Mon.Not.R.Astron.Soc.000,1–5(AcceptedtoMNRASLetters,2006) Printed5February2008 (MNLATEXstylefilev2.2) The near-infrared spectrum of Mrk 1239: direct evidence of the dusty torus? A. Rodr´ıguez-Ardila1⋆ and X. Mazzalay2 1Laborato´rioNacionaldeAstrof´ısica/MCT,RuadosEstadosUnidos154,CEP37500-000,Itajuba´,MG,Brazil.E-mail:[email protected] 6 2IATE,ObservatorioAstrono´micoCo´rdoba,Laprida854,X5000BGR,Co´rdoba,Argentina.E-mail:[email protected] 0 0 2 n a J ABSTRACT 5 Wereport0.8−4.5µmSpeXspectroscopyofthenarrow-lineSeyfert1galaxyMrk1239.The 1 spectrumisoutstandingbecausethenuclearcontinuumemissioninthenear-infraredisdom- inatedbyastrongbumpofemissionpeakingat2.2µm,withastrengthnotreportedbeforein 1 anAGN.AcomparisonoftheMrk1239spectrumtothatofArk564allowedustoconclude v thatthecontinuumisstronglyreddenedbyE(B-V)=0.54.Theexcessofemission,confirmed 3 1 byaperturephotometryandadditionalNIRspectroscopy,followsa simpleblackbodycurve 3 atT∼1200K.Thissuggestthatwemaybeobservingdirectevidenceofdustheatednearto 1 the sublimationtemperature,likely producedby the putativetorusof the unificationmodel. 0 Althoughotheralternativesarealsoplausible,thelackofstarformation,thestrongpolariza- 6 tionandlowextinctionderivedfortheemissionlinessupportthescenariowherethehotdust 0 islocatedbetweenthenarrowlineregionandthebroadlineregion. / h Key words: galaxies:Seyfert – galaxies:individual:Mrk 1239 – galaxies:active – galax- p ies:nuclei - o r t s a 1 INTRODUCTION theNIRbump,confirmingthatitfollowsasimpleblackbodyfunc- : v tionatT=1200K.Theyfoundthatthehostdustemissionaccounted i Unifiedschemesofactivegalacticnuclei(AGN)invokethepres- X forupto28%ofthetotalNIRcontinuumfluxinthatobject. enceofanobscuringdustytorusaroundthecentralengine,giving Fromabove,thegrowingobservationalevidenceofNIRther- r rise to type 1 objects for for pole-on viewing and type 2 objects a malemissionattemperaturesclosetothesublimationtemperature inedges-onsources.Thisobscuringstructurewouldalsoabsorbsa ofgraphitegrainsinSeyfert1galaxiesstronglysupportstheunified significantfractionoftheoptical/UV/X-raycontinuumofthecen- modelsfor AGNs.Meanwhile, additional evidence isneeded and tralsourceandshouldradiatebackthisenergyatIRwavelengths. manyopenquestionshavetobeanswered.Inparticular,itisneces- Infact,dustreprocessing isregardedasthemostlikelysourceof sarytoinvestigateifthethermalemissioncouldberelatedtoacom- thestrongnear-andmid-infrared(NIRandMIR,respectively)con- pactdust/molecularthicktorusliketheonesintheunifiedmodels tinuum emission in radio-quiet quasars and Seyfert galaxies. Ob- ofPier&Krolik(1992)andEfstathiou&Rowan-Robinson(1995), servational evidence favoring models in which the IR continuum forinstance,orifitresultsfromemissionbyhotdust(T>900K) between 1 and 10 µm ispredominantly or entirely dominated by mixedwithgasintheNLR/BLRinterfaceregion,shieldedfromthe emission from heated dust is abundant (Edelson&Malkan 1986; intenseUVradiationfield(Marco&Alloin2000). Barvainis 1987; Alonso-Herreroetal. 2003). Indeed, evidence of the presence of hot dust near the sublimation temperature in Here,wecontributetothisdiscussionbypresentingthemost Seyfert1galaxiescomesfromtheobservationofapeakofemission outstanding evidence of a NIR bump reported to date. It corre- with central wavelength between 2.2−3.5 µm found from JHKL spondstotheonedisplayedbyMrk1239,acompactgalaxy,clas- and L’ photometry (Glass 1992; Marco&Alloin 1998, 2000) in sified as narrow-line Seyfert 1 (NLS1) by Osterbrock&Pogge a few objects. Moreover, very recently, Rodr´ıguez-Ardilaetal. (1985).DatacollectedoverthepastyearspointoutthatMrk1239 (2005) found in the inner 250 pc of Mrk 766, a narrow-line isindeeddusty.Goodrich(1989),forinstance,reportsthatitisone Seyfert 1 galaxy, this same excess of emission by means of NIR ofthethreegalaxiesthatdisplaythelargestpercentageofpolariza- spectroscopy. Theywereabletodetermineaccuratelytheformof tion,bothinthelineandcontinuum,inthesampleof18NLS1he studied.Smithetal.(2004)modeledthepolarizationnatureofthis objectandfoundthatitwasoneoftherarecasesofSeyfert1galax- ⋆ VisitingAstronomerattheInfraredTelescopeFacility,whichisoperated iesthatappeartobedominatedbyscatteringinanextendedregion bytheUniversityofHawaiiunderCooperativeAgreementno.NCC5-538 alongthepolesofthetorus.Accordingtotheirresults,theline-of- withtheNationalAeronauticsandSpaceAdministration, OfficeofSpace sighttothenucleuswouldpassthroughtherelativelytenousupper Science,PlanetaryAstronomyProgram. layersofthetorus,extinguishingthecontinuumandBLRemission. 2 A. Rodr´ıguez-Ardilaand X. Mazzalay ingdominatedbytheunresolvedemissionfromtheAGN.Thedata reduction, extraction and calibration procedures were done using 12 thein-housesoftwareSpextool(Cushingetal.2004)andXtellcor 10 (Vaccaetal.2003),providedbytheIRTFObservatory.Thespectra intheSXDandLXDsettings,observedonconsecutivenights,were 8 mergedtoformasingle0.8−4.9µmspectrum.Theagreementin thecontinuumlevelintheoverlappingregionwasexcellent,with 6 lessthan5%ofuncertainty.TheSXDspectraobtainedinOctober 2003 alsoagreed, within10%of uncertainty, withthecontinuum 4 levelmeasuredintheobservationtakenin2002. Figure1showthefinalNIRspectraofMrk1239intherest- 2 frameoftheobject.Intheregionswheretheatmospherictransmis- 0 siondrops tozero, astraight linewasinterpolated toconnect the 10000 20000 30000 40000 50000 adjacentbands.ItcanbeseenthattheNIRspectrumisdominated by a strong bump of emission, peaking at 22000 A˚, also present Figure 1. Observed NIR spectra of Mrk 1239 in the rest-frame of the intheOctober24,2003observation.Alsoprominentinthespectra galaxy. Thespectrum taken onOctober 24has been offset by2×10−15 areemissionlinesofHI,HeIand[SIII].Noabsorptionlinesthat ergcm−2s−1A˚−1relativetothatofApril21forvisualizationpurposes. mayindicatethepresenceofcircumnuclearstellarpopulationwere The most important permitted and forbidden lines are marked. Note the detected.Sincethemainfocusofthisworkisthecontinuumemis- strongexcessofemissionpresentinbothspectra,startingat10000A˚,with sion,theanalysisofthelinespectraisleftforafuturepublication. peakat22000A˚. Toourknowledge,theonlyNIRspectroscopyavailableintheliter- atureonthissourceistheJandKspectraofHeisler&DeRobertis (1999).Becauseof thenon-photometric conditionsinwhichthey Thisradiation, would bepolarized further offby thedust located weretaken,thereisalackofcontinuityinthecontinuumlevelbe- aboveorbelowthetorus. tween the bands, preventing us to make any meaningful compar- X-rays observations also confirm the dusty nature of ison. However, inFig.2gof Heisler&DeRobertis(1999),theJ Mrk 1239. XMM-Newton EPIC PN data suggest two light paths continuumrisestowardlongerwavelengths.IntheK-band,itcon- betweenthecontinuumsourceandtheobserver,oneindirectscat- tinuesrisingupto2.2µm,whereitseemstobecomeflat,inaccor- teredone,whichislessabsorbed,andahighlyabsorbeddirectlight dancetoourobservations. path, in agreement to the wavelength-dependent degree of polar- InadditiontotheNIRdata,long-slitopticalspectroscopyon ization in the optical/UV. Moreover, Mrk 1239 is classified as a Mrk1239wasobtained onthenightsof March19and20, 2002, 60µmpeaker(Heisler&DeRobertis1999)becauseofits“warm” withtheCassegrainspectrographattachedtothe2.15mtelescope far-infrared colours and spectral energy distribution peaking near oftheCASLEOObservatory,Argentina.Thespectracoverthein- 60 µm. They attributed these properties to dust-obscured active terval3700–9600 A˚ andwereobtainedwitha2′′ slitwidthanda galactic nuclei (Keeletal. 1994; Hesetal. 1995), the obscuring 300 l/mmgrating. Theextraction and reduction process followed materiallikelyassociatedtotheputativetorusoftheunifiedmodel. thestandardIRAFprocedure.AsintheNIRregion,thelightpro- Thisletter isorganized asfollows. In Section2wedescribe filedistributionofthegalaxyisdominatedbytheunresolvedemis- theobservations,datareductionandresultingspectrum.Section3 sionoftheAGN.Theaimoftheopticaldataistocomplementthe determines the internal reddening affecting the nuclear spectrum NIR spectrum to map the optical-NIR continuum of this source. of Mrk 1239 and compares the observed NIR SED with that of Nosignificant variation (less than 5%) in the level of the contin- Ark564.Italsoanalyzesthedifferentcomponentsthatcontribute uumemissionwasdetectedintheoverlappingregionbetweenthe totheobservedcontinuum.Section4examinesthehotdusthypoth- opticalandNIRspectra(0.8−0.95µm). esisforMrk1239inthelightofthestrongthermalNIRexcessof emission detected. Conclusions areinSection5. Throughout this workweadoptaHubbleconstantofH =75kms−1Mpc−1. o 3 THEINTERNALEXTINCTIONINMRK1239AND THECONTINUUMEMISSION 2 OBSERVATIONS,DATAREDUCTIONANDRESULTS InordertoproperlyinterpretthestrongexcessofNIRemissionin NIR spectra of Mrk 1239 in the intervals 0.8−2.4 µm and Mrk1239,itisfirstnecessarytode-reddenitsoptical-NIRcontin- 2.0−4.9µm(hereafterSXDandLXD,respectively)wereobtained uum. To this purpose, we used as reference, the spectrum of the attheNASA3mInfraredTelescopeFacility(IRTF)withtheSpeX NLS1galaxyArk564,whosecontinuumemissioniswellknown spectrograph (Rayneretal. 2003), atop Mauna Kea, on April 21, and we assumed as typical of a NLS1 galaxy. Flux-calibrated 2002 (UT) and October 24, 2003 (UT) for the SXD data and on FOS HST spectra in the optical region and SpeX IRTF spectra April22,2002(UT)fortheLXDspectrum.Thedetectorconsisted (Continietal.2003)wereemployed. of a 1024×1024 ALADDIN 3 InSb array with a spatial scale of We started by derreddening the Ark 564 data by Galac- 0.15′′/pixel. A 0.8′′×15′′ slit, oriented east-west, was used dur- tic (E(B-V)=0.03) and internal extinction (E(B-V)=0.14), as ing the observations. The spectral resolution was 360 kms−1 at determined by Crenshawetal. (2002). The reddening law of bothsetups.Thetotalon-sourceexposuretimesamountto1900s Cardellietal.(1989)withRV=3.1wasusedtothispurpose.Then, and1200sfortheApril21and22,2002,and1200sfortheSXD assuming that the form and slope of the extinction-corrected op- observation of October 24, 2003. The signal within the central tical continuum in Ark 564 represents the intrinsic continuum of 0.8′′×1′′ (1′′=380pc)wassummeduptoobtainthenuclearspec- Mrk1239,wede-reddenedtheobservedspectraofthelatterobject trum.Thelightdistributionofthegalaxywasfoundtobecuspy,be- (alreadycorrectedbyaGalacticE(B-V)of0.065)insmallsteeps Thenear-infraredspectrumof Mrk1239 3 fromdustgrains.ThefactthatArk564displaysalowpercentage 20 ofpolarization(Goodrich1989)bothinlineandcontinuum,indi- catesthatthedustcontentintheBLRofthisobjectissmall(also confirmedbythesmallvalueofintrinsicextinction).Itmeansthat in Ark 564 we are observing the true near-infrared shape of the bigbluebumpcomponent,whichuptodateisessentiallyunknown 15 (Kishimotoetal.2005). 3.1 ThecomponentsoftheNIRcontinuumemissionin Mrk1239 10 The continuum emission displayed by Mrk1239 in the interval 0.8−4.9µmiscomplexandratherdifferentfromtheonedisplayed byotherNLS1galaxies(seeforexample,theNIRspectraofother AGN presented by Rodr´ıguez-Ardilaetal. 2002). A comparison withthecontinuumofArk564is,infact,striking. 5 In order to characterize the NIR continuum emission in Mrk1239, we used, as reference, the much simpler optical-NIR continuumofArk564. Tothispurpose, acompositefunctionde- scribedbythesumoftwopower-lawsoftheformF ∝ λα was λ 0 fittedtothedatausingthetasknfit1doftheSTSDASpackage of 10000 20000 30000 40000 50000 IRAF.Thiscompositefunctionwaschosenbecauseitwasclearthat a single power-law cannot reproduce the optical-NIR continuum. Specialcarewastakentonotincludeemissionlinesinthespectral Figure2.Comparisonoftheoptical-NIRspectrumofMrk1239,afterbeing derreddenedbyE(B-V)=0.54,withthatofArk564.Theboxintheupper windowsusedinthefit.TheresultsareshowninFigure2.Thede- rightcornershowsazoomintheopticalregionofbothgalaxies.Thecon- rivedspectralindicesareαopt =−1.93andαNIR =−0.2forthe tinuumemissionofthelatterobjectwasmodeledintermsofasumoftwo opticalandNIRregions,respectively. FromFigure2,weseethat powerlaws(dashedline):onethatdominatestheopticalregion(dot-dashed thiscompositefunctioncannotdescribethecontinuumemissionin line) and another that dominates the NIR (dotted line). Note the lack of the1−4µmregionofMrk1239.Thestrongexcessofemissionthat significantNIRexcessofemissioninArk564. risesabovethelevelpredictedbytheopticalplusNIRpower-laws indicatesthenecessityofanadditionalcomponent. Aninspectiontotheoverallshapeofthebumpsuggeststhat untiltheformofitsopticalcontinuummatchesthatofformer.An itapproachesthatofablackbodydistribution.Inordertotestthis E(B-V)=0.54magwasnecessaryandwastakenastheintrinsicred- hypothesis,wefittedacompositefunction−twopower-laws,plus deningofMrk1239.Thisvalueisinexcellentagreementtotheone aPlanckcurve,totheobservedoptical-NIRSED.Additionalcon- predicted by the polar scattering region scenario (E(B-V)>0.36) straints to the fit was imposed by adding photometric points for proposed by Smithetal. (2004) if that mechanism becomes the theL (3.5µm) andN (10.5 µm) bands, taken fromthe literature dominant source of polarization. Note that had we used the NIR (Spinoglioetal.1995;Maiolinoetal.1995).Inthefit,thepower- HI line ratios to determine the extinction, we would have ob- lawindiceswereconstrainedtothevaluesfoundforArk564(see tainedzeroextinction.ThemeasuredBγfluxis2.76±0.20×10−14 above)whilethetemperatureandamplitudeoftheblackbodyfunc- ergcm−2s−1whilethatofPaβis1.91±0.1×10−13ergcm−2s−1. tionwereleftasfreeparameters.Theresults,displayedinFigure3, Thus,theratioBγ/Paβequals0.14±0.01,somewhatlowerthanthe show that acomposite function, withablackbody oftemperature intrinsicCaseBvalue (0.17). Thisapparent inconsistency can be T =1210 K, provides an excellent description to the the excess bb explainedifNIRBLRhydrogenlinesstronglydeviatesfromCase ofemissionover thepower-laws.Itshould benotedherethatthe Bduetocollisionalandradiationtransfereffects,asitthecasefor use of blackbody instead of a greybody is preferred because of theopticallines. thesmallernumberoffreeparametersthattheformerfunctionre- Figure 2 shows the extinction corrected spectrum of quieres.Intheabsenceofobservationalconstraintsthatjustifiesthe Mrk 1239. It can be seen that after dereddening, the optical con- useofamorecomplexfunction,theychoiceisfortheonethatof- tinuum of Mrk 1239 has the same steepness as that of Ark 564. fersanadequatesolutionwiththeminimumnumberofparameters Notethebroadbumpofemissionstartingat∼1µm,withpeakat tofit.SeealsoSect.4 22000A˚.ItdominatestheNIRcontinuumdistributioninMrk1239 What is the origin of each of the three continuum compo- butisabsentinArk564. nents,allemittedintheinner380pcoftheAGN?Weassociatethe Figure 2 also shows that at ∼ 1 µm there is a break in the power-lawthatdominatestheopticalregiontothelong-wavelength steepnessofthecontinuum.IftheUV-opticalcontinuumiswellde- side of the UV/optical continuum component, often called the scribedbytheapower-lawoftheformF ∝λα,theextrapolation big blue bump (BBB), thought to be emitted from an accretion λ ofthisfunctiontotheNIRregionlacksofenoughpowertoexplain diskaroundasupermassiveblackhole(Malkan1983;Zhengetal. theNIRcontinuumemission.InArk564, forinstance,wherethe 1997; Constantin&Shields 2003). The NIR power-law is likely strongbumpofemissionisnotobserved,anadditionalpowerlaw associated to the blue-end tail of the much broader infrared ex- is necessary in order to reproduce the NIR SED. If we consider cessthatdominatestheIRSEDofAGN,usuallyattributedtocold thecontinuumofArk564astypicalforaNLS1galaxy,thebreak dust (T ∼40-80 K), warmer than dust in normal spiral galaxies representstheendofthelongwavelengthsideofthecontinuumat- (Edelson&Malkan1986),withpeakemissionat60µm,andob- tributedtothecentralengineandtheonsetofthethermalemission servedinMrk1239(Heisler&DeRobertis1999). 4 A. Rodr´ıguez-Ardilaand X. Mazzalay Table1.MassesofhotdustfoundinAGNs 20 Galaxy Mass(M⊙) Reference Mrk1239 2.7×10−2 Thiswork NGC7469 5.2×10−2 Marco&Alloin1998 15 Fairall9 2.0×10−2 Claveletal.1989 NGC3783 2.5×10−3 Glass1992 Mrk766 2.1×10−3 Rodr´ıguez-Ardilaetal.2005 NGC1566 7.0×10−4 Baribaudetal.1992 10 and higher than the sublimation temperature of silicate grains (T∼1000 K; Granato&Danese 1994). Considering that our spa- tial resolution islimited to∼380 pc, it is very likely that dust at 5 higher temperatures exists closer to thecentral source, ruling out the possibility of silicates as the main component of the nuclear dustgrains. Using the temperature of the blackbody as the average tem- peratureof thegraphitegrains and aK band fluxof 5.93×10−25 0 erg s−1 cm−2 Hz−1 at 2.2µm found for the blackbody compo- 10000 100000 nent after subtracting the underlying composite power-laws, we can roughly estimate the dust mass associated with the bump. Figure3.Intrinsicoptical,NIRandMIRSEDofMrk1239.Thefullcircles Following Barvainis (1987), the infrared spectral luminosity, in areaperturephotometry.IntheJHKbands,theyweretakenfrom2MASS. ergs s−1 Hz−1, of an individual graphite grain is Lgr = ν,ir FortheLandNregion,theyweretakenfromtheliterature(seetext).The 4π a2 πQνBν(Tgr),where a isthegrain radius, Qν = qirνγ is dotted-dashed and the dotted curves are the optical and NIR power-law functions,respectively,foundforArk564.Thedashedcurveistheblack- theabsorption efficiencyof thegrainsandBν(Tgr) isthePlanck bodydistributionofTbb=1210KthatbestreproducestheNIRbump.The functionforagrainoftemperatureTgr.Adopting,asinBarvainis thicklinerepresentthesumofthesethreecomponents. (1987),avalueofa=0.05µmforgraphitegrainsandQν=0.058and settingTgr=1220K,wefindLgνr,ir=9.29×10−18ergss−1Hz−1. Thetotalnumberofemittinggrains(hotdust)canbeapprox- The third component, well described by a Planck function imatedasNHD ≈LNIR/Lgνr,ir. of Tbb ∼1200 K willbe examined inthe following section. Un- Finally, for graphite grains, with density ρg=2.26 g cm−3, fortunately, the lack of a spectroscopic survey of AGNs in the MHD ≈ 4.12a3NHDρg. Taking Mrk 1239 at a distance NIRpreventsustodetermineifthatfeatureiscommoninSeyfert of 79.7 Mpc (z=0.00199, H =75 kms−1/Mpc), we obtained o galaxies.Theonlyreportstodateofasimilarfeaturecomesfrom NHD=4.51×1046andMHD=2.7×10−2M⊙. spectroscopy observations of IZw1 (Rudyetal. 2000), Mrk478 Table1comparesthemassofhotdustderivedforMrk1239 (Rudyetal.2001)andMrk766(Rodr´ıguez-Ardilaetal.2005),no- tothatfoundinotherAGNs.OurcalculationsshowthatMrk1239 tably all NLS1 galaxies. In the former two objects, an excess of harborsthesecondlargestmassofhotdustreportedtodateinthe emissionredwardsof1.3µmovertheunderlyingfeaturelesscon- literaturefor an AGN,only surpassed byNGC 7469. Note, how- tinuum,isobserved.TheIZw1andMrk478data,however,arelim- ever,thatexceptforMrk766,allotherpreviousmeasurementsare itedto2.4µm.Itisnotpossibletosaywhathappensbeyondthat basedonphotometricdata,whichdonottakeintoaccounttheun- point.Notethatthenarrownessofthiscomponentturnsitdifficult derlying featureless continuum that we subtracted. Had we used to be detected in broad band photometry studies based on IRAS the peak flux of the continuum, we would have obtained a value observations,forinstance.Itspresence,however,canbeconfirmed of5.3M⊙,rankingMrk1239astheAGNwiththelargestcontent bymeansof2MASSphotometry.InFigure3,wehaveplottedthe ofhotdustfoundtodate.Thepresenceofdustneartosublimation JHKfluxes(fullcircles)reportedforMrk1239,takenfromNED. temperatureinMrk1239hasbeenlargelypredictedbydustemis- No photometry is the optical is available. Overall, the photomet- sionmodels.Infact,theonsetofthebroadstrongbumpofemission ricpointsfollowtheNIRexcess.Thesmalloverestimationofthe at1µm,withpeakat∼ 60µm,issetbythedustsublimationtem- photometricJandHfluxoverthespectroscopicone(∼16%)can peratureofgraphitegrainsatT∼1500K.WhyinMrk1239exists be due to line emission (HI and HeI) and probably, underlying suchalargeamountofhotdust,totheextentofcreatinganotice- continuumemissionfromthehostgalaxy.Recallthatthe2MASS ableshoulderinthemuchbroaderIRSEDattributedtowarmdust, dataplottedisextractedfromaperturephotometry,ofradiusof14′′, cannotbetellfromourdata.NodoubtthatMrk1239isanexcellent whichmayincludecontributionfromthehost-galaxy. targettobestudiedspectroscopicallywithSpitzerinordertostudy thebroadbandIRemissionofthisobject. Regardingtothelocationofthehotdust,ouraperturesizeim- plies that it must reside within the inner 380pc from the centre. 4 THEHOTDUSTHYPOTHESIS However, thehightemperature ofthedustimposes atightercon- TheadequaterepresentationoftheNIRbumpbyablackbodydis- strainttothelocationofitsemittingregion:theinner100pc.This tribution leads us to propose that it is due to emission from hot value is deduced by inspecting Fig. 3 of Marco&Alloin (1998), dustgrains.Thetemperaturederivedfromthefit,T =1200K,is whereaplotofdust temperatureasfunctionofdistancefromthe bb closetotheevaporationtemperatureofgraphitegrains,T∼1500K, nucleus was constructed for NGC 7469. Note that we have as- Thenear-infraredspectrumof Mrk1239 5 sumed that the dust inMrk1239 has similar properties tothat of ratory,CaliforniaInstituteofTechnology, under contractwiththe NGC 7469. Further support to this distance can be obtained fol- NationalAeronauticsandSpaceAdministration. lowing the results for NGC 1068 (Marco&Alloin 2000). These authorsconcludedthathotdust(Tgr=1500K)shouldbeextremely confinedandlocatedataradiuslessthan4pc.Althoughtheprecise REFERENCES locationofthehotdustcannotbedistinguishedfromourdata,both scenariosareinaccordtothepolarscatteringmodelofSmithetal. Alonso-Herrero, A.,Quillen,A.C.,Rieke,G.H.,Ivanov, V.D., Efstathiou,A.,2003,AJ,126,81 (2004). Likely, the combined effect of hot dust associated to the Barvainis,R.,1987,ApJ,320,537 outer layers of the torus and the inner hot dust of the polar scat- Baribaud,T.,Alloin,D.,Glass,I.,Pelat,D.1992,A&A,256,375 teringconecontributetoenhancethebumpobservedinMrk1239. Cardelli,J.A.,Clayton,G.C.,Mathis,J.S.1989,ApJ,345,245 In fact, 10 µm imaging of this object presented by Gorjianetal. Clavel,J.,Wamsteker,W.,Glass,I.S.,1989,ApJ,337,236 (2004)showsclearevidenceofbrightextendedemissioninacone- Constantin,A.,Shields,J.C.,2003,PASP,115,592 likestructure,withtheapexoftheconelocatedatthenucleus.Al- Contini, M., Rodr´ıguez-Ardila, A., Viegas, S. M., 2003, A&A, thoughevidenceofthisextendedemissionisnotseeninourdata, 408,101 weespeculatethatthehottestdustcomponent shouldindeedcon- Crenshaw,D.M.,Kraemer,S.B.,Turner,T.J.,Collier,S.,Peter- tribute to the observed bump. No doubt, our results provides the son,B.M.,etal.,2002,ApJ,566,187 firstdirectspectroscopicevidenceofhotdustinAGNandshowthe Cushing,M.C.,Vacca,W.D.,Rayner,J.T.2004,PASP,116,362 potentialthatNIRspectroscopyhasatunveilingthatcomponent. Edelson,R.A.,Malkan,M.A.,1986,ApJ,308,59 IfthestrongNIRexcessobservedinMrk1239isindeedther- Efstathiou,A.,Rowan-Robinson,M.,1995,MNRAS,273,649 mal emission from very hot dust, one can ask why we only see Glass,I.1992,MNRAS,256,23P emission at a single temperature if one would expect a range of Goodrich,R.W.1989,ApJ,342,224 temperatures?Inthatcase,theNIRexcessshouldresemblemore Gordon,K.D.,Witt,A.N.,Rudy,R.J.,Puetter,R.C.,Lynch,D. closelytoasumofblackbody curvesofdecreasingtemperatures. K.,etal.,2000,ApJ,544,859 Thisquestion canbe answeredifweremember thattheIRemis- Gorjian,V.,Werner,M.W.,Jarret,T.H.,Cole,D.M.,Ressler,M. sioninMrk1239islargelydominatedbyamuchstrongerbump, E.,2004,ApJ,605,156 peakingat60µm(see,forexample,Figure7ofGrupeetal.2004, Granato,G.L.,Danese,L.1994,MNRAS,268,235 wherethebroadbandcontinuumofthissourceispresented),indi- Grupe,D.,Mathur,S.,Komossa,S.,2004,AJ,127,3161 catingthatalargeintervalofdusttemperaturesindeeddominates Heisler,C.A.,DeRobertis,M.M.,1999,AJ,118,2038 thebulkoftheIRemissionoverthehotone. Hes,R.,Barthel,P.D.,Hoekstra,H.,1995,A&A,303,8 Keel,W.C.,deGrijp,M.H.K.,Miley,G.K.,Zheng,W.,1994, A&A,283,791 Kishimoto,M.,Antonucci,R.,Blaes,O.,2005,MNRAS,inpress. 5 FINALREMARKS astro-ph/0509341. InthisletterwehavereportedthefirstdiscoveryofanisolatedNIR Maiolino, R., Ruiz, M., Rieke, G. H., Keller, L. D., 1995, ApJ, bumpofemissionintheNLS1galaxyMrk1239. Thecontinuum 446,561 steeplyrisestowardlongerwavelengthsredwardof1µm,peaking Malkan,M.,1983,ApJ,268,582 at2.2µm,whereitstartstofallsmoothlywithwavelength.Thisex- Marco,O.,Alloin,D.2000,A&A,465,472 cessofemissiondominatestheregionbetween1-5µm.Aftercom- Marco,O.,Alloin,D.1998,A&A,336,823 paringtheopticalcontinuum withthatofArk564, wefoundthat Osterbrock,D.E.,Pogge,R.W.1985,ApJ,297,166 thecontinuuminMrk1239isreddenedbyE(B-V)=0.54,apprecia- Pier,E.A.,Krolik,J.H.,1992a,ApJ,401,99 blylargerforatype1object. Thisresultagreeswithpolarimetry Rayner, J.T., Toomey, D. W., Onaka, P. M., Denault, A. J., data, whichpointsout towardsadustypolar scatteringregion. In Stahlberger,W.E.,etal.2003,PASP,155,362 order to adequately reproduce the NIR continuum, a Planck dis- Rodr´ıguez-Ardila,A.,Contini,M.,Viegas,S.M.,2005,MNRAS, tributionofT∼1200Kisneededtoaccount forthestrongexcess 357,220 of emissionover afeaturelesscontinuum of power-law form. We Rodr´ıguez-Ardila, A.,Viegas, S.M., Pastoriza, M.G., Prato, L., interpretedthiscomponentintermsofveryhotdust,nearitssub- 2002,ApJ,565,140 limationtemperature,very likelylocatedbothintheupper layers Rudy,R.J.,Mazuk,S.,Puetter,R.C.,Hamann,F.2000,ApJ,539, oftorusandclosetotheapexofthepolarscatteringregion.Ifour 166 hypothesis is correct, we have provided additional spectroscopic Rudy,R.J.,Lynch,D.K.,Mazuk,S.,Venturini,C.C.,Puetter,R. evidenceofthepresenceoftheputativetorusoftheunifiedmodel C.,Hamann,F.2001,PASP,113,916 ofAGNs. Schlegel,D.J.,Finkbeiner,D.P.,Davis,M.1998,ApJ,500,525 Smith,J.E.,Robinson,A.,Alexander,D.M.,Young,S.,Axon,D. J.,etal.,2004,MNRAS,350,140 Spinoglio, L., Malkan, M. A., Rush, B., Carrasco, L., Recillas- ACKNOWLEDGMENTS Cruz,E.,1995,ApJ,453,616 Vacca,W.D.,Cushing,M.C.,Rayner,J.T.2003,PASP,115,389 This research has been partly supported by the Brazilian agency Zheng,W.,Kriss,G.A.,Telfer,R.C.,Grimes,J.P.,Davidsen,A. CNPq (309054/03-6) to ARA and the European Commission’s F.,1997,ApJ,475,469 ALFA-IIprogram through itsfunding of theLatin-American Eu- ropeanNetworkforAstrophysicsandCosmology,LENACtoXM. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Labo-