ebook img

The needle in the hundred square degree haystack: The hunt for binary neutron star mergers with LIGO and Palomar Transient Factory PDF

14.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The needle in the hundred square degree haystack: The hunt for binary neutron star mergers with LIGO and Palomar Transient Factory

The needle in the 100 deg2 haystack: The hunt for binary neutron star mergers with LIGO and Palomar Transient Factory Thesisby 5 Leo P. Singer 1 0 2 n InPartialFulfillmentoftheRequirements a fortheDegreeof J 2 DoctorofPhilosophy 1 ] c q - r g [ 1 v 5 6 7 3 0 . 1 0 5 1 : v CaliforniaInstituteofTechnology i X Pasadena,California r a 2015 (DefendedNovember24,2014) ii ©2015 LeoP.Singer AllRightsReserved iii Totheloveofmylife,mywifeKristin,andourprecioussonIsaac. Baconinhisinstructiontellsusthatthescientificstudentoughtnottobe astheant,whogathersmerely,norasthespiderwhospinsfromher ownbowels,butratherasthebeewhobothgathersandproduces. All thisistrueoftheteachingaffordedbyanypartofphysicalscience. Electricityisoftencalledwonderful,beautiful;butitissoonlyin commonwiththeotherforcesofnature. Thebeautyofelectricityorof anyotherforceisnotthatthepowerismysterious,andunexpected, touchingeverysenseatunawaresinturn,butthatitisunderlaw,and thatthetaughtintellectcanevennowgovernitlargely. Thehumanmind isplacedabove,andnotbeneathit,anditisinsuchapointofviewthat thementaleducationaffordedbyscienceisrenderedsuper-eminentin dignity,inpracticalapplicationandutility;forbyenablingthemindto applythenaturalpowerthroughlaw,itconveysthegiftsofGodtoman. MichaelFaraday,Lecturenotesof1858,quotedinTheLifeandLettersof Faraday(1870)byBenceJones,Vol. 2,p. 404 iv Acknowledgments Thisis LIGO DocumentNumber LIGO-P1400223-v10. Icarriedouttheworkpresentedinthis thesiswithinthe LIGO ScientificCollaboration(LSC)andtheIntermediatePalomarTransient Factory (iPTF) collaboration. The methods and results I present are under review and are potentiallysubjecttochange. Theopinionsexpressedherearemyownandnotnecessarilythose ofthe LSC or iPTF. IgratefullyacknowledgefundingfromtheUnitedStatesNationalScienceFoundation(NSF) fortheconstructionandoperationofthe LIGO Laboratory,whichprovidedsupportforthiswork. LIGO wasconstructedbytheCaliforniaInstituteofTechnologyandMassachusettsInstituteof Technologywithfundingfromthe NSF andoperatesundercooperativeagreementPHY-0107417. Ithankthe NSF forsupportingmyresearchdirectlythroughaGraduateResearchFellowship. This work is based on observations obtained with the Palomar 48-inch Oschin telescope and the robotic Palomar 60-inch telescope at the Palomar Observatory as part of the Intermediate Palomar Transient Factory project, a scientific collaboration among the California Institute of Technology,LosAlamosNationalLaboratory,theUniversityofWisconsin,Milwaukee,theOskar KleinCenter,theWeizmannInstituteofScience,theTANGOProgramoftheUniversitySystemof Taiwan,andtheKavliInstituteforthePhysicsandMathematicsoftheUniverse. Theworkinthis thesis is partly funded by Swift Guest Investigator Program Cycle 9 award 10522 (NASA grant NNX14AC24G)andCycle10award10553(NASAgrantNNX14AI99G). Thankyou,Mom,thankyouDad,foranupbringingfulloflove,learning,andloveoflearning. Thankyou,mywifeKristin,thankyou,mysonIsaac,foryourloveandforyourpatiencewith me. v Thankyou,SusanBates,foryourtutoringinproblemsolvingthathasresonatedwithmefrom elementaryschoolthrougheverydayofmyscientificcareer. Thankyou,JohnJacobson,AmandaVehslage,TambraWalker,andDr. PhilipTerry-Smith,for themostinspiringcoursesinmyhighschooleducation,andformoldingmeintoaresponsible andwell-roundedindividual. Thankyou,Profs. LuisOrozcoandBetsyBeise,foryourmentoringandfriendshipaswellas theUniversityofMarylandundergraduatephysicscoursesthatIenjoyedsomuch. Thankyoufor initiatingmeintophysicsresearch,andforsendingmetograduateschoolsowellprepared. Thankyou,Prof. AlanWeinstein,forbeinganoutstanding(and,whennecessary,forbearing) thesis advisor, for engineering the many wonderful collaborations that I have been a part of at Caltech,andforshowingmehowtothrivewithinaBigScienceexperiment. Thankyou,Prof. ShriKulkarni,forrecruitingmeinto PTF,forengineeringatotallyoriginal cross-disciplinaryresearchopportunityinphysicsandastronomy,andforplacingtrustinme. I amcontinuallyinaweofhowthattrusthaspaidoff. Ithankmycolleaguesin PTF forwelcoming meintotheirhighlycapableandexcitingteam. Thank you, Prof. Christian Ott, for teaching me two formative courses. I was able to write BAYESTAR,mygreatestcontributionsofartoAdvanced LIGO,onlybecausethelatterofthese courses(Ay190: ComputationalAstrophysics)wasfreshinmyhead. Thank you, Prof. David Reitze, for making me feel like the success of Advanced LIGO dependsuponme. (Ithinkthatyouinspirethatsamefeelingineveryoneat LIGO Laboratory.) Thank you, Rory Smith, my officemate, for ducking good-naturedly whenever I wanted to chuck a chair out the window of 257 West Bridge. (Despite many strong oaths, no chairs were actuallychuckedduringthewritingofthisthesis.) Thankyou,NickFotopoulos,LarryPrice,BradCenko,andMansiKasliwal,foryourcollabora- tionandfriendshipthroughoutmystudies,friendshipsthatIhopetokeepandtonurture. vi Abstract The Advanced LIGO and Virgo experiments are poised to detect gravitational waves (GWs) directlyforthefirsttimethisdecade. Theultimateprizewillbejointobservationofacompact binarymergerinbothgravitationalandelectromagneticchannels. However, GW skylocations that are uncertain by hundreds of square degrees will pose a challenge. I describe a real-time detectionpipelineandarapidBayesianparameterestimationcodethatwillmakeitpossibleto searchpromptlyforopticalcounterpartsinAdvanced LIGO. Havinganalyzedacomprehensive population of simulated GW sources, we describe the sky localization accuracy that the GW detector network will achieve as each detector comes online and progresses toward design sensitivity. Next, in preparation for the optical search with the iPTF, we have developed a unique capability to detect optical afterglows of gamma-ray bursts (GRBs) detected by the Fermi Gamma-ray Burst Monitor (GBM). Its comparable error regions offer a close parallel to the Advanced LIGO problem, but Fermi’s unique access to MeV–GeV photons and its near all-sky coverage may allow us to look at optical afterglows in a relatively unexplored part of the GRB parameter space. We present the discovery and broadband follow-up observations (X-ray, UV, optical, millimeter, and radio) of eight GBM–iPTF afterglows. Two of the bursts (GRB 130702A / iPTF13bxl and GRB 140606B / iPTF14bfu) are at low redshift (z = 0.145 and z = 0.384, respectively), are sub-luminous with respect to “standard” cosmological bursts, and havespectroscopicallyconfirmedbroad-linetypeIcsupernovae. Thesetwoburstsarepossibly consistentwithmildlyrelativisticshocksbreakingoutfromtheprogenitorenvelopesratherthan thestandardmechanismofinternalshockswithinanultra-relativisticjet. Onatechnicallevel,the GBM–iPTF effortisaprototypeforlocatingandobservingopticalcounterpartsof GW eventsin Advanced LIGO withtheZwickyTransientFacility. vii Contents Acknowledgments iv Abstract vi 1 TheroadtoAdvanced LIGO 1 1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Aimsofthisthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Rangeandskyresolutionof GW detectornetworks 14 2.1 Basicmatchedfiltersearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Measuresofdetectorsensitivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 Fisherinformationmatrix: singledetector . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4 Independenceofintrinsicandextrinsicerrors . . . . . . . . . . . . . . . . . . . . . . 22 2.5 Interpretationofphaseandtimeerrors . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.6 Positionresolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.6.1 Marginalizationovernuisanceparameters . . . . . . . . . . . . . . . . . . . . 29 2.6.2 Spatialinterpretation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.6.3 Outlineofcalculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.6.4 ExamplecalculationforHLVnetwork . . . . . . . . . . . . . . . . . . . . . . . 31 2.6.5 Improvementinlocalizationduetocoherence . . . . . . . . . . . . . . . . . . 32 2.6.6 Revisionto LIGO observingscenariosdocument . . . . . . . . . . . . . . . . 37 2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 viii 3 Earlywarning GW detection 41 3.1 Prospectsforearly-warningdetectionand EM follow-up. . . . . . . . . . . . . . . . 45 3.2 Novelreal-timealgorithmfor CBC detection. . . . . . . . . . . . . . . . . . . . . . . 49 3.2.1 Discrete-timerepresentationofamatchedfilter . . . . . . . . . . . . . . . . . 49 3.2.2 The LLOID method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.2.2.1 Selectivelyreducingthesamplerateofthedataandtemplates . . . 53 3.2.2.2 Reducingthenumberoffilterswiththe SVD . . . . . . . . . . . . . 54 3.2.2.3 Early-warningoutput . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2.3 Comparisonofcomputationalcosts . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2.3.1 Conventional TD method . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2.3.2 Conventional FD method . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2.3.3 LLOID method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.2.3.4 Speedupof LLOID relativeto TD method . . . . . . . . . . . . . . 59 3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.3.1 Planningstage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.3.2 Filteringstage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.4.2 Measured SNR loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.4.3 Otherpotentialsourcesof SNR loss . . . . . . . . . . . . . . . . . . . . . . . . 67 3.4.4 Lowerboundsoncomputationalcostandlatencycomparedtoothermethods 70 3.4.5 ExtrapolationofcomputationalcosttoanAdvanced LIGO search . . . . . . 70 3.4.6 Measuredlatencyandoverhead . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4 BAYESTAR: RapidBayesianskylocalizationof BNS mergers 76 4.1 Bayesianprobabilityandparameterestimation . . . . . . . . . . . . . . . . . . . . . . 78 4.2 The BAYESTAR likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.4 Priorandproblemsetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.5 Marginalposterior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 ix 4.5.1 Integraloveranglesandtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.5.2 Integraloverdistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.5.2.1 AdaptiveGaussianquadraturemethod . . . . . . . . . . . . . . . . 87 4.5.2.2 FixedorderGaussianquadraturemethod . . . . . . . . . . . . . . . 90 4.6 Adaptivemeshrefinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.7 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.8 Casestudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5 Thefirsttwoyearsof EM follow-upwithAdvanced LIGO andVirgo 96 5.1 Sourcesandsensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.1.1 Observingscenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.1.2 Simulatedwaveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.1.3 Sensitivitytoassumptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.1.4 Sourcelocations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.1.5 Dutycycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.2 Detectionandpositionreconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.2.1 Templatewaveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.2.2 Detectionthreshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.2.3 Skylocalizationandparameterestimation . . . . . . . . . . . . . . . . . . . . 104 5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.3.1 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.3.2 2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.4.1 Caveats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.4.2 Detectionscenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.4.3 Comparisonwithotherstudies . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 5.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6 Discovery and redshift of an optical afterglow in 71 square degrees: iPTF13bxl and GRB 130702A 127 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 6.2 Discovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 x 6.3 Broadbandphotometricfollow-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 6.4 Opticalspectroscopyandhostgalaxyenvironment . . . . . . . . . . . . . . . . . . . 135 6.5 GRB 130702Aincontext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 7 Fermi, iPTF,andthe GRB–supernovaconnection 141 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 7.2 Searchmethodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 7.2.1 Automated TOO Marshal: alertsandtiling . . . . . . . . . . . . . . . . . . . 145 7.2.2 Triggeringthe P48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 7.2.3 Automatedcandidateselection . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 7.2.4 VisualscanninginTreasuresPortal . . . . . . . . . . . . . . . . . . . . . . . . 149 7.2.5 ArchivalvettingintheTransientMarshal . . . . . . . . . . . . . . . . . . . . . 151 7.2.6 Photometric,spectroscopic,andbroad-bandfollow-up . . . . . . . . . . . . . 152 7.2.7 Long-termmonitoringanddatareduction . . . . . . . . . . . . . . . . . . . . 154 7.3 The GBM–iPTF bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 7.3.1 GRB 130702A/iPTF13bxl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 7.3.2 GRB 131011A/iPTF13dsw . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 7.3.3 GRB 131231A/iPTF13ekl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 7.3.4 GRB 140508A/iPTF14aue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 7.3.5 GRB 140606B/iPTF14bfu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 7.3.6 GRB 140620A/iPTF14cva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.3.7 GRB 140623A/iPTF14cyb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 7.3.8 GRB 140808A/iPTF14eag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 7.4 Thepopulationincontext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 7.4.1 Selectioneffects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 7.4.2 GRBs asstandardcandles? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 7.4.3 Shockbreakout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 7.5 Lookingforward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 8 Conclusion 194 8.1 Nextsteps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.