ebook img

The Neural Simulation Language: A System for Brain Modeling PDF

460 Pages·2002·4.021 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Neural Simulation Language: A System for Brain Modeling

The Neural Simulation Language A System for Brain Modeling This page intentionally left blank The Neural Simulation Language A System for Brain Modeling Alfredo Weitzenfeld Michael Arbib Amanda Alexander The MIT Press Cambridge, Massachusetts London, England © 2002 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) with- out permission in writing from the publisher. This book was printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Weitzenfeld, Alfredo. The neural simulation language : a system for brain modeling / Alfredo Weitzenfeld, Michael Arbib, Amanda Alexander. p. cm. Includes bibliographical references and index. ISBN 0-262-73149-5 (pbk. : alk. Paper) 1. Neural networks (Neurobiology) 2. Neural networks (Computer science) 3. Brain—Computr simulation. I. Arbib, Michael A. II. Alexander, Amanda. III. Title. QP363.3 . W45 2002 006.3'2–dc21 2001056253 Contents Preface xiii Acknowledgments xvii 1 Introduction 1 1.1 Neural Networks 1 Modeling Simulation 1.2 Modularity, Object-Oriented Programming, and Concurrency 2 Modularity in Neural Networks 2 Object-Oriented Programming 4 Concurrency in Neural Networks 4 1.3 Modeling and Simulation in NSL 5 Modeling 5 Modules 5 Neural Networks 6 Simulation 7 1.4 The NSL System 9 Simulation System 10 Schematic Capture System 11 Model/Module Libraries 11 Basic Hierarchy 12 1.5 Summary 13 2 Simulation in NSL 15 2.1 Selecting a Model 15 2.2 Simulation Interface 17 2.3 Simulating a Model 18 2.4 Maximum Selector 19 Model Description 19 Simulation Interaction 20 2.5 Hopfield 24 Model Description 25 Simulation Interaction 26 2.6 Backpropagation 31 Model Description 32 Simulation Interaction 35 2.7 Summary 38 3 Modeling in NSL 39 3.1 Implementing Model Architectures with NSLM 39 Modules and Models 39 Neural Networks 46 3.2 Visualizing Model Architectures with SCS 50 3.3 Maximum Selector 52 Model Implementation 53 3.4 Hopfield 56 Model Implementation 56 3.5 Backpropagation 60 Model Implementation 60 3.6 Summary 68 4 Schematic Capture System 69 4.1 SCS Tools 69 Schematic Editor (SE) 69 Icon Editor (IE) 69 NSLM Editor (NE) 70 Library Path Editor (LPE) 70 Library Manager (LM) 70 Consistency Checker (CC) 70 NSLM Generator (NG) 70 NSLM Viewer (NV) 70 4.2 An Example Using SCS 70 Create a Library 70 Create Icons 71 Specifying the Ports on the Icon 74 Creating the Schematic 77 Mouse Action Commands 84 Automatic Generation of Code 84 Manual Generation of Leaf Level Code 85 Generating NSLM Code 87 Compiling and Generating the Executable File 88 Reusing Modules and Models 88 Copying Existing Modules and Models 88 4.3 Summary 88 5 User Interface and Graphical Windows 89 5.1 NSL Executive User Interface 89 System Menu 89 Edit Menu 89 Protocol Menu 90 Simulation Menu 90 Train Menu 90 Run Menu 91 Display Menu 92 Help menu 92 5.2 NslOutFrames 92 The NslOutFrame’s Frame Menu 93 The NslOutFrame’s Canvas Menu 96 NSL Output Graph Types 98 5.3 NslInFrames 100 The NslInFrame’s Menu 100 The NslInFrame’s Canvas Menu 101 NSL Input Graph Types 101 5.4 Summary 102 6 The Modeling Language NSLM 103 6.1 Overview 103 General Conventions 103 VI CONTENTS Types 104 Variables, Attributes, and Methods 104 Attribute Reference Hierarchies 105 Class Reference Hierarchies 106 Predefined Reference Variables 106 Importing Libraries 106 Verbatim 107 6.2 Primitive Types 107 Defined Types 107 Declarations 108 Expressions 109 Control Statements 110 Conversions, Casting, and Promotions 111 6.3 Object Types 112 Defined Types 112 Declarations and Instantiations 114 Expressions 117 Control Statements 121 Conversions, Casting, and Promotions 121 6.4 Creation of New Object Types 121 Template 121 Header 122 Inheritance 122 Attributes 123 Methods 123 Static Modifier 124 6.5 Creation of New Module Types 124 Template 125 Header 125 Inheritance 125 Attributes 126 Methods 126 Differential Equations 129 Scheduling 130 Buffering 132 6.6 Creation of New Model Types 133 6.7 Summary 134 7 The Scripting Language NSLS 135 7.1 Overview 136 General Conventions 136 Help 137 Exit 137 7.2 TCL Primitives Types 137 Variables 137 Arrays 138 Expressions and Control Statements 138 Procedures 139 System Commands 140 7.3 NSL Objects, Modules, and Model Types 140 Access 140 CONTENTS VII Reference Tree for Model Variables 140 Expressions 141 Simulation Methods 144 Simulation Parameters 147 7.4 Input Output 149 Script Files 149 Data Files 149 7.5 Graphics Displays 151 Reference Tree for Canvases 151 Create and Configure 151 Print 155 7.6 Summary 156 8 Adaptive Resonance Theory 157 8.1 Introduction 157 8.2 Model Description 157 Recognition 159 Comparison 160 Search 160 Learning 161 Theorems 162 8.3 Model Implementation 163 Art Module 163 Comparison Module 164 Recognition Module 164 8.4 Simulation and Results 166 Execution 167 Outpu 167t 8.5 Summary 168 9 Depth Perception 171 9.1 Introduction 171 9.2 Model Description: Disparity 173 9.3 Model Implementation: Disparity 174 Dev 175 DepthModel 175 9.4 Simulation and Results: Disparity 176 9.5 Model Description: Disparity and Accommodation 178 9.6 Model Implementation: Disparity and Accommodation 181 Dev2 181 Retina 181 Stereo 182 Visin 182 DepthModel 183 9.7 Simulation and Results: Disparity and Accommodation 183 9.8 Summary 186 10 Retina 189 10.1 Introduction 189 10.2 Model Description 189 Stimulus Shape and Size Dependency 192 10.3 Model Implementation 193 VIII CONTENTS Visin 194 Receptor 194 Horizontal Cells 195 Bipolars 195 Amacrines 195 Ganglion Cell R2 196 Ganglion Cell R3 197 Ganglion Cell R4 198 10.4 Simulation and Results 198 Simulation Parameters 199 Model Parameters 199 Input Stimulus 200 10.5 Summary 203 Stimulus Size Dependence of R3 cells 204 Predictions Based on the modified model behavior 204 Future Refinements of the Retina Model 205 Providing a Flexible Framework for Modeling anuran retina 205 11 Receptive Fields 207 11.1 Introduction 207 11.2 Model Description 207 11.3 Model Architecture 209 LayerA Module 210 ConnectW Module 211 LayerB Module 213 ConnectQ Module 213 11.4 Simulation and Results 215 11.5 Summary 217 12 The Associative Search Network: Landmark Learning and Hill Climbing 219 12.1 Introduction 219 12.2 Model Description 219 12.3 Model Implementation 221 12.4 Simulation and Results 222 12.5 Summary 223 13 A Model of Primate Visual-Motor Conditional Learning 225 13.1 Introduction 225 13.2 Model Description 228 Network Dynamics 228 Learning Dynamics 231 13.3 Model Implementation 234 Model 234 Train Module 235 CondLearn Module 235 Feature Module 237 Noise Module 240 Motor Module 243 WTA Module 245 13.4 Simulation and Results 246 Simulation 246 Parameters 246 CONTENTS IX

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.