92 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The neutral gas extent of galaxies as derived from weak intervening CaII absorbers

Astronomy&Astrophysicsmanuscriptno.ms15566 (cid:13)c ESO2011 January6,2011 The neutral gas extent of galaxies as derived from weak ii ⋆ intervening Ca absorbers P.Richter1,F.Krause1,C.Fechner1,J.C.Charlton2,andM.T.Murphy3 1 Institutfu¨rPhysikundAstronomie,Universita¨tPotsdam,Karl-Liebknecht-Str.24/25,14476Golm,Germany e-mail:[email protected] 2 DepartmentofAstronomyandAstrophysics,PennsylvaniaStateUniversity,UniversityPark,PA16802,USA 3 CentreforAstrophysics&Supercomputing,SwinburneUniversityofTechnology,Hawthorn,Victoria3122,Australia 1 Received11August2010/Accepted03December2010 1 0 ABSTRACT 2 WepresentasystematicstudyofweakinterveningCaiiabsorbersatlowredshift(z < 0.5),basedontheanalysisofarchivalhigh- n resolution(R ≥ 45,000)opticalspectraof304quasarsandactivegalacticnucleiobservedwithVLT/UVES.Alongatotalredshift a path of ∆z ≈ 100 we detected 23 intervening Caii absorbers in both the Caii H & K lines, with rest frame equivalent widths J 5 Wabr,3ia93s4-c=or1re5c−ted79n9ummbÅeranddencsoiltuymonfwdeenaskitiinestelrovgenNin(CgaCiai)ii=a1b1so.2rb5e−rs1o3f.0d4N(o/bdtzai=ne0d.1b1y7fi±tti0n.g04V4oiagtt-hpzrofiil=ec0o.m35pofonrenatbss).orWbeersobwtaiitnh log N(Caii) ≥ 11.65 (W ≥ 32 mÅ). This is ∼ 2.6 times the value obtained for damped Lymaanbsα absorbers (DLAs) at low O] redshift.AllCaiiabsorberr,3s93i4noursampleshowassociatedabsorptionbyotherlowionssuchasMgiiandFeii;45percentofthem haveassociatedNaiabsorption.FromionizationmodellingweconcludethatinterveningCaiiabsorptionwithlog N(Caii) ≥ 11.5 C arisesinDLAs,sub-DLAsandLyman-limitsystems(LLS)atHicolumndensitiesoflogN(Hi) ≥ 17.4.Usingsupplementary Hi . informationfornineoftheabsorberswefindthattheCaii/HiratiodecreasesstronglywithincreasingHicolumndensity,indicating h acolumn-density-dependentdustdepletionofCa.TheobservedcolumndensitydistributionfunctionofCaiiabsorptioncomponents p followsarelativelysteeppowerlaw, f(N)∝N−β,withaslopeof−β=−1.68,whichagainpointstowardsanenhanceddustdepletion - o in high column density systems. The relativelylarge cross section of these absorbers together with the frequent detection of Caii r absorptioninhigh-velocityclouds(HVCs)inthehalooftheMilkyWaysuggeststhataconsiderablefractionoftheinterveningCaii t systemstrace(partly) neutral gasstructures inthehalosand circumgalacticenvironment of galaxies(i.e.,theyareHVC analogs). s a BasedontherecentlymeasureddetectionrateofCaiiabsorptionintheMilkyWayHVCsweestimatethatthemean(projected)Caii [ cLo≥ve0ri.n0g5Lfr⋆acwtieocnaolcfuglaaltaextiheastatnhdetchheairragcateseriosutischraaldoisalisex(cid:10)tfec,nCtaIoI(cid:11)f=(pa0r.t3l3y.)UnesuintrgatlhgisasvaclluoeudasndwcitohnlsoidgeNri(nHgia)ll≥ga1l7a.x4ieasrowuintdhlluomw-inreodssithiiefst 2 galaxiesisR ≈55kpc. HVC v 1 Keywords.Keywordsshouldbegiven 0 2 2 1. Introduction determined what consequences the accretion mode has for the . 8 star-formation activity of a galaxy. Part of this lack of under- Theanalysisofinterveningabsorptionlinesinthespectraofdis- 0 standing(particularlyatlowredshift)isrelatedtoobservational 0 tantquasars(QSO) hasbecomean extremelypowerfulmethod limitations.Since, byfar,mostofthe iontransitionsofinterest 1 to study the distribution and physical properties of the inter- for QSO absorption spectroscopy are located in the ultraviolet : galactic medium (IGM) and its relation to galaxies. Over the v (UV),QSOabsorptionlineobservationsatlowredshiftarelim- lastcoupleofdecades,QSOabsorptionspectroscopyofvarious i ited by the number of bright extragalactic backgroundsources X metalionssuchasMgiiandCiv,togetherwithgalaxyimaging, forwhichhigh-resolutionUV spectroscopywithcurrentspace- hasbeenusedextensivelytoconstrainthenatureofthevarious r basedspectrographs(i.e.,HST/STISorHST/COS)canbecarried a processes (infall, outflow, merging) that govern the matter ex- out.At higherredshift,moreandmore UV linesare redshifted changebetweengalaxiesandtheIGMaspartofthehierarchical intotheopticalregime,allowingustoobtainamuchlargernum- evolutionofgalaxies(e.g.,Bergeron& Boisse´ 1991;Steidelet berofhigh-qualityQSO absorptionspectrawithlarge,ground- al.1992;Churchilletal.1999;Steideletal.2002). basedtelescopessuchastheESOVeryLargeTelescope(VLT). Because of the physicaland spatial complexityof the IGM Because galaxies at high redshift are dim, however, the char- andthevarioushydrodynamicalprocessesthatareinvolved,our acterization of the IGM-galaxy connection at high z using di- knowledge about the exact role of the IGM-galaxy connection rect observationsis a challenging task (Adelberger et al.2003; fortheevolutionofgalaxiesatlow andhighredshiftis stillin- Crighton et al.2010). Fortunately, hydrodynamicalsimulations complete. In particular, it is not known whether the gas infall of the IGM have turned out to be an extremely valuable tool ontogalaxiesoccursintheformofcondensedneutralgasclouds to assess the properties of intergalactic matter and its relation (“cold” mode) or in the form of ionized gas (“warm” or “hot” to galaxies at high and low redshifts (e.g., Fangano, Ferrara & mode; see, e.g., Bland Hawthorn 2009). It also remains to be Richter2007;Kaufmannetal.2009;Kacprzaketal.2010a). ⋆ Basedonobservations collectedattheEuropean Organisationfor Mostoftherecentabsorptionlinestudiesofinterveningsys- AstronomicalResearchintheSouthernHemisphere,Chile tems have concentrated on the analysis of ionic transitions of 2 P.Richter,F.Krause,C.Fechner,J.C.Charlton,andM.T.Murphy:InterveningCaiiabsorbers hydrogen and heavy elements in the UV (e.g, Hi, Mgii, Civ, Ovi,andmanyothers).Thetwomostimportantopticalabsorp- tion lines for IGM studies, the Caii H & K lines near 4000Å, arelesscommonlyused,althoughtheyhavealsoplayedanim- portantroleinourunderstandingofthediffusematterinspace. Withanionizationpotentialof11.9eVCaiiservesasatracerof warmandcold,neutralgasingalaxiesandtheirgaseoushalos. After all, the Caii H & K lines were the first absorption lines ever detected in interstellar gas (Hartmann 1904). These lines were also the first tracers of extraplanar gas clouds in the halo oftheMilkyWay(Mu¨nch1952)andwereamongthefirstmetal absorptionlinesdetectedintheIGMin earlyQSO spectra(see Blades1988). Bowen (1991), Bowen et al.(1991), and, more recently, Wild, Hewett & Pettini (2006, 2007), Zych et al.(2007, 2009) and Nestor et al.(2008) have investigated intervening Caii ab- sorberstowardsQSOsatrelativelylowspectralresolution.From the early studies by Bowen et al. (using a small sample of medium resolution optical QSO spectra) it was concluded that Fig.2. Examplefora Voigt-profilefit (redsolid line) with four interveningCaiiabsorptionpredominantlyoccurswithinthein- absorptioncomponentsoftheCaii absorberatz = 0.23782to- ner20kpcofgalaxies,thusspeakingagainstmanygalaxieshav- wardsJ095456+174331. ing extended Caii absorbing neutral gas halos with large fill- ingfactors.Fromtheanalysisofseveralthousandlow-resolution spectrafromtheSloanDigitalSkySurvey(SDSS)Wild,Hewett currentradiotelescopesmaybecrucialforourunderstandingof & Pettini (2006) concluded that strong Caii systems with rest gasaccretionratesofgalaxiesatlowredshift(coldaccretionvs. frameequivalentwidths> 350mÅariseonlyfromtheinnerre- warm accretion;see Bland Hawthorn2008).Because interven- gions of galaxies and thus represent a subclass of the damped ing Caii absorbersshouldtrace neutralgasatcolumndensities Lymanαabsorbers(DLAs).ThesehavethehighestHicolumn logN(Hi)> 17itisexpectedthattheyarerelativelyrare.Their densities of all interveningQSO absorbers(log N(Hi) ≥ 20.3) numberdensitiesshouldbelowerthanthevalueofdN/dz≈0.6 andarebelievedtorepresentgas-richgalaxiesandprotogalactic atz=0.3,derivedfortheso-called“strong”Mgiisystems(sys- structures. tems with rest frame equivalent widths ≥ 0.3 Å in the Mgii λ2976line;seeNestor,Turnshek&Rao2005),buthigherthan However, because of their limited spectral resolution and that of DLAs (dN/dz = 0.045 at z = 0; Zwaan et al.2005). their typically low signal-to-noise ratios (S/N), previous stud- ies would have missed a population of weak, intervening Caii Therefore,a largenumberof QSO sightlinesmustbe surveyed inordertostudythepropertiesofinterveningCaiisystemsona absorberswithrestframeequivalentwidths≤ 100mÅ.Theex- istence of these weak Caii systems was recently indicated by statisticallysecurebasis. high-resolutionobservationsofweakCaiiabsorptioninthehalo Weherepresentthefirstsystematicstudyofweakinterven- ing Caii absorbers in the redshift range z = 0−0.5, based on andnearbyintergalacticenvironmentoftheMilkyWay(Richter a very large sample of more than 300 optical, high-resolution et al.2005, 2009; Ben Bekhti et al.2008; Wakker et al.2007, 2008).ItwasfoundthatCaiiabsorptioniscommoninthemany (R > 40,000) QSO absorption line spectra obtained with the VLT. Our paper is organized as follows. In Sect.2 we present neutralgasstructuresoutsidetheMilkyWaydisk(i.e.,intheso- called “high velocity clouds”, HVCs), even at low Hi gas col- theobservations,thedatahandling,andtheanalysismethod.The umn densities, N(Hi) ∼ 1017 − 1019 cm−2. If the Milky Way mainresultsofoursurveyarepresentedinSect.3.InSect.4we environmentis typicalfor low-redshiftgalaxies,weak Caii ab- discussthephysicalpropertiesandtheoriginoftheweakinter- veningCaiisystems.Wecompareourresultswithpreviousstud- sorptionshouldariseinboththeneutralgasdisksofgalaxiesand iesofinterveningCaiiabsorbersinSect.5.Finally,wepresenta intheirextended,patchyneutralgashalos(i.e.,inHVCanalogs), summaryofourstudyinSect.6. buthighsensitivityisrequiredtodetectthehalocomponent.In termsofthecommonQSOabsorptionlineclassificationthisim- plies that Caii absorption should arise in DLAs as well as in 2. Observations,datahandling,andanalysis a certain fraction of sub-DLAs (19.3 <log N(Hi) ≤ 20.3) and method Lymanlimitsystems(LLS;17.2 <log N(Hi) ≤ 19.3),depend- ing on the Ca abundanceand dust depletion in the gas and the 2.1.Spectraselectionandreduction localionizationconditions. ForourCaiisurveywemadeuseoftheESOdataarchive1 and ThecommondetectionofweakCaiiabsorptionintheMilky retrieved all publically available (as of Sept. 2008)absorption- Way’sextendedneutralgashalothereforesuggeststhattheoc- line data for low- and high-redshift QSOs observed with the currence of Caii absorption in the gaseous outskirts of low- Ultraviolet and Visual Echelle Spectrograph (UVES) on the redshiftgalaxiesshouldbereassessedwithhighresolution,high VLT. This enormousdata archive (Spectral Quasar Absorption S/N absorption line data. Such a study may be very useful to Database, SQUAD; PI: M.T. Murphy) provides high-quality constrain the absorption cross section of neutral gas in the lo- spectraldatafor∼400quasarsandactivegalacticnuclei(AGN). cal Universe. Most importantly, it can be used to measure the Most of these spectra were taken in the UVES standard con- sizesandmassesofneutralgasgalaxyhalos.Thelatterpointis figuration using the 1” slit, providing a spectral resolution of particularlyinteresting,asknowledgeabouttheneutralgasdis- tributionaroundgalaxiesbelowthe Hi21cmdetectionlimitof 1 http://archive.eso.org P.Richter,F.Krause,C.Fechner,J.C.Charlton,andM.T.Murphy:InterveningCaiiabsorbers 3 Fig.1. UVESspectrumofthequasarJ215501−092224inthewavelengthrangebetween4240and4300Å.WeakinterveningCaii absorptionisclearlydetectedatz=0.08091inbothCaiilines,asindicatedbythetickmarks. Table1.QSOnames,redshiftsandionsof23interveningCaiiabsorbersatz=0−0.5detectedinourQSOsample QSO Alt.Name z Biasa DetectedIonsb UndetectedIonsb abs J121509+330955 Ton1480 0.00396 yes Caii,Nai J133007-205616 PKS1327-206 0.01831 no Caii,Nai J215501-092224 PHL1811 0.08091 no Caii Nai J044117-431343 HE0439-4319 0.10114 yes Caii,Nai J095456+174331 PKS0952+179 0.23782 yes Caii,Mgii,Feii J012517-001828 PKS0122-005 0.23864 no Caii,Mgii J235731-112539 PKS2354-117 0.24763 yes Caii,Nai,Mgii J000344-232355 HE0001-2340 0.27051 no Caii,Mgii,Feii Nai J142249-272756 PKS1419-272 0.27563 yes Caii,Mgii,Feii Nai J042707-130253 PKS0424-131 0.28929 no Caii,Mgii,Feii J113007-144927 PKS1127-145 0.31273 yes Caii,Mgii,Feii J102837-010027 B1026-0045B 0.32427 no Caii,Mgii,Feii J231359-370446 PKS2311-373 0.33980 no Caii,Mgii,Feii J110325-264515 PG1101-264 0.35896 no Caii,Nai,Mgii,Feii J094253-110426 HE0940-1050 0.39098 no Caii,Mgii,Feii J121140+103002 B1209+1046 0.39293 no Caii,Mgii,Feii J123200-022404 PKS1229-021 0.39498 yes Caii,Mgii,Feii J050112-015914 PKS0458-020 0.40310 no Caii,Mgii Nai J224752-123719 PKS2245-128 0.40968 no Caii,Mgii,Feii J220743-534633 PKS2204-540 0.43720 yes Caii,Mgii,Feii Nai J044117-431343 HE0439-4319 0.44075 no Caii,Mgii Nai J144653+011356 B1444+0126 0.44402 no Caii,Mgii,Feii J045608-215909 HE0454-2203 0.47439 no Caii,Feii aBiasflagindicateswhethertheobservationsweretargetedobservations(seeSect.3.2) bOnlyabsorptionbyCaii,Mgii,Feii,andNaiisconsideredinthisstudy R ∼ 45,000 (corresponding to a velocity resolution of ∼ 6.6 in the wavelength range between 3934 and 5955 Å. From all kms−1 FWHM). Only a few spectra have been observed at 397availablequasarspectraintheSQUADsampleweselected slightlyhigherspectralresolution,uptoR ∼ 60,000.Thespec- the304spectrathata)fullyorpartlycovertheabovementioned tral coverage as well as the signal-to-noise ratio (S/N) varies wavelength range, and b) have an average S/N of ≥ 12 per ∼ substantiallyamongthespectra,reflectingthevariousscientific 6.6kms−1 wideresolutionelementforR = 45,000;seeabove). goalsoftheoriginalproposals. NotethatwerequiretheoccurrenceofbothCaiiabsorptionlines inthespectrumforapositivedetection(seealsoSect.2.2).The AlldatawerereducedusingamodifiedversionoftheUVES minimumcolumndensitythatcanbedetectedat4σsignificance reductionpipeline.Themodificationswereimplementedtoim- for an unresolved,optically thin absorptionline at wavelength, provethefluxextractionandwavelengthcalibrationforthedif- λ , with oscillator strength, f, in a spectrum with a given S/N ferent echelle orders. Different orders then were combined us- 0 per resolution elementand a spectralresolution R = λ/∆λ can ingthecustom-writtencodeUVES poplerwithinversevariance be calculated (e.g., Tumlinson et al.2002; Richter et al.2001) weightingandacosmicrayrejectionalgorithm,toformasingle via spectrumwith a dispersionof2.5 kms−1 per pixel.Finally,the spectra were continuum-normalizedwith an automated contin- uumfittingalgorithm. BecauseweaimtoanalyseCaiiH&K(λλ3934.77,3969.59) 4 N ≥1.13×1020cm−2 . (1) absorption in the redshift range z = 0−0.5, we are interested R(S/N)f (λ /Å) 0 4 P.Richter,F.Krause,C.Fechner,J.C.Charlton,andM.T.Murphy:InterveningCaiiabsorbers clearlydetectedandthatthetwolinesshowasimilarpatternof absorptioncomponentsandsimilarlineshapes. Forapositivedetectionatredshiftz≥0.2wefurtherrequire that the Caii absorptionis accompaniedby absorptionin Mgii or Feii. For all possible Caii systems atz ≥ 0.2a Mgii and/or astrongFeiitransitioniscovered.Thedetectionofoneofthese ions at the same redshift as Caii proves the presence of an in- terveningCaiisystem,whereasthesignificantnon-detectionof Mgii and Feii indicates a false detection. The mandatory co- existence of Mgii and Feii with Caii is justified given relative abundancesoftheseions,theirionizationpotentials,andtheos- cillatorstrengthsof theabovelisted transitions.Caii absorbing cloudswithoutsignificantMgiiandFeiiabsorptionarenotex- pectedtoexist. The situation is different for redshifts z < 0.2, where we havenocoverageofassociatedMgiiandFeiiabsorptioninour opticalspectra.Generally,thesignificantnon-detectionofNaiin aCaiicandidatesystemdoesnotindicateafalseCaiidetection. Naiexistsonlyinrelativelydenseneutralgasandthusispresent Fig.3. Relative redshift coverage for Caii absorption for 270 onlyinasubsetoftheCaiisystems.Fortunately,inourparticular QSOsigthlines,alongwhichinterveningCaiiabsorptioncanbe survey,allbutoneCaiicandidatesystemsatz < 0.2forwhich detectedatcolumndensitieslogN(Caii)>11.65. Naiwascoveredintheopticalspectrum,didhappentohaveNai detected.Furthermore,theonlyCaiicandidatesystematz<0.2 for which Nai was not detected (the system towards J215501- In our case we have λ = 3969.59 Åand f = 0.3145 for 092224),couldbeconfirmedbyexistingUVabsorptionlinedata 0 the weaker of the two Caii lines, so that the minimum S/N fromHST/STIS(Jenkinsetal.2003). of 12 in our sample corresponds to a column density thresh- old of N(Caii) = 6.7 × 1011 cm−2 (log N(Caii) = 11.83) for Finally,asachecktoourprocedure,andinordertoidentify weaker Caii absorbers, we reversed our search and looked for R=45,000.Thiscolumndensitylimitcorrespondstoanequiv- Caiiabsorptionin(previouslyidentified)strongMgIIabsorbers alentwidthlimitof50mÅ inthestrongerCaiiλ3934line. atz = 0.2−0.5.Inthisway,weidentifiedfourveryweakCaII Forall304selectedQSOspectrawethenscannedthespec- absorbers,with N(Caii)< 11.5,whichwehadmissedinourdi- tral region of interest (3934−5955 Å) and excludedfrom fur- rect search for Caii. We also founda numberof Caii absorber theranalysisthoseregionsthatarecontaminatedbyLyαforest candidates,forwhichonlyoneofthetwoCaiilinesisseen,e.g., linesandotherspectralfeaturesthatwouldcausesevereblend- in systems so weak that Caiiλ3969 was not formally detected, ing problems. As a result, we define for each sightline a char- orinwhichonememberoftheCaiidoubletwasblendedorwas acteristicredshiftpathdz ≤ 0.5(typicallycomposedofsev- CaII notcoveredinthespectrum(seeJonesetal.2010foranexample eralredshiftchunks)alongwhichinterveningCaiicouldbede- case).Thesecandidatesystemsarenotconsideredanyfurtherin tected. The mean redshift path per sightline in our sample is our analysis, but they are listed in the Appendix in Table A.3. hdzCaIIi=0.33;thetotalredshiftpathis∆z=100.60. We moreoverexcluded all local Caii absorptionfeatures at ra- Atablelistingallselected304spectrawiththeQSOnames, dial velocities 0−500 kms−1, as these features are caused by theaverageS/N,anddz isprovidedintheAppendix(Tables CaII neutralgasin the Milky Way disk and halo (see Ben Bekhtiet A.4andA.5). al.2008). Usingtheaboveoutlineddetectioncriteriaafinallistofver- 2.2.Absorberidentificationandlinefitting ified Caii absorberswas produced.As an example we show in Thenextstep inouranalysiswas thesearchforCaii H&Kab- Fig.1theUVESspectrumofthequasarJ215501−092224inthe sorption at z = 0−0.5 along the 304 selected QSO sightlines. wavelengthrangebetween4240and4300Å.Weakintervening First,weusedanautomatedline-finderalgorithmtoidentifyab- Caii absorptionis clearly detectedat z = 0.08091in both Caii sorptionfeatureswhosewavelengthswouldcorrespondtocom- lines(indicatedbythetickmarks).Forthefurtherspectralanaly- binedCaiiH&Kabsorptionininterveningabsorbersatz≤ 0.5. sisoftheabsorptionlineswemadeuseoftheFITLYMANpackage In this way we created a candidate list of possible Caii sys- implementedintheESO-MIDASanalysissoftware(Fontana& tems. Secondly, two of our team (Richter & Krause) indepen- Ballester 1995).Thisroutineuses a χ2 minimizationalgorithm dently analysed all 304 spectra by eye and identified possible to derive column densities (N) and Doppler parameters(b) via Caii systems. All three candidate lists then were merged into multi-component Voigt profile fitting, also taking into account one.Foreachofthecandidatesystemswethencheckedforas- thespectralresolutionoftheinstrument.Anexampleforamul- sociated absorption in Mgii λλ2796,2803, Feii λλ2586,2600, ticomponentVoigtprofilefit of an interveningCaii absorberis andNaiλλ5891,5897toverifyorexcludethepresenceofinter- shown in Fig.2. Total Caii column densities for each system veninggasabsorptionattheredshiftindicatedbythecandidate havebeendeterminedbysummingoverthethecolumndensities Caiiabsorption.Alargenumberoffalsedetectionsisexpected, of the individual subcomponents. The total rest frame equiva- caused by interveningabsorptionlines that coincidentlymimic lentwidths(W)andvelocitywidthsoftheabsorption(∆v)were r the wavelength pattern expected for a redshifted Caii doublet. derived for Caii λ3934, as well as for associated Mgii λ2796 ForapositivedetectionwethusrequirethatbothCaiilinesare absorption,byadirectpixelintegration. P.Richter,F.Krause,C.Fechner,J.C.Charlton,andM.T.Murphy:InterveningCaiiabsorbers 5 Table2.Columndensities,absorptioncomponents,velocitywidthsandequivalentwidthsforthe23interveningCaiiabsorbers QSO z logN(Caii) na ∆v W ∆v W logN(Nai) abs c CaII r,CaII,3934 MgII r,MgII,2796 (Nin[cm−2]) [kms−1] [mÅ] [kms−1] [mÅ] (Nin[cm−2]) J121509+330955 0.00396 12.31±0.01 3 149 160±9 ... ... 11.64±0.04 J133007-205616 0.01831 13.04±0.06 9 378 799±46 ... ... 13.28±0.05 J215501-092224 0.08091 11.76±0.02 1 38 44±5 ... ... ≤10.49 J044117-431343 0.10114 12.60±0.05 7 130 292±6 ... ... 12.25±0.03 J095456+174331 0.23782 12.22±0.07 4 105 119±7 173 1101±12 ... ... J012517-001828 0.23864 11.48±0.06 1 22 34±4 154 328±30 ... ... J235731-112539 0.24763 12.70±0.03 3 53 261±16 ≥470 ≥2244 12.41±0.02 J000344-232355 0.27051 11.66±0.02 2 42 33±2 176 850±7 ≤10.30 J142249-272756 0.27563 12.07±0.03 1 29 80±6 302 1260±50 ≤10.90 J042707-130253 0.28929 12.03±0.03 2 122 67±2 158 368±13 ... ... J113007-144927 0.31273 12.71±0.01 8 230 376±7 378 1789±12 ... ... J102837-010027 0.32427 12.43±0.02 2 143 224±14 165 681±20 ... ... J231359-370446 0.33980 12.81±0.04 3 41 166±5 149 976±16 ... ... J110325-264515 0.35896 11.26±0.02 1 31 15±2 148 532±15 11.92±0.01 J094253-110426 0.39098 11.89±0.02 2 31 54±2 ≥178 ≥900 ... ... J121140+103002 0.39293 11.38±0.06 1 30 18±3 355 1114±15 ... ... J123200-022404 0.39498 12.39±0.05 5 111 194±6 297 2018±10 ... ... J050112-015914 0.40310 12.26±0.03 3 103 132±17 ... ≥715 ≤11.20 J224752-123719 0.40968 12.23±0.02 2 101 140±11 448 1013±21 ... ... J220743-534633 0.43720 11.98±0.05 1 26 65±8 68 318±15 ≤11.30 J044117-431343 0.44075 11.42±0.07 3 60 24±3 72 317±11 ≤10.80 J144653+011356 0.44402 11.25±0.06 1 42 21±6 188 219±10 ... ... J045608-215909 0.47439 12.18±0.07 4 102 122±5 ... ... ... ... an isthenumberofCaiiabsorptioncomponentspersystem;seeTablesA.1andA.2 c 3. Results tionbiasseeSect.3.2).Theredshiftdistributionoftheabsorbers (Fig.4,rightpanel)isnonuniform,showinganenhancementof 3.1.FrequencyandcolumndensitiesofCaiiabsorbers Caii systemsin the rangez = 0.2−0.4.Thisisbecauseof the inhomogeneous redshift coverage of our QSO sample and not Basedontheanalysismethoddescribedintheprevioussection becauseofan intrinsicredshiftevolutionof the absorberpopu- we found23interveningCaii absorbersalongthe selected 304 lation(seeSect.3.2).Themedianabsorptionredshiftinourtotal QSO sightlines. The redshift of the absorbers ranges between sample (23 systems) is z = 0.32 (0.35 in the bias-corrected z=0.00396andz=0.47439.Notethatseveraloftheseabsorp- abs sample). tion systems represent DLAs and LLSs that have been identi- fied and studiedpreviously,based on the analysisof ionsother thanCaii(e.g.,Mgii).Consequently,itisexpectedthatsomeof 3.2.NumberdensityofCaiiabsorbers ourQSOsightlinesthatexhibitinterveningCaiiabsorptionhave been explicitly selected (based on lower resolution spectra) to To calculate the number density of intervening Caii absorbers study the absorption characteristics of DLAs and LLSs at low perunitredshifz,dN/dz,itisnecessarytoconsiderindetailthe z, and thus represent targeted observations. Therefore, one im- completeness of our Caii survey and the selection bias in our portant concern about the detection rate of intervening Caii in datasample. ourdataistheselectionbiasintheQSOsamplethatweareus- The weakest Caii system in our survey has log N(Caii) = ing. This issue will be further discussed in Sect.3.2, where we 11.25, but only 103 of the 304 spectra have a sufficiently high estimatethenumberdensityofCaiiabsorbersatlowredshift. S/N to detect Caii at this column density level (see Eq.1). Quasar names,redshiftsanddetected(andundetected)ions EighteenCaii absorbershavelog N(Caii) > 11.65(thesewere forthe23CaiiabsorptionsystemsarelistedinTable1.Detailed found by the direct search for interveningCaii absorption;see results from the Voigt-profile fitting of the absorbers and their Sect.2.2)andfor270outof304sightlinestheselectedspectral subcomponentsarelistedinTablesA.1andA.2intheAppendix. regionsaresensitiveabovethiscolumndensitylevel.Forcom- VelocityplotsofCaiiandotherdetectedionsforall23absorbers pleteness reasons we therefore consider only the total redshift are shown in the Appendix, in Figs.A.1 to A.6. Total column path covered by these 270 sightlines, together with the 18 ab- densities, absorption components, velocity widths, and equiva- sorbers that have log N(Caii) > 11.65, for the estimate of the lent widths for the 23 Caii absorbers and for their associated Caiiabsorbernumberdensity. MgiiabsorptionaregiveninTable2. The relative redshift coverage, f (z), for Caii absorption z ThetotallogarithmicCaiicolumndensitiesoftheabsorbers alongtheselected270sightlines(fz(z)=Pdz(z)/270)isshown rangebetweenlogN(Caii) = 11.25and13.04.Thedistribution in Fig.3. The distribution reflects blending issues and low S/N of the (total) logarithmic Caii column densities of the 23 ab- for many high-redshift sightlines in the range zCaII < 0.25, as sorbersaswellasthedistributionoftheirredshiftsareshownin wellasindividualfeaturescausedbytheintegratedwavelength Fig.4.TheCaiicolumndensitydistributionhasapeaknearlog coverageoftheoriginalUVESobservationsinoursample.The N(Caii) ∼ 12.2, which is also the median value. If we remove totalredshiftpathfortheselected270sightlinesis∆z=89.15. theeightsystemsthatareflaggedas“biased”inTable1,theme- To quantify the selection bias in our data we inspected the dianvalueforlogNisreducedto∼11.9(fordetailsontheselec- originalproposalabstractsintheUVESarchiveforthesightlines 6 P.Richter,F.Krause,C.Fechner,J.C.Charlton,andM.T.Murphy:InterveningCaiiabsorbers Fig.4.Distributionof(total)logarithmicCaiicolumndensitiesofthe 23absorbersdetectedin ourtotalQSO sample (leftpanel) andtheirredshiftdistribution(rightpanel). Fig.5. Distribution of Caii λ3934 rest frame equivalent widths for the 23 Caii absorbers (left panel) and their velocity width distribution(rightpanel). along which interveningCaii was found.As it turnsout, 8 out above a column density limit of log N = 11.65 arise exclu- of the 18 QSO spectra with intervening Caii absorption at log sivelyinstrongMgiisystems, butnotinweakMgiiabsorbers. N(Caii) > 11.65 represent data from targeted observations of Therefore, the number densities of strong Mgii absorbers and DLAsandMgiiabsorbersatlowredshift(asindicatedinTable CaiisystemswithlogN(Caii)>11.65canbedirectlycompared 1, Col.4). This implies that our sample contains ∼ 40 percent toeachother.FromourdataweestimatedN/dz≈1.0forstrong moreCaiisystemsperunitredshiftthaninafullyrandomQSO Mgiisystemsathzi=0.3.ThestudybyNestor,Turnshek&Rao sample. (2005)basedonSDSSdata,however,indicatesalowervalueof dN/dz ≈ 0.6 for this redshift. These numbers further suggest Another way to check for a possible selection bias in our a substantial, ∼ 40 percentoverabundanceof strong Mgii sys- data is to compare the frequency of Mgii absorption systems tems, and thus Caii systems with log N(Caii) > 11.65 in our in our sample with that of securelyunbiasedabsorbersearches QSOsample,owingtoaselectionbias. (e.g., from spectra of the Sloan Digital Sky Survey, SDSS). InterveningMgiiabsorberscommonlyaredividedinto“weak” Without any bias correction our detection of 18 Caii ab- systems (for rest-frame equivalent widths in the λ2976 line, sorbers with log N(Caii) > 11.65 along a total redshift path W ≤ 300 mÅ) and “strong” systems (W ≥ 300 mÅ). of ∆z = 89.15 implies dN/dz(Caii) = 0.202± 0.048 for this 2796 2796 From a Mgii-selected absorber search of our data we find column density range. Considering the above estimate for the that strong Mgii systems outnumber Caii systems with log selectionbias(40percent)andremovingtheeightrelevantsight- N(Caii) > 11.65 by a factor of ∼ 5. Moreover, Caii systems linesfromthestatisticswederiveabias-correctednumberden- P.Richter,F.Krause,C.Fechner,J.C.Charlton,andM.T.Murphy:InterveningCaiiabsorbers 7 Fig.6.DistributionofDopplerparameters(bvalues)ofthe69Caiiabsorptioncomponentsinour23Caiisystems(leftpanel),and numberofabsorptioncomponentspersystem(rightpanel),derivedfromVoigt-profilefitting. sity of intervening Caii systems with log N(Caii) > 11.65 of dN/dz(Caii) = 0.117±0.044.Theerrorincludesa 20percent uncertaintyestimateforthebiascorrection.Forcomparison,the number density of DLAs at low redshift is dN/dz(DLA) ≈ 0.045 (Zwaan et al.2005), thus a factor of 2.6 lower. This is an interesting and important result: weak intervening Caii ab- sorbers at low redshift outnumber DLAs by a factor of two to three. Ifwetransformdzintothecomovingabsorptionpathlength dXvia dX =(1+z)2[Ω +Ω (1+z)3]−0.5dz, (2) Λ m the data indicate dN/dX = 0.075 for hz i = 0.35 (bias abs corrected).Thoughoutthispaperwe use a flat ΛCDM cosmol- ogywithH = 73kms−1Mpc−1,Ω = 0.238,andΩ = 0.762 0 m Λ (Spergeletal.2007). 3.3.Caiiequivalentandvelocitywidths The Caii rest-frame equivalent widths for the stronger λ3934 transition,Wr,3934,rangefrom15to799mÅ inoursample(see Fig.7. Column density distribution function, f(N), for Caii Table 2). The equivalent width distribution is shown in Fig.5, components, as derived from our bias-corrected Caii absorber left panel. Most absorbers (18 out of 23) have Wr < 200 mÅ; sample. Above our completeness limit (log N = 11.65; dotted notethatthesesystemswouldbeinvisibleinspectraldatawith line),thedatafitbesttoapowerlawoftheform f(N) =CN−β lowspectralresolutionand/orlowS/N(e.g.,inmostSDSSspec- withslopeβ=1.68±0.20(solidline). tra). The median rest-frame equivalentwidth in the λ3934 line is 118 mÅ (76 mÅin the unbiased sample). If we divide our absorber sample into “strong” absorbers with W ≥ 300 mÅ absorption profiles. The absorption width is defined as the to- r and “weak” absorbers with W < 300 mÅ (similar to the di- talvelocityrangeinwhichCaiiλ3934absorption(includingall r visions for Mgii), our sample contains 21 weak absorbers, but velocity subcomponents)is detected in a system. The Caii ab- onlytwostrongsystems.OurstudythusindicatesthatweakCaii sorption widths range from 22 to 378 kms−1, but only two of absorberswith32≤W <300mÅ2areeighttimesmorenu- the 23 systems show large widths with ∆v > 200 kms−1. For r,3934 ∆v < 200 kms−1 the distribution of the 21 systems is bimodal merousthanstrongabsorbers. with 10 narrow absorbers with ∆v < 50 kms−1, and 9 some- Figure 5, right panel, shows the distribution of the absorp- tion width of the Caii systems, ∆v , as derivedfromthe Caii whatbroadersystemswithvelocitywidthsbetween100and150 abs kms−1. The median value for the velocity width of Caii is 60 2 32 mÅcorresond toour completeness level of log N = 11.65 for kms−1 (40 kms−1 for the unbiased sample). While the typical opticallythinCaiiabsorption inanunresolved, single-component ab- velocity spread of interveningCaii absorbers is < 150 kms−1, sorptionline. theassociatedMgiicoversanabsorptionrangethattypicallyis 8 P.Richter,F.Krause,C.Fechner,J.C.Charlton,andM.T.Murphy:InterveningCaiiabsorbers severaltimes largerthanthat forCaii. Thiswill be furtherdis- Caiiabsorptioncomponentsismildlysteeperthanthatofinter- cussedinSect.3.6. veningHiandMgii.Notethatasimilarslope(β=1.6±0.3)has beenfoundfortheCaiiCDDFinHVCsinthehalooftheMilky Way(BenBekhtietal.2008). 3.4.Dopplerparametersandsubcomponentstructure The relatively steep slope of the Caii CDDF most likely is The distribution of the Dopplerparametersof all individual69 related to the depletion of Ca into dust grains. Dust depletion absorbersubcomponentsisshownintheleftpanelofFig.6.The is particularly important for high column density systems (see distribution peaks at b = 4 kms−1 with a broad tail that ex- Sects.3.6and4.2).Thiseffectleadsto a reductionof highcol- tends to b = 20 kms−1. The median value is b = 6 kms−1. umndensityCaiisystemsandthusisexpectedtocauseasteep- In absorption spectroscopy of extendedgaseous structures it is eningof f(N)comparedtoundepletedelements.Notethatifwe usually assumed that the total (=measured) Doppler parameter fittheCDDFtoall69absorptioncomponentsinthetotaldataset of an absorber is composed of a thermal component (bth) and (i.e.,includingthe biased absorbersand their components),the a non-thermal component (bturb), so that b2 = b2th +b2turb. The slopeoftheCDDFsteepenssubstantiallywithβ = 2.12±0.17. thermal component of b depends on the gas temperature, T, Obviously, the biased systems predominantly add components and the mass (m) or atomic weight (A) of the particle, where with relatively low Caii column densities to the total sample, bth = (2kT/m)1/2 ≈ 0.129(T[K]/A)1/2kms−1.Thenon-thermal resulting in a steeper CDDF. This most likely is related to an component includes macroscopic motions in the gas, such as enhanceddustdepletioninthebiasedsystems. turbulence and flows. Assuming pure thermal broadening(i.e., b = 0 kms−1), Caii Doppler parameters of (5,10,15,20) turb kms−1thereforecorrespondtologarithmicgastemperatures,log 3.6.AssociatedMgii,FeiiandNaiabsorption (T/K), of (4.8,5.4,5.7,6.0).Since the temperature of the Caii AllCaiiabsorbersinoursampleforwhichinformationonMgii absorbing gas is likely to be much lower than that (a charac- teristic temperature range is T = 102 − 104 K; see Richter et and Feii is available (Mgii: 18/23, Feii: 15/23; see Table 1 and Figs.A1-A5) do show associated absorption in these ions, al.2005; Ben Bekhti et al.2008), this would suggest that the measured Caii b values are dominatedby turbulentmotions in following our original selection criteria (Sect.2.2). The equiv- alent widths of the associated Mgii λλ2796,2803 and Feii thegas.Alternatively,theobservednon-thermallinewidthsmay λλ2586,2600 absorption lines are typically much larger than bepartlyduetounresolvedsubcomponentstructureinthelines, those of the Caii H&K absorption.This is expected,since Mg which is plausible in view of the limited spectral resolution of thedata(FWHM≈ 6.6kms−1 formostofthespectra).Ineither is 17 times and Fe is 14 times more abundantthan Ca (assum- case, the measured Doppler parameters of the Caii absorption ingrelativesolarabundancesfortheseelements:log(Ca/H)⊙ = components unfortunately cannot be used to constrain the gas −5.69 ± 0.04; log (Na/H)⊙ = −5.83 ± 0.04; log (Mg/H)⊙ = temperatureintheabsorbers. −4.47±0.09;log(Fe/H)⊙ =−4.55±0.05;Asplund,Grevesse& Sauval2005)andtheoscillatorstrengthsoftheabovementioned Figure 6, right panel, shows the number of absorption components that we resolved in each Caii system. Seventeen MgiiandFeiitransitionsarerelativelystrong.MgiiandFeiiab- out of the 23 Caii absorbers (i.e., 74 percent) have three or sorptionthat is associated with Caii systems showsa velocity- fewer absorptioncomponentswithin a velocityrangeof ≤ 150 componentstructurethattypicallyisfarmorecomplexthanthat kms−1,andsevensystemsaresingle-componentCaiiabsorbers. ofCaii.ThemedianvelocitywidthofMgiiis∆v=175kms−1, The mean velocity separation between Caii absorption sub- thussubstantiallylargerthanthemedianvelocitywidthofCaii components is only ∼ 25 kms−1, which suggests that the in- (60 kms−1; see above). This behaviour indicates that Mgii ab- sorption traces more extended gaseous structures that have a dividualsubcomponentsare physically connected (e.g., as part larger velocity extent, while Caii absorption is detectable only of a coherentgas structure). Note that the velocity width of an in certain, spatially more confined regions within these struc- absorber(seeabove)iscorrelatedwiththethenumberofabsorp- tures.ThisisbecauseMgii-inviewofitslargerabundanceand tioncomponents(seeTable3). higherionizationpotential-isamuchmoresensitivetracerfor diffuse neutral gas than Caii, and it also traces diffuse ionized 3.5.Columndensitydistributionfunction(CDDF) gas (see Sect.4.1). Therefore, the velocity pattern of Mgii ab- sorptionreflectstheoveralldistributionofdenseanddiffusegas In Fig.7 we show the column density distribution function intheabsorber,whileCaiiabsorptionarisesonlyintheregions (CDDF)ofthe37Caiiabsorptioncomponentsfoundintheun- thathavethehighestneutralgascolumndensities. biased absorber sample. Following Churchill et al.(2003), the CDDF can be written as f(N) = m/∆N, where m denotes the AllbutoneoftheCaiiabsorbersinoursample,forwhichin- numberofabsorbersinthecolumndensitybin∆N. Integration formationonMgiiisavailable,areassociatedwithstrongMgii of f(N)overthetotalcolumndensityrangeofinterestthende- absorbers. However, from our Mgii selected absorber sample, liversthetotalnumberofabsorbersinthatrange.TheCDDFof wefindthatonlyeveryfifthstrongMgiisystematz≤0.5shows low and high ion absorbers in intervening absorption line sys- Caii absorption above log N(Caii) = 11.65 (see Sect.3.2). temsusuallyfollowsapowerlawintheform Themedianrest-frameequivalentwidthoftheMgii λ2976ab- sorption that is associated with a Caii system is 700 mÅ, thus f(N)=CN−β, (3) about six times larger than the median Caii equivalent width in the λ3934 line. As shown in Fig.8 (left panel), the Mgii where β varies in the range between 1 and 2 for differ- λ2976 equivalent width correlates with the Caii λ3934 equiv- ent ions (e.g., β ≈ 1.5 for Hi and Mgii; Kim, Christiani & alentwidth,whilethevelocitywidthsoftheCaiiandMgiiab- D’Odorico2001; Churchill et al.2003). Fitting f(N) to the 37 sorptiondonotshowsuchacorrelation(Fig.8,rightpanel).The Caii absorption components we find β = 1.68± 0.20 and log formeraspectindicatesthattheCaiiabsorptionfollowsonlythe C = 9.05±2.42forallabsorbersthatare aboveourcomplete- strongestMgiiabsorptioncomponents,whichdominatethetotal nesslimit(logN(Caii)=11.65).Thus,theCDDFofintervening Mgii equivalentwidth.Thisis in linewith theobservationthat P.Richter,F.Krause,C.Fechner,J.C.Charlton,andM.T.Murphy:InterveningCaiiabsorbers 9 umndensityrangenorthedistributionofimpactparametersfor theabsorberslistedinTable3arestatisticallyrepresentativefor intervening Caii absorbers. The data for five out of the seven systemsarenottakenfromarandomabsorbersample,butcome fromtargetedobservationsofDLAsandsub-DLASatlowred- shift. Thus, we expect that Table 3 is strongly biased towards high column density systems and low impact parameters.Still, thesupplementaryinformationlistedinTable3providesimpor- tantinformationonthephysicalconditionsinthesesystems,as willbediscussedbelow. InFig.9we showtherelationbetweenlog N(Caii) andlog Fig.8.ComparisonbeweenCaiiandMgiiequivalentandveloc- N(Hi)forthesesevensystems(leftpanel),aswellastherelation itywidthsintheinterveningCaiiabsorbers. betweenthe log(Caii/Hi) = log (N(Caii)/N(Hi)) scaled to the solar(Ca/H)ratioandlogN(Hi)(rightpanel).Despitethescat- terthereisaclearcorrelationbetweentheCaiicolumndensity andtheHicolumndensity,whichcanbefittedas thereisnoobviousvelocityoffsetbetweenthemainCaiiandthe mainMgiiabsorptioncomponents.Thelatteraspectshowsthat logN(CaII)=8.415+0.193[logN(HI)], (4) weakerMgii satellite componentsareeithernottracedby Caii (as they may arise in predominantlyionized gas rather than in in Fig.9 (left panel) indicated as solid line. The slope of neutralgas)ortheyaretooweaktodetectinCaiiabsorption. this relation agrees remarkably well with the slope found for For11ofthe23absorbers,informationonNaiisavailable, the Caii/Hi ratio in Milky Way disk and halo clouds (Wakker andfiveofthesesystemsareindeeddetectedinNaiabsorption. & Mathis 2000),but the Milky Way data points are systemati- TheNaicolumndensitiesinthesystemswhereNaiisdetected callyoffsetineitherthexorydirection.Mostlikely,thisoffset range between log N(Nai) = 11.64 and 13.28 (see Table 2). is in y and is caused by an above average dust-to-gas ratio in The upper limits for log N(Nai) for the remaining six systems theMilkyWay,comparedtointerveningabsorbers.Thiswould varybetween10.30and 11.20.Unlikethe associated Mgii and causeahigherdepletionofCaintodustgrains,sothatthemea- Feii absorption, the observed Nai component structure in the suredgasphaseCacolumndensitiesintheMilkyWayabsorbers five systems that show Nai absorption follows that of the Caii would be systematically lower. The observedrelation indicates absorption very closely (see Figs.A1-A5). This indicates that thatitneedsanincreaseofaboutfiveordersofmagnitudeinthe Caii and Nai absorption arises in the same physical regions. totalneutralgascolumndensity(from1017to1022cm−2)tolift Neutralsodiumhasanionizationpotentialofonly5.1eV(com- the gas phase Caii column density by one order of magnitude pared to 11.9 eV for Caii; e.g., Morton 2003) and thus is be- (from1011.7 to1012.7 cm−2).Asaconsequence,theCaii/Hira- lievedtoserveastracerforcoldneutralgasinsidegalaxies(e.g., tiodecreasesstronglywithincreasingHicolumndensity(Fig.8, Crawfordetal.1992).However,Naiabsorptionisoccasionally rightpanel).Thistightrelationinourdatacanbeapproximated found also in HVCs in the halo of the Milky Way (Richter et bythefit al.2005; Ben Bekhti et al.2008)and in the winds of starburst- log(CaII/HI)=8.374−0.807[logN(HI)], (5) inggalaxies(Martinetal.2005).Wewillfurtherinvestigatethe Nai/Caii relation in our absorbers in Sect.4.1, where we also as shown as solid line in the right panel of Fig.9. The ob- discusstheionizationanddustpropertiesinthegas. served decline of Caii/Hi over three orders of magnitude as a functionof N(Hi) cannotbeprimarilycausedbyaCa/H abun- 3.7.Supplementaryinformationontheabsorbers dance gradientamongthe absorbers,butis instead a clear sign ofa column-density-dependentdustdepletionof Ca in thegas. For several of our Caii absorbers, supplementary information This effect is well known from observations of Caii and other on the properties of these systems (based on previous studies) ionsintheinterstellargasintheMilkyWay.Indeed,theCaii/Hi is available in the literature. Because intervening Caii absorp- vs. N(Hi) relationfromMilky Way disk andhalo observations tionmostlikelyarisesintheinnerandouterregionsofgalaxies, (Wakker&Mathis2000;dashedline)reflectsexactlythetrend wearemostlyinterestedininformationthatindicatesapossible that is seen in our intervening Caii absorbers (albeit the small absorber-galaxy connection. Table 3 lists relevant information relativeoffset;seeabove).AswewilldiscussinSect.4.2,addi- for seven outof the 23 QSO sightlines, such as the type of the tional evidence for dust depletion in the Caii absorbers comes galaxy that probably hosts the absorbing cloud in its environ- fromtheobservedNai/Caiiratios. ment(Col.5),theproperabsorber-galaxydistance(“impactpa- rameter”;Col.6),andthegalaxyluminosity(Col.7).References aregiveninthelastcolumn(seealsoZwaanetal.2005).Theto- 4. NatureandoriginofinterveningCaiiabsorbers talneutralgascolumndensityfortheassociatedHiLyαabsorp- 4.1.CaiiabsorbersasHVCanalogs tion is also listed (Col.3), allowing us to distinguish between damped Lyman α absorbers (DLAs; log N(Hi) > 20.3), sub- UsingEq.(4),togetherwiththeobservedCaiicolumndensities damped Lyman α absorbers (sub-DLAs; 19.2 ≤log N(Hi) ≤ (and their uncertainties),one can calculate that3−5 of the 10 20.3)andLyman-limitsystems(LLS;17.2≤logN(Hi)≤19.2), unbiasedCaiiabsorberswouldhaveHicolumndensitiesinthe followingtheusualHiLyαabsorberclassification.Fouroutof DLArange(logN(Hi) ≥ 20.3),sothatanindirectestimatefor thesevenCaiiabsorbersareDLAs,twoaresub-DLAs,andthere theDLAnumberdensityatz≤0.5inourdataisdN/dz(DLA)= is one LLS. The derivedimpact parameters are typically small 0.035−0.058.ThisagreeswellwithdirectestimatesfortheDLA (d < 8 kpcforfoursightlinesoutof seven,forwhichinforma- numberdensityatlowredshift(dN/dz(DLA)=0.045;Zwaanet tion on d is available). Note, however, that neither the Hi col- al.2005).WithdN/dz = 0.117(Sect.3.2),Caii absorberswith 10 P.Richter,F.Krause,C.Fechner,J.C.Charlton,andM.T.Murphy:InterveningCaiiabsorbers Table3.Supplementaryinformationforselectedabsorbersinoursample QSO zabs logN(Hi)a AbsorberType GalaxyType d L/L⊙ Ref. (N in[cm−2]) [kpc] J121509+330955 0.00396 20.34 DLA EarlyType 7.9 0.44 a J215501-092224 0.08091 17.98 LLS Spiral 34.0 0.50 b J044117-431343 0.10114 20.00 sub-DLA Disk 6.8 1.00 c,d,e J095456+174331 0.23782 21.32 DLA DwarfLSB ≤3.9 0.02 f J113007-144927 0.31273 21.71 DLA Group(tidaldebris) 17−241 ... f,d,g,h J123200-022404 0.39498 20.75 DLA Irr.LSB 6.6 0.17 i J045608-215909 0.47439 19.50 sub-DLA ... ... ... j a fromHiLyαabsorption References: (a) Miller et al.(1999);(b) Jenkins et al.(2003);(c) Petitjean et al.(1996);(d) Chen & Lanzetta (2003);(e) Chen et al.(2005); (f) Rao et al.(2003);(g) Lane et al.(1998);(h) Kacprzak, Murphy& Churchill (2010b);(i) Le Brun et al.(1997);(j) Turnshek&Rao(2002) Fig.9. Leftpanel:relation betweenCaii and Hi columndensitiesforseven Caii absorptionsystems. The solid line indicatesthe bestfitthroughthedatapoints,thedashedlineindicatestherelationfoundforCaiiandHiintheMilkyWaybyWakker&Mathis (2000).Rightpanel: relationbetween log (Caii/Hi), scaled to the solar (Ca/H) ratio, and log N(Hi) for the same absorbers.The solidlineagainindicatesthebestfitthroughthedatapoints,whilethedashedlineshowsthetrendfoundintheMilkyWay(Wakker &Mathis2000). log N(Caii) ≥ 11.65 outnumberDLAs at low z by a factor of HVCs at columndensities that are verysimilar to the onesde- 2−3.ThisimpliesthatCaiiabsorbershaveahigherabsorption rivedbyusfortheinterveningCaiiabsorberpopulation(Richter crosssectionthanDLAs,i.e.,theytraceneutralgasthatspansa et al.2005;Ben Bekhtiet al.2008;Richter et al.2009;Wakker largercolumndensityrangeandthatisspatiallymoreextended etal.2007,2008). thanDLAs.SinceDLAsatlowzarebelievedtoariseintheinner Based on these arguments,we are led to suggest that more regionsofgalaxies(i.e.,intheirinterstellarmedia),weconclude thanhalfoftheCaiiabsorbersinoursampletraceneutraland that Caii absorbers, which trace gas below the DLA limit (log partlyionizedgascloudsin thehalosandcircumgalacticenvi- N(Hi)< 20.3),arisepredominantlyintheouter,moreextended ronmentofgalaxiesandthusrepresentdistantHVCanalogs. regionsofthesegalaxies,i.e.,intheirgaseoushalos. Strong observational support for this scenario comes from 4.2.TheNai/Caiiratioanddustdepletion thedistributionoftheHi21cmemissionintheMilkyWaydisk andhalo.The21cmemissionmeasuredinthediskfromthepo- FortheelevenCaiiabsorbers,forwhichinformationonNaiab- sition of the sun indicates a neutral gas column density range sorptionisavailable(Sect.3.6),wefindawiderangeinNai/Caii thatwouldcausethedisktoappearasaDLA ifobservedfrom ratios (or upper limits) from log (Nai/Caii) = −1.36 to log outside. In contrast, the majority of the neutral gas clouds in (Nai/Caii)=+0.66,aslistedinTable4.IntheMilkyWay,these the Milky Way halo with vertical distances > 1 kpc from the ratios are typical of the diffuse, warm neutral medium (WNM; Galacticplane(thiswouldincludeprobablyallHVCsandsome T = 102−104K;n ≤10cm−3),whereCaiiandNaioftenare H of the IVCs; see Wakker 2001;Richter 2006) have Hi column notthedominantionizationstates,butserveastracespecies(see, densitieslogN(Hi) < 20.3andwouldthereforebeclassifiedas e.g., Crawford1992;Welty, Morton& Hobbs1996).For com- sub-DLAsandLLSsifseenasinterveningabsorbers.Moreover, parison,theNai/CaiiratiosthataretypicallyfoundintheMilky CaiiabsorptionisfrequentlydetectedintheGalacticIVCsand Way in the more dense, cold neutral medium (CNM; T < 102

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.