ebook img

The Needle in the 100 deg2 Haystack: Uncovering Afterglows of Fermi GRBs with the Palomar Transient Factory PDF

3.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Needle in the 100 deg2 Haystack: Uncovering Afterglows of Fermi GRBs with the Palomar Transient Factory

THEASTROPHYSICALJOURNAL,806:52 PreprinttypesetusingLATEXstyleemulateapjv.5/2/11 THENEEDLEINTHE100deg2HAYSTACK:UNCOVERINGAFTERGLOWSOFFERMIGRBsWITHTHEPALOMAR TRANSIENTFACTORY LEOP.SINGER1,32,2, MANSIM.KASLIWAL3,S.BRADLEYCENKO2,4,DANIELA.PERLEY33,5,GEMMAE.ANDERSON6,7,G.C. ANUPAMA8,IAIRARCAVI9,10,VARUNBHALERAO11,BRIAND.BUE12,YICAO5,VALERIECONNAUGHTON13,ALESSANDRACORSI14, ANTONINOCUCCHIARA32,2,ROBP.FENDER6,7,DEREKB.FOX15,NEILGEHRELS2,ADAMGOLDSTEIN32,16,J.GOROSABEL17,18,19, ASSAFHORESH20,KEVINHURLEY21,JOELJOHANSSON22,D.A.KANN23,24,CHRYSSAKOUVELIOTOU16,KUIYUNHUANG25,S.R. KULKARNI5,FRANKMASCI26,PETERNUGENT27,28,ARNERAU24,UMAAD.REBBAPRAGADA12,TIMD.STALEY6,7,DMITRY SVINKIN29,C.C.THÖNE17,A.DEUGARTEPOSTIGO17,30,YUJIURATA31,ANDALANWEINSTEIN1 (Received2015January2;Accepted2015February28;Published2015June8) TheAstrophysicalJournal,806:52 5 1 ABSTRACT 0 TheFermiGamma-raySpaceTelescopehasgreatlyexpandedthenumberandenergywindowofobservations 2 ofgamma-raybursts(GRBs). However,thecoarselocalizationsoftenstoahundredsquaredegreesprovided n bytheFermiGRBMonitorinstrumenthaveposedaformidableobstacletolocatingthebursts’hostgalaxies, u measuring their redshifts, and tracking their panchromatic afterglows. We have built a target-of-opportunity J modefortheintermediatePalomarTransientFactoryinordertoperformtargetedsearchesforFermiafterglows. 9 Here, wepresenttheresultsofoneyearofthisprogram: 8afterglowdiscoveriesoutof35searches. Twoof theburstswithdetectedafterglows(GRBs130702Aand140606B)wereatlowredshift(z=0.145and0.384 ] respectively)andhadspectroscopicallyconfirmedbroad-lineTypeIcsupernovae. Wepresentourbroadband E follow-upincludingspectroscopyaswellasX-ray,UV,optical,millimeter,andradioobservations. Westudy H possible selection effects in the context of the total Fermi and Swift GRB samples. We identify one new . outlierontheAmatirelation. Wefindthattwoburstsareconsistentwithamildlyrelativisticshockbreaking h out from the progenitor star, rather than the ultra-relativistic internal shock mechanism that powers standard p - cosmologicalbursts. Finally,inthecontextoftheZwickyTransientFacility,wediscusshowwewillcontinue o toexpandthisefforttofindopticalcounterpartsofbinaryneutronstarmergersthatmaysoonbedetectedby r AdvancedLIGOandVirgo. t s Subject headings: gamma-ray burst: individual (GRB 130702A, GRB 140606B) — supernovae: general — a methods: observational—surveys—gravitationalwaves [ 4 v 5 [email protected] 9 1LIGOLaboratory, CaliforniaInstituteofTechnology,Pasadena, CA 4 91125,USA 0 2AstrophysicsScienceDivision,NASAGoddardSpaceFlightCenter, 18UnidadAsociadaGrupoCienciaPlanetariasUPV/EHU-IAA/CSIC, Code661,Greenbelt,MD20771,USA Departamento de Física Aplicada I, E.T.S. Ingeniería, Universidad del 0 3ObservatoriesoftheCarnegieInstitutionforScience,813SantaBar- País-VascoUPV/EHU,AlamedadeUrquijos/n,E-48013Bilbao,Spain 1. baraStreet,PasadenaCA91101,USA 19Ikerbasque,BasqueFoundationforScience,AlamedadeUrquijo36- 4JointSpace-ScienceInstitute,UniversityofMaryland,CollegePark, 5,E-48008Bilbao,Spain 0 MD20742,USA 20Benoziyo Center for Astrophysics, Weizmann Institute of Science, 5 5Cahill Center for Astrophysics, California Institute of Technology, 76100Rehovot,Israel 1 Pasadena,CA91125,USA 21SpaceSciencesLaboratory,UniversityofCalifornia-Berkeley,Berke- : 6Astrophysics, Department of Physics, University of Oxford, Keble ley,CA94720,USA v Road,OxfordOX13RH,UK 22TheOskarKleinCentre,DepartmentofPhysics,StockholmUniver- i 7Physics & Astronomy, University of Southampton, Southampton sity,SE-10691Stockholm,Sweden X SO171BJ,UK 23Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 8IndianInstituteofAstrophysics,Koramangala,Bangalore560034,In- r Tautenburg,Germany a dia9LasCumbresObservatoryGlobalTelescopeNetwork,6740Cortona 24Max-Planck Institut für Extraterrestrische Physik, Giessenbach- strasse1,D-85748Garching,Germany Dr.,Suite102,Goleta,CA93117,USA 10Kavli Institute for Theoretical Physics, University of California, 25DepartmentofMathematicsandScience, NationalTaiwanNormal SantaBarbara,CA93106,USA University,Lin-kouDistrict,NewTaipeiCity24449,Taiwan 11Inter-UniversityCentreforAstronomyandAstrophysics(IUCAA), 26InfraredProcessingandAnalysisCenter,CaliforniaInstituteofTech- PostBag4,Ganeshkhind,Pune411007,India nology,Pasadena,CA91125,USA 12Jet Propulsion Laboratory, California Institute of Technology, 27Department of Astronomy, University of California, Berkeley, CA Pasadena,CA91109,USA 94720-3411,USA 13CSPAR and Physics Department, University of Alabama in 28PhysicsDivision,LawrenceBerkeleyNationalLaboratory,Berkeley, Huntsville,320SparkmanDrive,Huntsville,AL35899,USA CA94720,USA 14Texas Tech University, Physics Department, Lubbock, TX 79409- 29IoffePhysical-TechnicalInstitute,Politekhnicheskaya26,StPeters- 1051,USA burg194021,Russia 15DepartmentofAstronomyandAstrophysics,PennsylvaniaStateUni- 30DarkCosmologyCentre,NielsBohrInstitute,JulianeMariesVej30, versity,UniversityPark,PA16802,USA CopenhagenØ,DK-2100,Denmark 16Astrophysics Office, ZP12, NASA Marshall Space Flight Center, 31InstituteofAstronomy,NationalCentralUniversity,Chung-Li32054, Huntsville,AL35812,USA Taiwan 17InstitutodeAstrofísicadeAndalucía(IAA-CSIC),GlorietadelaAs- 32NASAPostdoctoralFellow tronomías/n,E-18008,Granada,Spain 33HubbleFellow 2 Singeretal. 1. INTRODUCTION the instrumental pipeline composed of the Palomar 48 inch Oschintelescope(P48;Rahmeretal.2008),theroboticPalo- Deepsynopticopticalsurveys,includingthePalomarTran- mar 60 inch telescope (P60; Cenko et al. 2006), and associ- sient Factory (PTF; Law et al. 2009; Rau et al. 2009) and atedspectroscopicresourcesincludingthePalomar200inch Pan-STARRS(Kaiseretal.2010), haverevealedawealthof Haletelescope(P200). new transient and variable phenomena across a wide range In Singer et al. (2013b), we announced the first discov- ofcharacteristicluminositiesandtimescales(Kasliwal2011). Withawide(7deg2)instantaneousfieldofview(FOV),mod- ery of an optical afterglow based solely on a Fermi GBM localization.34 That explosion, GRB130702A/iPTF13bxl, eratelydeepsensitivity(reachingR=20.6magin60s),acon- was noteworthy for several reasons. First, it was detected sortiumoffollow-uptelescopes,sophisticatedimagesubtrac- by Fermi LAT. Second, it was at moderately low redshift, tionandmachinelearningpipelines,andaninternationalteam z=0.145,yethadpromptenergeticsthatbridgedthegapbe- of human-in-the-loop observers, PTF has been a wellspring tween“standard,”brightcosmicallydistantburstsandnearby of new or rare kinds of explosive transients (for instance, sub-luminous bursts and X-ray flashes. Third, due to its Quimbyetal.2011;Kasliwaletal.2012)andearly-timeob- lowredshift,anaccompanyingSNwasspectroscopicallyde- servations of supernova (SNe) or their progenitors (see, for tectable. example, Nugent et al. 2011; Corsi et al. 2012; Ofek et al. Inthiswork,webeginwithadetaileddescriptionoftheop- 2013; Gal-Yam et al. 2014). PTF has even blindly detected eration of the iPTF GRB afterglow search. We then present the optical emission (Cenko et al. 2014; S. B. Cenko et al., seven more GBM–iPTF afterglows from the first 13 months in preparation) from the rarest, brightest, and briefest of all of this project. In each of the eight cases, the association known cosmic explosions, GRBs, hitherto only discoverable between the optical transient and the GRB was proven by with the aid of precise localizations from space-based gam- the presence of high-redshift absorption lines in the opti- ma-ray observatories. PTF has also detected explosions that cal spectra and the coincident detection of a rapidly fading optically resemble GRB afterglows but may entirely lack X-ray source with Swift XRT. In two cases, the positions gamma-rayemission(Cenkoetal.2013b). were further corroborated by accurate Fermi LAT error cir- GRBsandtheirbroadbandafterglowsarenotoriouslychal- cles, and in four cases by accurate InterPlanetary Network lengingtocapture. Theynaturallyevolvefrombrighttofaint, (IPN)triangulationsinvolvingdistantspacecraft. Inonecase and from high (gamma- and hard X-ray) to low (optical and (GRB140508A),theIPNtriangulationwasperformedrapidly radio) photon energies, with information encoded on energy andwasinstrumentalinselectingwhichopticaltransientcan- scalesfrom1to1016GHz(Perleyetal.2014d)andtimescales didates to follow up. In six cases, radio afterglows were de- from 10−3 to 107 s. Only with a rapid sequence of handoffs tected. Ourdiscoveryrateof8outof35eventsisconsistent between facilities graded by energy passband, FOV, and po- with the ages and searched areas of the GBM bursts, com- sitionaccuracyhavewebeenabletofindthem,pinpointtheir binedwiththeluminosityfunctionofopticalafterglows.Con- hostgalaxies,andconstraintheirphysics. TheSwift mission sequently,bytilinglargerareasand/orstackingexposures,the (Gehrelsetal.2004),withits1.4sr-wide(50%coded)Burst iPTFafterglowsearchshouldbeabletoscaletocoarserlocal- Alert Telescope (BAT; Barthelmy et al. 2005) and its ability izations and fainter optical signals, such as those associated toslewandtrainitsonboardX-rayTelescope(XRT;Burrows withshortGRBs. etal.2005)andUV/OpticalTelescope(UVOT;Romingetal. Next,wepresentextensivefollow-upobservations,includ- 2005) on the location of a new burst within 100 s, has tri- ingR-bandphotometryfromtheP48,multicolorphotometry umphedhere: innineyearsofoperation,ithastrackeddown from the P60, spectroscopy (acquired with the P200, Keck, 700X-rayafterglowsandenabledextensivepanchromatic ≈ Gemini, APO, Magellan, Very Large Telescope (VLT), and observations by a worldwide collaboration of ground-based GTC), and radio observations with the Karl G. Jansky Very opticalandradiofacilities. Large Array35 (VLA), the Combined Array for Research in Meanwhile,theFermisatellitehasopenedupanewenergy Millimeter-wave Astronomy (CARMA; Bock et al. 2006; regime extending up to 300 GeV, with the Large Area Tele- Corder et al. 2010), the Australia Telescope Compact Array scope(LAT;Atwoodetal.2009)detectinghigh-energypho- (ATCA; Frater et al. 1992), and the Arcminute Microkelvin tonsforaboutadozenburstsperyear. TheGamma-rayBurst Imager (AMI; Zwart et al. 2008). We provide basic physi- Monitor (GBM; Meegan et al. 2009), an all-sky instrument cal interpretations of the broadband spectral energy distribu- sensitivefrom8keVto40MeV,detectsGRBsprolificallyat tions (SEDs) of these afterglows. We find that seven of the arateof 250yr−1,withalargenumber(about44yr−1)be- events are consistent with the classic model of synchrotron ≈ longingtotherarershort,hardbursts(Paciesasetal.2012a). cooling of electrons that have been accelerated by a single Although LAT can provide localizations that are as accurate forward shock encountering either the constant-density cir- as 10(cid:48), Fermi GBM produces error circles that are several cumburstinterstellarmedium(ISM;broadbandbehaviorpre- ∼ degreesacross. SincemostburstsseemtolackGeVemission dictedinSarietal.1998)orastellar(i.e.,Wolf–Rayet)wind detectable by LAT, most Fermi GBM bursts do not receive environment (Chevalier & Li 1999). The possible excep- deep,broadbandfollow-up. Consequently,theirredshiftsand tion, GRB140620A/iPTF14cva, can probably be explained the properties of their afterglows have remained largely un- by standard extensions of this model, a reverse shock or an known. inverseComptoncomponent. As part of the intermediate Palomar Transient Factory (iPTF), over the past year we have developed the ability to 34 There are two earlier related cases. The optical afterglow of rapidlytilethese 100deg2 GBMerrorcirclesandpinpoint GRB090902BwasdetectedexpostfactointiledobservationswithRobotic the afterglows. T∼his target-of-opportunity (TOO) capability OpticalTransientSearch(ROTSE)about80minutesaftertheburst,butthe afterglowwasinitiallydiscoveredwiththehelpofanX-raydetectioninSwift uses and briefly redirects the infrastructure of our ongoing observationsoftheLATerrorcircle. GRB120716AwasidentifiedbyiPTF synoptic survey (the operation of which is discussed in Gal- bysearchinga≈2deg2IPNerrorbox(Cenkoetal.2012). Yametal.2011), notablythemachinelearningsoftwareand 35http://www.vla.nrao.edu TheNeedleinthe100deg2Haystack 3 Two of the afterglows (GRB130702A/iPTF13bxl and a well-known empirical prescription of the systematic errors GRB140606B/iPTF14bfu)fadedawaytorevealspectroscop- of the GBM localization. Paciesas et al. (2012b) state that ically detected broad-line Type Ic SNe (SNeIc-BL). Despite thetotaleffectiveerrorradiusintheFERMI_GBM_FIN_POS theabundantphotometricevidenceforSNeinafterglowlight localizations is well described by the quadrature sum of the curves (see Li & Hjorth 2014 and references therein), the statistical radius and a systematic contribution, where the distinction of SN spectroscopy has been shared by scarcely systematic is 2.◦6 for 72% of bursts and 10.◦4 for 28% of tens36 out of 800 long Swift bursts in nine years of opera- bursts. We use the weighted rms of these two values, r = sys tion. ≈ (cid:112)0.72(2.◦6)2+0.28(10.◦4)2 6◦. The total error radius is We estimate the kinetic energies of the relativistic blast (cid:112) ≈ then r = r 2+r 2. We construct a Fisher–von Mises waves of these events from their X-ray afterglows (Freed- eff stat sys distribution, centered on the best-estimate position, with a man & Waxman 2001). We find that although the concentrationparameterof gamma-ray energetics of these eight bursts are broadly similar to the Swift sample, two low-luminosity bursts (cid:104) (cid:16) π (cid:17)(cid:105)−1 κ= 1−cos r . (1) (GRBs130702A and 140606B) have significantly lower ki- 180◦ eff neticenergies.Wediscussthepossibilitythatthesetwobursts With the FERMI_GBM_FIN_POS alert, the Fermi GBM arisenotfromastandardultra-relativisticinternalshock,but teamalsodistributesadetailedlocalizationmapthataccounts fromamildlyrelativisticshockasitbreaksoutfromthepro- for the systematic effects (Connaughton et al. 2015). The genitorstar(see,forexample,Nakar&Sari2012). TOO Marshal retrieves from the Fermi data archive a file We conclude by discussing prospects for targeted optical that describes the 1σ, 2σ, and 3σ significance contours. If transient searches in wide areas. This is especially relevant thelocalizationhassignificantasymmetry,wealsoretrievea for optical counterparts of gravitational wave (GW) events. 2D FITS image whose pixel values correspond to the GBM Weillustratethatopticalafterglowsofshortbursts,whichare localization significance, and use this instead of the Fish- intimatelylinkedtotheprimesourcesfortheAdvancedLaser er–vonMisesdistribution. Interferometer GW Observatory (LIGO) and Virgo, should Giving preference to fields for which deep co-added ref- bewellwithinthereachofasimilarapproachusingZwicky erence images exist, the TOO Marshal selects 10 P48 fields Transient Facility (ZTF; Kulkarni 2012; Bellm 2014; Smith etal.2014). spanninganareaof 72deg2tomaximizetheprobabilityof ≈ enclosingthetrue(butasyetunknown)locationofthesource, 2. SEARCHMETHODOLOGY assumingtheabovedistribution. The Marshal then immediately contacts a team of humans We begin by describing our TOO observations and after- (the authors) by SMS text message, telephone, and e-mail. glowsearchstepbystep. Thehumansaredirectedtoamobile-optimizedwebapplica- 2.1. AutomatedTOOMarshal: AlertsandTiling tiontotriggertheP48(seeFig.11). A program called the iPTF TOO Marshal moni- 2.2. TriggeringtheP48 tors the stream of Gamma-ray Coordinates Network (GCN) notices37 from the three redundant, anonymous Withintheaboveconstraints, wedecidewhethertofollow NASA/GSFC VOEvent servers. It listens for notices of up the burst based on the following criteria. The event must type FERMI_GBM_GND_POS, sent by GBM’s automated be(cid:46)12hroldwhenitfirstbecomesobservablefromPalomar, on-ground localization, or FERMI_GBM_FIN_POS, sent by andwemustcoverenoughoftheerrorcircletohavea(cid:38)30% theGBMburstadvocate’shuman-in-the-looplocalization.38 chance of enclosing the position of the source. We discard Uponreceivingeitherkindofnotice,theTOOMarshalde- anyburststhataredetectedandaccuratelylocalizedbySwift termines if the best-estimate sky position is observable from BAT,becausethesearemoreefficientlyfollowedupbycon- Palomar at any time within the 24 hr after the trigger. The ventional means. We also give preference to events that are criterionforobservabilityisthatthepositionisatanaltitude out of the Galactic plane and that are observable for at least >23.◦5 (i.e. airmass (cid:46)2.5), at least 20◦ from the center of 3hr. themoon,atanhouranglebetween 6.h5,andthattheSunis There are some exceptional circumstances that override atleast12◦belowthehorizonatPal±omar. theseconsiderations. Iftheburst’spositionestimateisacces- Ifthepositionisobservableandthe1σ statisticalerrorra- sible within an hour after the burst, we may select it even if dius r reported in the GCN notice is less than 10◦, the theobservabilitywindowisverybrief.Iftheburstisverywell stat localizedorhasthepossibilityofasubstantiallyimprovedlo- TOO Marshal selects a set of 10 P48 fields that optimally cover the error region.39 It converts the GBM position es- calizationlaterduetoaLATorIPNdetection,wemayselect itevenifitisintheGalacticplane. timate and radius into a probability distribution by applying The default observing program is three epochs of P48 im- 36 Betweenphotometric,late-timeredbumpsandunambiguousspectral ages at a 30-minute cadence. The human may shorten or identifications,therearealsoGRB–SNethathavesomeSN-associatedspec- lengthen the cadence if the burst is very young or old (see tralfeatures. ThenumberofGRBswithspectroscopicSNeis,therefore,ill thediscussionofEquation(2)inSection2.4below), change defined. SeeHjorth&Bloom(2012,p. 169,andreferencestherein)fora the number of epochs, or add and remove P48 fields. When morecompletecensus. 37http://gcn.gsfc.nasa.gov thehumanpressesthe“Go”button,theTOOMarshalsendsa 38 Usually,theFermiteamsuppressesthenoticesiftheburstisdetected machine-readablee-mailtotheP48robot. Therobotaddsthe andlocalizedmoreaccuratelybySwiftBAT. requestedfieldstothenight’sschedulewiththehighestpos- 39WemadeoneexceptiontoourGBMerrorradiuscutoff: wefollowed siblepriority,ensuringthattheyareobservedassoonasthey upGRB140219A,whichhadaGBMerrorcirclewitharadiusof12.8◦,but arevisible. hadanIPNlocalizationspanning0.6deg2 (Hurleyetal.2014a). Despite searchingabout80%oftheIPNpolygon,wedetectednoafterglow(Singer 2.3. AutomatedCandidateSelection etal.2014d).Thisispotentiallyadarkburstcandidate. 4 Singeretal. As the night progresses, the TOO Marshal monitors the brighter than the 1σ limiting magnitude of the exposures. progress of the observations and the iPTF real-time image For example, given the P48’s typical limiting magnitude of subtractionpipeline(P.E.Nugentetal. 2015,inpreparation). R=20.6andthestandardcadenceofδt =0.5hr, ifaburstis Thereal-timepipelinecreatesdifferenceimagesbetweenthe observed t =3hr after the trigger, its afterglow may be ex- new P48 observations and co-added references composed of pected to have detectable photometric evolution only if it is observations from months or years earlier. It generates can- brighterthanR=18.3. NotingthatlongGRBspreferentially didatesbyperformingsourceextractiononthedifferenceim- occurathighredshiftsandinintrinsicallysmall,faintgalaxies ages. Amachinelearningclassifierassignsareal/bogusscore (Svenssonetal.2010), weconsiderfaintsourcesthatdonot (RB2; Brinketal.2013)toeachcandidatethatpredictshow displayevidenceoffadingiftheyarenotspatiallycoincident likely the candidate is to be a genuine astrophysical source withanysourcesinSDSSorarchivaliPTFobservations. (ratherthanaradiationhit, aghost, animperfectimagesub- If a faint source is near a spatially resolved galaxy, then tractionresidual,oranyotherkindofartifact). we compute its distance modulus using the galaxy’s redshift Table 1 lists the number of candidates that remain after orphotometricredshiftfromSDSS.WeknowthatlongGRB eachstageofcandidateselection. First, requiringcandidates optical afterglows at t =1 day typically have absolute mag- to have signal-to-noise ratio (S/N)>5 gives us a median of nitudes of −25 < M < −21mag (1σ range; see Figure 9 B 35,000 candidates. This number varies widely with galac- of Kann et al. 2011). Most SNe are significantly fainter: tic latitude and the area searched (a median of 500 deg−2). Type Ia are typically MB −19mag whereas Ibc and II are Second, we only select candidates that have R∼B2>0.1, re- MB −17mag, with lum∼inous varieties of both Type Ibc ∼ ducing the number of candidates to a median of 36% of the and II extending to MB −19mag (Richardson et al. 2002; ∼ originallist.40 Third,werejectcandidatesthatcoincidewith Li et al. 2011). Therefore, if the candidate’s presumed host known stars in reference catalogs (Sloan Digital Sky Sur- galaxywouldgiveitanabsolutemagnitudeMR<−20mag,it vey (SDSS) and the PTF reference catalog), cutting the list isconsideredpromising. Thiscriterionisonlyusefulforlong to17%. Fourth,weeliminateasteroidscatalogedbytheMi- GRBs because short GRB afterglows are typically 6 mag ∼ norPlanetCenter,reducingthelistto16%. Fifth,wedemand fainterthanlongGRBafterglows(Kannetal.2011). atleasttwosecureP48detectionsaftertheGBMtrigger, re- Thehumansavesallcandidatesthatareconsideredpromis- ducingthelisttoafewpercent,or 500candidates. ingbythesemeasurestotheiPTFTransientMarshaldatabase. Whentheimagesubtractionpipe∼linehasfinishedanalyzing This step baptizes them with an iPTF transient name, which atleasttwosuccessiveepochsofanyonefield,theTOOMar- consistsofthelasttwodigitsoftheyearandasequentialal- shal contacts the humans again and the surviving candidates phabeticdesignation. arepresentedtothehumansviatheTreasuresportal. 2.5. ArchivalvettingintheTransientMarshal 2.4. VisualscanninginTreasuresPortal OncenamedintheTransientMarshal,weperformarchival vetting of each candidate using databases including VizieR The remaining candidate vetting steps currently involve (Ochsenbein et al. 2000), NED,42 the High Energy Astro- human participation and are informed by the nature of the physics Science Archive Research Center (HEASARC),43 othertransientsthatiPTFcommonlydetects:foregroundSNe andCatalinaReal-timeTransientSurvey(Drakeetal.2009), (slowly varying and in low-z host galaxies), active galactic inordertocheckforanypasthistoryofvariabilityatthatposi- nuclei(AGNs),cataclysmicvariables,andM-dwarfflares. tion(seeFigure13forascreenshotoftheTransientMarshal). IntheTreasuresportal, wevisuallyscanthroughtheauto- We check for associations with known quasars or AGNs matically selected candidates one P48 field at a time, exam- in Véron-Cetty & Véron (2010) or with AGN candidates in ining 10objectsperfield(seeFigure12forascreenshotof ∼ Flesch(2010). theTreasuresportal). Wevisuallyassesseachcandidate’sim- M dwarfs can produce bright, blue, rapidly fading opti- agesubtractionresidualcomparedtotheneighboringstarsof cal flares than can mimic optical afterglows. To filter our similarbrightnessinthenewimage. Iftheresidualresembles M dwarfs, we check for quiescent infrared counterparts in the new image’s point-spread function, then the candidate is WISE (Cutri & et al. 2014). Stars of spectral type L9–M0 consideredlikelytobeagenuinetransientorvariablesource. peak slightly blueward of the WISE bandpass, with typical Next,welookatthephotometrichistoryofthecandidates. colors(Wrightetal.2010) Given the time, t, of the optical observation relative to the burst and the cadence, δt, we expect that a typical optical 3(cid:46) [R−W1] (cid:46)12 afterglow that decays as a power law Fν t−α, with α=1, 0.1(cid:46)[W1−W2](cid:46)0.6 wouldfadebyδm=2.5log10(1+δt/t)mag∝overthecourseof 0.2(cid:46)[W2−W3](cid:46)1 ourobservations. Anysourcethatexhibitsstatisticallysignif- icantfading(δm/m 1)consistentwithanafterglowdecay 0(cid:46)[W3−W4](cid:46)0.2. (cid:29) becomesaprimetarget.41 Therefore, a source that is detectable in WISE but that is ei- Notethata1σdecayinbrightnessrequiressuchasourceto ther absent from or very faint in the iPTF reference images be suggestsaquiescentdwarfstar. (cid:18) (cid:19) δt −2.5log10 t√2 (2) 2.6. Photometric,Spectroscopic,andBroad-band Follow-up 40ThisRB2thresholdissomewhatdeeperthanthatwhichisusedinthe The above stages usually result in 10 promising optical iPTFsurvey. Animprovedclassifier,RB4(Bueetal.2014),enteredevalua- ∼ transient candidates that merit further follow-up. If, by this tionin2014AugustshortlybeforeGRB140808A. 41 A source that exhibits a statistically significant rise is generally also followedup,butaspartofthemainiPTFtransientsurvey,ratherthanasa 42http://ned.ipac.caltech.edu potentialopticalafterglow. 43http://heasarc.gsfc.nasa.gov TheNeedleinthe100deg2Haystack 5 Table1 NumberofOpticalTransientCandidatesSurvivingEachVettingStage S/N RB2 Not Notin Detected Savedfor GRB >5 >0.1 Stellar MPCa Twice Follow-up RB2b 130702A 14629 2388 1346 1323 417 11 0.843 131011A 21308 8652 4344 4197 434 23 0.198 131231A 9843 2503 1776 1543 1265 10 0.137 140508A 48747 22673 9970 9969 619 42 0.730 140606B 68628 26070 11063 11063 1449 28 0.804 140620A 152224 50930 17872 17872 1904 34 0.826 140623A 71219 29434 26279 26279 442 23 0.873 140808A 19853 4804 2349 2349 79 12 0.318 Medianreduction 36% 17% 16% 1.7% 0.068% aNotinMinorPlanetCenterdatabase bRB2scoreofopticalafterglowinearliestP48detection point, data from Fermi LAT or from IPN satellites are avail- For some bursts (GRB 140606B), we also obtain pho- able, we can use the improved localization to select an even tometry with the Large Monolithic Imager (LMI) mounted smallernumberoffollow-uptargets. on the 4.3m Discovery Channel Telescope (DCT) in Happy For sources whose photometric evolution is not clear, we Jack, Arizona. Standard CCD reduction techniques (e.g., performphotometricfollow-up. Wemayscheduleadditional bias subtraction, flat-fielding) are applied using a custom observations of some of the P48 fields if a significant num- IRAF pipeline. Individual exposures are aligned with re- ber of candidates are in the same field. We may also use spect to astrometry from the Two Micron All Sky Survey the P48 to gather more photometry for sources that are su- (2MASS;Skrutskieetal.2006)usingSCAMP(Bertin2006) perimposedonaquiescentsourceorgalaxy,inordertomake andstackedwithSWarp(Bertinetal.2002). useoftheimagesubtractionpipelinetoautomaticallyobtain Where GROND (Greiner et al. 2008) and RATIR (Butler host-subtracted magnitudes. For isolated sources, we sched- etal.2012)havereportedmulticolorphotometryinGCNcir- uleoneormoreepochsofr-bandphotometrywiththeP60.If, culars, we include their published data in Table 5 and our bythispoint,anycandidatesshowstrongevidenceoffading, light-curveplots. webeginmulticolorphotometricmonitoringwiththeP60. We monitor GBM–iPTF afterglows with CARMA, a mil- Next, we acquire spectra for one to three candidates per limeter-wave interferometer located at Cedar Flat near Big burstusingtheP200,Gemini,Keck,Magellan,orHimalayan Pine, California. All observations are conducted at 93 GHz Chandra Telescope (HCT). A spectrum that has a relatively insingle-polarizationmodeinthearray’sC,D,orEconfigu- featureless continuum and high-redshift absorption lines se- ration. Targetsaretypicallyobservedoncefor1–3hrwithina cures the classification of the candidate as an optical after- fewdaysaftertheGRB,establishingthephasecalibrationus- glow. ingperiodicobservationsofanearbyphasecalibratorandthe Once any single candidate becomes strongly favored over bandpass and the flux calibration by observations of a stan- the others based on photometry or spectroscopy, we trigger dardsourceatthestartofthetrack.Ifdetected,weacquiread- X-rayandUVobservationswithSwiftandradioobservations ditionalobservationsinapproximatelylogarithmicallyspaced withVLA,CARMA,andAMI. DetectionofaradioorX-ray time intervals until the afterglow flux falls below detection afterglowtypicallyconfirmsthenatureoftheopticaltransient, limits. All observations are reduced using MIRIAD using evenwithoutspectroscopy. standardinterferometricflaggingandcleaningprocedures. Finally, we promptly release our candidates, upper limits, We look for radio afterglows at 6.1 and/or 22 GHz with and/orconfirmedafterglowdiscoveryinGCNcirculars. VLA. VLAobservationsarereducedusingtheCommonAs- tronomy Software Applications (CASA) package. The cali- brationisperformedusingtheVLAcalibrationpipeline. Af- 2.7. Long-termMonitoringandDataReduction ter running the pipeline, we inspect the data (calibrators and The reported P48 magnitudes are all in the Mould R band target source) and apply further flagging when needed. The and in the AB system (Oke & Gunn 1983), calibrated with VLA measurement errors are a combination of the rms map respecttoeitherr(cid:48)pointsourcesfromSDSSorfornon-SDSS error, which measures the contribution of small unresolved fieldsusingthemethodsdescribedinOfeketal.(2012). fluctuationsinthebackgroundemissionandrandommapfluc- Tomonitortheopticalevolutionofafterglowsidentifiedby tuations due to receiver noise, and a basic fractional error our program, we typically request nightly observations in ri (here estimated to be 5%) which accounts for inaccura- (and occasionally gz) filters for as long as the afterglow re- cies of the flux density≈calibration. These errors are added mained detectable. Bias subtraction, flat-fielding, and other inquadrature,andtotalerrorsarereportedinTable6. basic reductions are performed automatically at Palomar by Starting in 2014 August, we also look for radio emission the P60 automated pipeline using standard techniques. Im- withAMI.AMIiscomposedofeight12.8mdishesoperating ages are then downloaded and stacked as necessary to im- inthe13.9–17.5GHzrange(centralfrequencyof15.7GHz) prove the S/N. Photometry of the optical afterglow is then whenusingfrequencychannels3–7(channels1,2,and8are performed in IDL using a custom aperture-photometry rou- disregarded due to their currently susceptibility to radio in- tine, calibrated relative to SDSS secondary standards in the terference). Forfurther detailson the reductionand analysis field(whenavailable)orusingourownsolutionforsecondary performedontheAMIobservationspleaseseeAndersonetal. field standards constructed during a photometric night (for (2014b). fieldsoutsidetheSDSSfootprint). 6 Singeretal. 3. THEGBM–iPTFBURSTS P60 imaging and P200 spectroscopy for three significantly varying sources. Of the three, iPTF13bxl showed the clear- Todate,wehavesuccessfullyfollowedup35FermiGBM est evidence of fading in the P48 images. Its spectrum at bursts and detected eight optical afterglows. The detections ∆t =1.2daysconsistedofafeaturelessbluecontinuum. We arelistedinTable2,andalloftheP48tilingsarelistedinTa- triggeredSwift,whichfoundabrightX-raysourceattheposi- ble3. Figure5showstheGBMlocalizationsandP48tilings tionofiPTF13bxl(Singeretal.2013c;D’Avanzoetal.2013). forthedetectedbursts.InFigure1,thelightcurvesareshown ShortlyafterweissuedourGCNcircular(Singeretal.2013c), in the context of a comprehensive sample of long GRB af- Cheungetal.(2013)announcedthatthebursthadenteredthe terglowscompiledbyD.A.Kann(2015,privatecommunica- FOVofLATat∆t=250s. TheLATerrorcirclehadaradius tion). of0.◦5,anditscenterwas0.◦8fromiPTF13bxl. AnIPNtrian- Theoutcomeofanindividualafterglowsearchislargelyde- gulationwithMESSENGER(GRNS),INTEGRAL(SPI-ACS), termined by two factors: how much probability is contained Fermi-GBM, andKonus-Wind (Hurleyetal.2013)yieldeda within the P48 footprints, and how bright the afterglow is at 0.◦46-wideannulusthatwasalsoconsistentwiththeOT. thetimeoftheobservations(seeFigure2). Wecalculatethe The afterglow’s position is 0.(cid:48)(cid:48)6 from an R = 23.01mag expectedsuccessrateasfollows. Foreachburst,wefindthe sourcethatisjustbarelydiscernibleintheP48referenceim- priorprobabilitythatthepositioniscontainedwithintheP48 ages.AspectrumfromNOT+ALFOSC(Leloudasetal.2013) fieldsthatweobserved. Wethencomputethefractionofaf- determined a redshift of z = 0.145 for a galaxy 7.(cid:48)(cid:48)6 to the terglowsfromKann’ssample(whichhasameanandstandard southofiPTF13bxl. At∆t=2.0days,weobtainedaMagel- deviation of 22 2 mag at t =1 day) that are brighter than R=20.6mag at±the same age as when the P48 observations lan+IMACSspectrum(Mulchaeyetal.2013)andfoundweak emission lines at the location of the afterglow that we inter- started. Theproductofthesetwonumbersisthepriorproba- preted as Hα and [OIII] at the same redshift. Kelly et al. bilityofdetectionforthatburst. Bysummingoverallofthe (2013)characterizedtheburst’shostenvironmentindetailand iPTF/GBM bursts, we obtain the expected number of detec- concludedthatitexplodedinadwarfsatellitegalaxy. tions. Within95%confidencebootstraperrorbars,wefindan Joining the two P48 observations at ∆t < 1 day to the expected 5.5–8.5 detections, or a success rate of 16%–24%. late-time P60 light curve requires a break at ∆t = 1.17 Thisisconsistentwiththeactualsuccessrateof23%. 0.09 days, with slopes α =0.57 0.03 and α =1.05± This suggests that the success rate is currently limited by 0.03 before and after thOe,1break, ±respectively.O,2The XR±T the survey area and the response time (dictated by sky posi- light-curvebeginsjustpriortothisapparentbreakandseems tionandweather). Wecouldincreasethesuccessratebyde- to follow the late-time optical decay (until the SN begins to creasing the maximum time since trigger at which we begin dominateat∆t =5days),althoughtheautomatedSwiftlight follow-up. We could increase the success rate without ad- curve analysis (Evans et al. 2009) also suggests a possible verselyaffectingthenumberofdetectionsbysimplysearch- X-raybreakwithaboutthesametimeandslopes. Thishints ingagreaterareaforcoarselylocalizedevents. at an achromatic break, normally a signature of a jet. How- Fig. Set3. LightcurvesandSEDs ever,thelateslopeandthechangeinslopearebothunusually Overthenextfewsections,wesummarizetheobservations shallow for a jet break. Furthermore, the radio light curve and general physical interpretation of all of the GBM–iPTF does not exhibit a break. The change in slope is also a little afterglows detected to date. Figure 3 shows the light curves toolargeforcoolingfrequencycrossingtheband(forwhich andSEDsspanningX-ray,UV,optical,IR,andradiofrequen- onewouldexpect∆α=1/4). Anenergyinjectionorastruc- cies.Table4containsalogofourspectroscopicobservations. turedjetmodelmayprovideabetterfit(Panaitescu2005). Table 5 lists a selection of ultraviolet, optical, and infrared Late-time∆t>1dayobservationsincludeseveralP60gri observations, including all of our P48 and P60 observations. observations, three RATIR r(cid:48)i(cid:48)ZYJH epochs, an extensive Table6listsallofourradiodetections. SwiftXRTandUVOTlightcurve,andradioobservationswith VLAandCARMA(althoughoftheVLAdata,weonlyhave 3.1. GRB130702A/iPTF13bxl access to the first observation). The optical and X-ray spec- ThisisthefirstGBMburstwhoseafterglowwediscovered tralslopesaresimilar,β =0.7 0.1andβ =0.8 0.1. An O X with iPTF (Singer et al. 2013b), indeed the first afterglow SED at 2<∆t <2.3 days is w±ell explained by the±standard ever to be pinpointed based solely on a Fermi GBM local- external shock model (Sari et al. 1998) in the slow cooling ization. It is also the lowest-redshift GRB in our sample, so regime, with ν lying between the VLA and CARMA fre- m ithastherichestandmostdenselysampledbroadbandafter- quencies and ν in the optical. This fit requires a relatively c glowdata. Ithastwoothermajordistinctions: itsassociated flat electron spectrum, dn /dγ γ −p with p 1.6, cut off e e e SN(SN2013dx,Schulzeetal.2013;Pozanenkoetal.2013; athighenergies. Applyingther∝elevantclosure≈relations(for Cenkoetal.2013a;D’Eliaetal.2013)wasdetectedspectro- thecaseof1< p<2,seeDai&Cheng2001)toα andβ X X scopically,anditspromptenergeticsareintermediatebetween permitseitheranISMorwindenvironment. low-luminosity GRBs (llGRBs) and standard cosmic bursts Our late-time spectroscopy and analysis of the SN will be (seebelow). publishedseparately(S.B.Cenkoetal.2015,inpreparation). Based on the Fermi GBM ground localization with an er- ror radius of 4◦, we imaged 10 fields twice with the P48 3.2. GRB131011A/iPTF13dsw at ∆t = t−t = 4.2 hr after the burst.44 We scheduled GBM 44 Atthetime,ourtilingalgorithmselectedfieldsbasedonanempirical questionandthenconstructeda2Dangularprobabilitydistributionfromit. calibrationofFermiGBM’ssystematicerrors. Wehadselectedburststhat Forsufficientlylargeerrorradii,thisprescriptionproducedprobabilitydis- weredetectedbybothSwiftandFermiandconstructedafittoacumulative tributionsthathadaholeinthemiddle. Forthisreason,thetilingalgorithm histogramofthenumberofburstswhoseBATorXRTpositionswerewithin pickedoutP48fieldsthatformedanannulusaroundtheGBM1σerrorcir- agivennumberofnominal1σstatisticalradiiofthecenteroftheFermierror cle(not,aswestatedinSingeretal.2013b,becauseofalackofreference circle. Ourtilingalgorithmscaledthisfitbythe1σ radiusoftheburstin images). TheNeedleinthe100deg2Haystack 7 5 P LongGRBs 4 8 5 Fastopticaltransients m in iPTF/GBMdetections r e s p o n s 10 e tim e 15 ) R ( g a m 20 25 30 10−4 10−3 10−2 10−1 100 101 102 103 t(days,observerframe) Figure1. OpticallightcurvesofFermi–iPTFafterglowstodate.ThelightcurvesoftheeightiPTF/GBMburstsareshowninred.Forcomparison,thegraylines showacomprehensivesampleoflongGRBopticallightcurvesfromCenkoetal.(2009),Kannetal.(2010),Perleyetal.(2014d),andD.A.Kann(2015,private communication). Thewhiteareaoutsideofthelight-grayshadingillustratestherangeofGRBafterglowsthatareaccessiblegivenahalf-hourcadenceandthe P48’s60slimitingmagnitudeofR=20.6.ThetwolightcurvesshowninblueareotherrelatediPTFtransients.ThefirstisPTF11agg,anafterglow-liketransient withnodetectedgamma-rayemission(Cenkoetal.2013b).ThesecondisGRB140226A/iPTF14yb,reportedinitiallybyiPTFfromitsopticalafterglow(Cenko etal.2014;Cenkoetal.,inpreparation),andlaterbyIPNfromitsgamma-rayemission(Hurleyetal.2014b). We started P48 observations of Fermi trigger 403206457 At 15.1hr after the burst, we obtained a spectrum (Jenke 2013) about 11.6hr after the burst. The optical tran- of iPTF13dsw with the Gemini Multi-object Spectrograph sient iPTF13dsw (Kasliwal et al. 2013) faded from R = (GMOS) on the Gemini–South telescope. GMOS was con- 19.7mag to R = 20.2mag from 11.6 to 14.3hr. The latest figured with the R400 grating with a central wavelength of pre-triggerimageon2013September25hadnosourceatthis 7200Å and the 1(cid:48)(cid:48)slit, providing coverage over the wave- locationtoalimitofR>20.6mag. Theopticaltransientcon- lengthrangeof5100–9300Åwitharesolutionof 3Å.No tinued to fade as it was monitored by several facilities (Xu ≈ prominent features were detected over this bandpass, while etal.2013a,c;Perleyetal.2013;Sudilovskyetal.2013;Vol- thespectrumhadatypicalSNRof 3–4per1.4Åpixel.Rau novaetal.2013). ≈ 8 Singeretal. Table2 GBM–iPTFDetections R.A. Decl. Gal. Epeak Eγ,iso GRB OT (J2000) (J2000) Lat.a z (keV,rest) (1052erg,rest)b,c T90(s) mR(tP48)d GRB130702A iPTF13bxl 14h29m15s +15◦46(cid:48)26(cid:48)(cid:48) 65◦ 0.145 18± 3 <0.065± 0.001 58.9± 6.2 17.38 GRB131011A iPTF13dsw 02h10m06s -4◦24(cid:48)40(cid:48)(cid:48) -61◦ 1.874 625± 92 14.606± 1.256 77.1± 3 19.83 GRB131231A iPTF13ekl 00h42m22s -1◦39(cid:48)11(cid:48)(cid:48) -64◦ 0.6419 291± 6 23.015± 0.278 31.2± 0.6 15.85 GRB140508A iPTF14aue 17h01m52s +46◦46(cid:48)50(cid:48)(cid:48) 38◦ 1.03 534± 28 24.529± 0.86 44.3± 0.2 17.89 GRB140606B iPTF14bfu 21h52m30s +32◦00(cid:48)51(cid:48)(cid:48) -17◦ 0.384 801± 182 0.468± 0.04 22.8± 2.1 19.89 GRB140620A iPTF14cva 18h47m29s +49◦43(cid:48)52(cid:48)(cid:48) 21◦ 2.04 387± 34 7.28 ± 0.372 45.8± 12.1 17.60 GRB140623A iPTF14cyb 15h01m53s +81◦11(cid:48)29(cid:48)(cid:48) 34◦ 1.92 834± 317 3.58 ± 0.398 114.7± 9.2 18.04 GRB140808A iPTF14eag 14h44m53s +49◦12(cid:48)51(cid:48)(cid:48) 59◦ 3.29 503± 35 8.714± 0.596 4.5± 0.4 19.01 aGalacticlatitudeofopticalafterglow.ThisisoneofthemainfactorsthatinfluencesthenumberofopticaltransientcandidatesinTable1. bEγ,isoisgivenfora1keV–10MeVrest-framebandpass. c Therest-framespectralproperties,Epeak andEγ,iso,forGRB130702AarereproducedfromAmatietal.(2013). Forallotherbursts,wecalculatedthese quantitiesfromthespectralfits(thescatfiles)intheFermiGBMcatalog(Goldsteinetal.2012)usingthek-correctionproceduredescribedbyBloometal. (2001). dR-bandapparentmagnitudeininitialP48detection. 1.0 Table3 LogofP48TilingsforFermiGBMBursts 0.8 GRBTimea FlGueBnMceb −ttbPu4r8stc APr4e8ad Prob.e bility a 2013Jun2820:37:57 10 ±0.1 10.02 73 32% ob 0.6 →2013Jul0200:05:20 57 ±1.2 4.20 74 38% pr 2013Aug2807:19:56 372 ±0.6 20.28 74 64% nt 2013Sep2406:06:45 37 ±0.6 23.24 74 28% me 0.4 2013Oct0620:09:48 18 ±0.6 15.26 74 18% n →22001133ONcotv10181070::4374::3309 8298 ±±00..65 114..5669 7733 5347%% ontai 2013Nov1008:56:58 33 ±0.3 17.47 73 44% c 0.2 2013Nov2516:32:47 5.5±0.3 11.72 95 26% 2013Nov2603:54:06 17 ±0.3 6.94 109 59% 2013Nov2714:12:14 385 ±1.4 13.46 60 50% 0.0 2013Dec3019:24:06 41 ±0.4 7.22 80 38% 0.0 0.2 0.4 0.6 0.8 1.0 →2013Dec3104:45:12 1519 ±1.2 1.37 30 32% 2014Jan0417:32:00 333 ±0.6 18.57 15 11% age at first obervation (days) 2014Jan0501:32:57 6.4±0.1 7.63 74 22% 2014Jan2214:19:44 9.1±0.5 11.97 75 34% Figure2. Priorprobabilityofcontainingtheburst’slocationwithintheP48 2014Feb1102:10:41 7.4±0.3 1.77 44 19% fieldsvs. ageoftheburstatthebeginningofP48observations. Afterglow 2014Feb1919:46:32 28 ±0.5 7.01 71 14% detectionsareshowninorange,andnon-detectionsareshowningray. 2014Feb2418:55:20 24 ±0.6 7.90 72 30% 2014Mar1114:49:13 40 ±1.2 12.18 73 54% etal.(2013)observedtheopticaltransientwiththeX-Shooter 2014Mar1923:08:30 71 ±0.3 3.88 74 48% 2014Apr0404:06:48 82 ±0.2 0.11 109 69% instrument on the ESO 8.2-m VLT. In their spectrum ex- 2014Apr2923:24:42 6.2±0.2 10.99 74 15% tending from 3000 to 24000Å, they identified several →2014May0803:03:55 614 ±1.2 6.68 73 67% weak absorptio∼n lines fro∼m which they derived a redshift of 2014May1719:31:18 45 ±0.4 8.60 95 69% 2014May1901:01:45 39 ±0.5 4.42 73 41% z=1.874. BothspectraareshowninFigure4. →2014Jun0603:11:52 76 ±0.4 4.08 74 56% The source was detected by Swift XRT (Page 2013), but 2014Jun0817:07:11 19 ±0.6 11.20 73 49% with insufficient photons for spectral analysis. The source →2014Jun2005:15:28 61 ±0.6 0.17 147 59% wasobservedwithATCA,butnoradioemissionwasdetected. →2014Jun2305:22:07 61 ±0.6 0.18 74 4% 2014Jun2816:53:19 18 ±1.0 16.16 76 20% Largely because in our sample this is the oldest afterglow at 2014Jul1607:20:13 2.4±0.3 0.17 74 28% thetimeofdiscovery,therearenotenoughbroadbanddatato 2014Jul2900:36:54 81 ±0.7 3.43 73 65% constraintheblastwavephysics. 2014Aug0711:59:33 13 ±0.1 15.88 73 54% →2014Aug0800:54:01 32 ±0.3 3.25 95 69% 3.3. GRB131231A/iPTF13ekl a TimeofFermiGBMtrigger. →Afterglowdetectionsaremarkedwithan arrow. ThecorrespondingentriesinTable2canbefoundbymatchingthe GRB131231A was detected by Fermi LAT (Sonbas et al. datetotheGRBname(GRBYYMMDDA). 2013)andGBM(Jenke&Xiong2014), withphotonsofen- b Observed Fermi GBM fluence in the 10–1000 keV band, in units ergies up to 9.7 GeV. Xu et al. (2013b) observed the LAT of10−7ergcm−2.ThisquantityistakenfromthebcatfilesfromtheFermi error circle with the 1-m telescope at Mt. Nanshan, Xin- GRBcatalogatHEASARC. cAgeinhoursoftheburstatthebeginningoftheP48observations. jiang, China. At 7.9hr after the burst, they detected a single dAreaindeg2spannedbytheP48fields. R= 17.6magsourcethatwasnotpresentinSDSSimages. eProbability,giventheFermiGBMlocalization,thatthesourceiscontained At1∼7.3hraftertheburst,Malesanietal.(2013)observedthe withintheP48fields. afterglowcandidatewiththeMOSaicCAmera(MOSCA)on the2.56-mNordicOpticalTelescope(NOT).Thesourcehad fadedtoR=18.6. TheNeedleinthe100deg2Haystack 9 A A A AA AA AA A M M M MM MM MM M RAA R R RR RR RR R GRB 130702A / ALL A A AA AA AA A CVV C C CC CC CC C iPTF13bxl 12 14 100 16 λ)r 10-1 / λ 5log(10 18 10-2 mJy) − B) 20 f (ν m(A 10-3 dio, cal/NIR, 2242 10-4 X-ray/ra pti o V/ U 26 10-5 28 10-6 30 10-1 100 101 102 103 t t (days) − burst 101 100 10-1 y) mJ 10-2 f (ν 10-3 1.26d 10-4 2.14d 4.16d 10-5 100 101 102 103 104 105 106 107 108 109 1010 ν (GHz) Figure3. LightcurvesandSEDsofGBM–iPTFafterglows;GRB130702A/iPTF13bxlisshownhereintheprintversion. (Anextendedversionofthisfiguresetisavailableintheonlinejournal.) 10 Singeretal. Table4 LogofSpectroscopicObservations Date Telescope Instrument Wavelengths(Å) Lines References GRB131011A/iPTF13dsw 2013Oct1208:56 GeminiSouth GMOS 5100–9300 none Kasliwaletal.(2013) 2013Oct1303:59 ESO/VLTUT3 X-shooter 3100–5560 Lyα,SiII,CII,CIV,AlII Rauetal.(2013) ··· ··· ··· 5550–10050 FeII,MgII ··· GRB131231A/iPTF13ekl 2014Jan0102:15 GeminiSouth GMOS 6000–10000 [OII],[OIII],CaIIH+K Cucchiara(2014) GRB140508A/iPTF14aue 2014May0818:55 HCT HFOSC 3800–8400 FeII,MgII Bhalerao&Sahu(2014) 2014May0906:33 APO DIS 3200–9800 none none GRB140606B/iPTF14bfu 2014Jun0719:16 KeckII DEIMOS 4500–9600 [OII],[OIII],Hα,CaIIH+K Perleyetal.(2014a) GRB140620A/iPTF14cva 2014Jun2014:00 GeminiNorth GMOS 5090–9300 MgI,MgII,FeII,AlII,SiII,SiII∗ Kasliwaletal.(2014) ··· ··· ··· 4000–6600 ··· ··· GRB140623A/iPTF14cyb 2014Jun2308:10 GeminiNorth GMOS 4000–6600 MgII,FeII,AlII,SiII,AlIII,CI,CIV Bhaleraoetal.(2014) GRB140808A/iPTF14eag 2014Aug0821:43 GTC OSIRIS 3630–7500 DLA,SII,SiII,OI,CII,SiIV,FeII,AlII,CIV Gorosabeletal.(2014a) [O αH ]III CC aa ⊕ KIIHII L SC C A FF FF MM SS SSAMM F MMM αy iIIII IV lII eII eII eIIeII gIIgII iII∗iII iII∗iIIlIIgIIgII eII gIIgIIgI ⊕ ⊕ ⊕ [O]II CaKIICaHII [O]III CI SiII AlII FeII AlIIIMgIIMgII FeII MgIIMgIIMgI ⊕ ⊕ ⊕ ⊕ F M L SLSOCS SCFA eII gII βy iII αyIIIII iIV iII IV eII lII ⊕ ⊕ 4000 5000 6000 7000 8000 9000 4000 5000 6000 7000 8000 9000 observedwavelength(A˚) observedwavelength(A˚) Figure4. Afterglowspectra.Thehorizontalaxisshowswavelengthinvacuumintheobserverframe,andtheverticalaxisshowsscaledflux.Linesattheredshift oftheputativehostarelabeledinblack;linescorrespondingtoanyinterveningabsorbingsystemsarelabeledinred.Notethatincaseswhereoneorfewerlines arediscernibleinourspectra,theredshiftshavebeenreportedinGCNsbyothergroups.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.