Astronomy&Astrophysicsmanuscriptno.jan06-accepted (cid:13)c ESO2012 January9,2012 ⋆ The near-infrared counterpart of 4U 1636–53 (ResearchNote) D.M.Russell1,2,K.O’Brien3,T.Mun˜oz-Darias2,4,P.Casella4,5,P.Gandhi6 andM.G.Revnivtsev7 1 AstronomicalInstitute‘AntonPannekoek’,UniversityofAmsterdam,P.O.Box94249,1090GEAmsterdam,theNetherlands 2 InstitutodeAstrof´ısicadeCanarias(IAC),V´ıaLa´cteas/n,LaLagunaE-38205,S/CdeTenerife,Spain e-mail:[email protected] 3 DepartmentofPhysics,UniversityofCalifornia,SantaBarbara,California93106,USA e-mail:[email protected] 2 4 SchoolofPhysicsandAstronomy,UniversityofSouthampton,Southampton,HampshireSO171BJ,UK 1 e-mail:[email protected] 0 5 INAF-OsservatorioAstronomicodiRoma,ViaFrascati33,I-00040MonteporzioCatone(Roma),Italy 2 e-mail:[email protected] 6 ISAS,JapanAerospaceExplorationAgency,3-1-1Yoshinodai,chuo-ku,Sagamihara,Kanagawa229-8510,Japan n e-mail:[email protected] a J 7 SpaceResearchInstitute,RussianAcademyofSciences,Profsoyuznaya84/32,117997Moscow,Russia e-mail:[email protected] 6 Received????,2011;accepted????,2011 ] E ABSTRACT H . Context.Theoptical counterpart of theneutron star X-raybinaryand wellknown X-rayburster, 4U 1636–53 (=4U 1636–536 = h V801Ara)hasbeenwellstudiedforthreedecades.Howevertodate,noinfraredstudieshavebeenreported. p Aims.Ouraimsaretoidentifyandinvestigatethenear-infrared(NIR)counterpartof4U1636–53. - o Methods.Wepresentdeep,KS-band(2.2µm)imagingoftheregionof4U1636–53takenwiththeInfraredSpectrometerAndArray r Camera (ISAAC) on the Very Large Telescope. Archival optical and UV data are used to infer the 0.2−2.2µm spectral energy t distribution(SED). s a Results.One star islocatedat coordinates α = 16:40:55.57, δ = −53:45:05.2 (J2000; 1σ positional uncertainty of ∼ 0.3 arcsec) [ whichisconsistentwiththeknownopticalpositionof4U1636–53; itsmagnitudeisKS = 16.14±0.12.Thisstarisalsodetected in the 2MASS survey in J-band and has a magnitude of J = 16.65±0.22. Under the assumption that the persistent emission is 2 largelyunvarying,the0.4−2.2µmde-reddenedSEDcanbedescribedbyapowerlaw;F ∝ ν1.5±0.3,withsomepossiblecurvature ν v (F ∝ ν.1.5)at0.2−0.4µm.TheSEDcanbeapproximatedbyablackbodyoftemperature∼ 27000K.Thisistypicalforanactive ν 9 low-massX-raybinary,andtheemissioncanbeexplainedbytheouterregionsofa(likelyirradiated)accretiondisc.Wetherefore 3 interpretthisK -bandstarastheNIRcounterpart. S 8 1 Keywords.Stars:neutron–X-rays:binaries–stars:infrared . 9 0 1 1. Introduction radiated accretion discs which also dominate at optical wave- 1 lengths(e.g.,vanParadijs&McClintock1995). Low mass X-ray binaries (LMXBs) are interacting binaries : v where a low mass donor is transferring material onto a neu- Xi tron star or a black hole. In order to transport the excess of Even in the near-infrared(NIR), where the companion star angular momentum outwards, an accretion disc is formed. In could have an important contribution, the disc emission seems r a the disc, the gravitational potential energy is transformed into dominantinbrightsystems.Forinstance,intheprototypicalper- mainly X-ray radiation and kinetic energy, and temperatures sistent neutron star, Sco X–1, which given its relatively long approach ∼ 108 K. The mass transfer rate supplied by the orbital period (∼ 19 h) should have a large, evolved compan- donor star, M˙ , is driven by the binary/donor evolution and ionstar,nospectralfeaturefromthedonorhasbeendetectedin 2 mass transfer rates M˙ > M˙ ∼ 10−9M kg yr−1 (where M theNIR(Bandyopadhyayetal.1997).Inmostpersistentneutron 2 crit ⊙ ⊙ is the mass of the Sun in kg) result in persistently bright X- starX-raybinaries,spectralandtemporalstudieshavefavoured ray sources (Kingetal. 1996). There are ∼ 200 such bright anX-rayheatedaccretiondiscastheoriginoftheNIRemission (L ≃ 1036 −1038erg s−1) LMXBs in the Galaxy and most of (e.g., 4U 1705–440;Homanetal. 2009). Compact jets produc- X them harbour neutron stars as implied by the detection of pul- ingsynchrotronemissiontypicallydominatetheradioemission sationsandX-raybursts resultingfromnuclearburningcaused (Migliari&Fender2006)andtheirspectracanextendtohigher bytheaccumulationofHydrogenandHeliumontheirsurfaces. frequencies. In the NIR, high amplitude flares from GX 17+2 Theyshowenergyspectradominatedbyemissionfromtheirir- (Callananetal. 2002), a synchrotron spectrum in 4U 0614+09 (Migliarietal.2010)andvariablelinearpolarizationinScoX– ⋆ Based on observations collected at the European Southern 1 (Russell&Fender2008) have suggesteda strong infraredjet Observatory,Chile,underESOProgrammeID085.D-0456(D). contributioninthesepersistentneutronstarX-raybinaries. 1 Russelletal.:TheNIRcounterpartof4U1636–53(RN) pixelscaleis0.1478′′pixel−1.The24averageimageswerethen aligned and stacked using IRAF to produce a deep image. The totalon-sourceexposuretimeofthecombinedimageis3180s. TheK -bandseeingasmeasuredfromthecombinedimagewas S 0.6arcsecandconditionswereclear.Thecamerawasrotatedat an angle of127◦ to maximise the numberof referencestars on thearray.ThecombinedimageispresentedinFig.1andcanbe usedasadeep,highresolutionK -bandfindingchart. S 3. Sourceidentification Within the combinedimage, six stars listed in the Two Micron All Sky Survey (2MASS; Skrutskieetal. 2006) are detected, which were used to calculate the world coordinate system and achieve K -bandfluxcalibration.DAOPHOT in IRAF is used to S perform point-spread-function (PSF) photometry on the com- binedimage.Allcomparisonstarsweresuccessfullyfittedbya singlePSFconsistentwiththeimagePSF;noblendswereiden- tified.Thereisonestarconsistentwiththebestopticalposition of 4U 1636–53, as listed in the USNO-B1 digital sky survey (α = 16:40:55.61,δ = −53:45:05.1;J2000,withanerrorcircle Fig.1.VLT/ISAACdeep,highresolutionK -bandfindingchart of0.339′′),shownasawhitecircleinFig.1.Wederiveaposition S for 4U 1636–53.The optical position (USNO-B1 0.339′′ error of α = 16:40:55.57,δ = −53:45:05.2(J2000) for the infrared circle) is indicated by a white circle and the infrared (ISAAC) counterpartof4U1636–53,witha1σpositionaluncertaintyof position is shown by two black lines. The two positions agree ∼0.3arcsec.Otheropticalcoordinatesof4U1636–53inthelit- within1σerrors.Thesix2MASSstarsareindicatedbydiagonal erature(Jerniganetal.1977;Liuetal.2001;Samusetal.2003) lines. arealsoconsistentwiththeUSNO-B1andISAACpositions.No preciseX-raycoordinatesof4U1636–53fromChandraorSwift observationsexistintheliterature. Oneoftheclassicalneutronstar systemsis4U1636–53(= Somefaint,blendedstarslie just 1.5′′ from4U 1636–53in 4U 1636–536 = V801 Ara). It is an X-ray burster, which has theISAACimage,butnoneareconsistentwiththeopticalposi- beenextensivelystudiedinX-rayandopticalregimesformore tion. Theabovesourceis the onlycandidatecounterpartin our thanthreedecades(e.g.,Pedersenetal.1982).Ithasa3.8hor- K -band image. All stars within a 3′′ radius of the LMXB are bitalperiod(vanParadijsetal.1990;Gilesetal.2002)pointing S ≥1.2magnitudesfainterinK -bandthanthisproposedcounter- to a relatively faint, late type companionstar. The spectrum of S part.NofaintblendedstarsarevisibleaftersubtractingthePSF thesystemfromX-raytoopticalwavelengthsseemstobedomi- ofthecounterpart. natedbytheemissionofitsbrightaccretiondisc,thecompanion Fromtheknownmagnitudesofthe2MASSstarswithinthe staronlybeingdetectedbyusingemissionlinesarisingfromre- processing of the strong X-ray emission (L ∼ 1037−38erg s−1) field,wemeasurethemagnitudeof4U1636–53duringthetime X of our observations to be K = 16.14 ± 0.12. The errors are initsinnerhemisphere(Casaresetal.2006). S dominatedbysystematicerrorsderivedfromthesix2MASSstar Todate,nodetectionsof4U1636–53havebeenreportedat magnitudes.4U1636–53isdetectedwithasignal-to-noiseratio wavelengths longer than the optical regime. At radio frequen- (S/N)of145.ThelimitingmagnitudeintheimageisK ∼19.3 cies, upper limits of both the persistent and burst fluxes were S (i.e.starsbrighterthanthisaredetectedatthe3σlevel). presentedinThomasetal.(1979).Herewepresentthefirstde- The counterpartwe have found is not listed in the 2MASS tectionofthenear-infraredcounterpartof4U1636–53.Together point source catalogue. On inspection of the 2MASS images, with available optical and UV data, we construct the intrinsic the counterpartis notvisiblein K and H-bands,butappearsas 0.2–2.2µmspectralenergydistribution(SED). afaintsourcein J-band.PerformingPSFphotometryonthe J- band2MASSfield,weobtainamagnitudeof J = 16.65±0.22 2. VeryLargeTelescopeobservations for 4U 1636–53; the S/N is 7. The aforementioned faint stars within∼ 2′′ ofthesourcemaycontributeupto∼ 10−30%of The data were acquired with the Infrared Spectrometer And thefluxmeasured,althoughthePSFfittingmethodshouldhave ArrayCamera(ISAAC)ontheEuropeanSouthernObservatory removed the majority of this excess flux (which is offset from (ESO)8-mclassVeryLargeTelescopeUT3(Melipal)on2010- thecentralPSFposition).This2MASSobservationwasmadeon 05-2102:23–03:17UT(MJD55337.118±0.019)underESO 1999-06-1804:27UT.Inthe2MASSH-bandimage,theupper ProgrammeID085.D-0456(D).Twenty-fourdatacubes,eachof limit to the magnitudeof 4U 1636–53is H > 15.76. The new exposuretime 132.5 s (comprising 530×0.25 s individualex- VLT and 2MASSdetectionsof 4U 1636–53are listed in Table posures) were obtained of the region of 4U 1636–53 in high 1. time resolution (FastJitter) mode using the K -band filter cen- S tred at 2.16µm. The brightest object in the field has < 1000 countsineach0.25sexposure,sonon-linearitiesarenotacon- 4. SwiftUVOTobservations cern. A small (up to 6′′) telescope offset was applied between cubes. Average images were made of each cube, removingthe Optical–ultravioletobservationsof4U1636–53weremadewith skygeneratedfromamedianofthesurroundingaveragedcubes. the UltraViolet/Optical Telescope (UVOT; Romingetal. 2005) The field of view of each ISAAC image is 40′′ ×40′′ and the on board the Swift satellite and the data are publicly available. 2 Russelletal.:TheNIRcounterpartof4U1636–53(RN) at the ISAAC-derived position was adopted, which excludes a neighbouringstar6′′awayfrom4U1636–53;nostarsappearto 10 contaminatethefluxof4U1636–53withintheextractionradius. ThemeanmagnitudesandrangeineachfilteraregiveninTable 1. 5. Intrinsicspectralenergydistribution We de-reddenthe K , J-bandandUVOTmagnitudesusingthe K H J I R V B U W1 M2 W2 S 1 s knowninterstellarextinctiontowards4U1636–53;AV = 2.5± 0.3mag(derivedfromopticaldata;Lawrenceetal.1983)apply- Jy ingtheextinctionlawofCardellietal.(1989).Wealsotakeop- m y; ticalmagnitudesfromLawrenceetal.(1983)andPedersenetal. sit (1982);U = 17.92±0.06,B= 18.47±0.03,V = 17.89±0.03, n e R = 17.46 ± 0.03, I = 16.77 ± 0.03, and de-redden them d x in the same manner. Using the de-reddened fluxes (adopting u Fl the standard conversion zeropoints for optical Johnson filters, and 2MASS IR filters from the Explanationary Supplement of 0.1 Skrutskieetal. 2006) we construct the intrinsic NIR–optical– UVSED ofthepersistent(non-burst)emissionfrom4U1636– 53. VLT, 2MASS TheSED,whichspansoneorderofmagnitudeinfrequency, Pedersen et al. 1982 ispresentedinFig.2.Theobserved,reddenedfluxesareplotted Lawrence et al. 1983 in addition to the de-reddened data. The optical (I to U-band) Swift UVOT Power law fit: α ∼ 1.5 SED from Lawrenceetal. (1983) and Pedersenetal. (1982), blackbody T=27,000 K which has small errors, has a spectral index of α = 1.5±0.4, data not de-reddened where F ∝ να.Theerroronαisdominatedbytheuncertainty 0.01 uncertainty due to extinction ν in the extinction. This spectral index is typical for active low- 14 14.2 14.4 14.6 14.8 15 15.2 massX-raybinaries(bothneutronstarandblackholesystems; log (Frequency; Hz) e.g.,Hynes2005;Russelletal.2007)andisconsistentwiththe outerregionsofablueaccretiondisc.Shihetal.(2011)showed Fig.2.Intrinsic(de-reddened)UV–optical–NIRspectralenergy that the optical emission is correlated with the soft X-ray flux; distributionof4U1636–53(top)andobserved(reddened)fluxes theopticallightisdominatedbytheirradiateddisc(X-rayrepro- (lower,crosses).Thesystematicerrorsduetouncertaintiesinthe cessingonthediscsurface). extinctionaredemonstratedbythedottederrorbars. The K , H-band and J-band magnitudes correspond to de- S reddenedfluxdensitiesofF = 0.30±0.03mJy,F < 0.83 ν,KS ν,H Table 1.New NIR–optical– UV magnitudesof 4U1636–53. mJy and Fν,J = 0.67 ± 0.14 mJy, respectively. The optical– TheSwift UVOTphotometryis takenbetween2005-02-13and infrared (KS to U-band) SED (neglecting the UVOT data) can 2010-06-10. be fitted with a power law with spectral index α = 1.5 ± 0.3 (solid line in Fig. 2). This is similar to the optical spectral in- dex, and the K -band and J-band fluxes are consistent with an S Filter λ1 S/N ———-Magnitude———- Days2 extrapolation of the accretion disc spectrum. It is unlikely that (Å) mean brightest faintest IR emission lines (e.g. Bandyopadhyayetal. 1997) could con- tributea significantfractionofthe observedIRfluxes.Thereis K 21590 145 16.14 16.14(12) 16.14(12) – S some possible curvaturein the spectrum at the higher frequen- J 12350 7 16.65 16.65(22) 16.65(22) – v 5468 28 17.94 17.94(6) 17.94(6) 1 cies, apparent in the UVOT data, and the whole SED can be b 4392 21 18.67 18.67(8) 18.67(8) 1 approximated by a blackbody at a temperature of ∼ 27 000 K u 3465 27–43 17.82 17.63(7) 17.95(8) 5 (dotted line in Fig. 2). The curvature implies the blackbodyof uw1 2600 10–24 18.35 18.16(9) 18.67(15) 4 the irradiated disc spectrum may peak at around 1900 Å, sim- um2 2246 7–15 18.95 18.61(13) 19.31(20) 5 ilar to some other LMXBs (Hynes 2005). However,the curva- uw2 1928 7–34 19.20 18.53(10) 19.61(21) 4 ture (and even more so the spectral index of the power law) is sensitive to the uncertainty in the extinction, and the optical 1The central wavelength of the filter in Angstroms; 2The number of counterpart varies by ∼ 0.6 mag amplitude (a factor of ∼ 1.7 datesthesourcewasobservedwithUVOT. in flux) over weeks to months (e.g., Shihetal. 2011). We de- tect variability in our UVOT data over several years (Table 1). Quasi-simultaneous optical–infrared data are required to accu- UVOT observed4U 1636–53on 11 datesbetween 2005-02-13 rately measure the spectralindex, and uncertaintieswill be de- and2010-06-10.Onmostdates,oneortwoofthesixUVOTfil- creasedoncetheextinctiontowardsthesourceismeasuredmore terswereused.Theimagedataofeachfilteroneachdatewere accurately. summed using uvotimsum. Photometry of the source in indi- Thereisnoevidenceforthecompanionstar,orsynchrotron vidual sequences was derived with uvotsource. 4U 1636–53 emission from the jet (if the system has a jet) to dominate the is clearly detected at the position derived above, in all six fil- infraredflux.Bothofthesecomponentsareexpectedtobered- ters(5500−1900Å).Anextractionregionofradius3′′ centred der than the irradiated disc component, and would produce an 3 Russelletal.:TheNIRcounterpartof4U1636–53(RN) infraredexcessabovethediscspectrum.Sincethespectrumbe- van Paradijs, J. & McClintock, J. E. 1995, in Optical and Ultraviolet tweenJandK -bandsisblue(α∼1.5),thesecomponentsmake ObservationsofX-rayBinaries,eds,Lewin,W.H.G.,vanParadijs,J.,van S a negligible contribution to J-band. In the most extreme sce- denHeuvel,E.P.J.(Cambridge,CambridgeUniv.Press),58 nario, the disc could have a steep spectrum, α = 2.0 between J and K -band,andthereforethe disc couldbe asfaintas0.18 S mJyinK -band(0.12±0.03mJyfainterthantheobservedflux). S Ifthiswerethecase,thejetorcompanioncouldcontributeupto 46%ofthe K -bandflux.Thesecalculationsagainneglectpos- S sible variability,since the NIR observationswere made on dif- ferent dates. Simultaneous optical–infrared observations could constrainthelevelofstarorjetemissionmoreprecisely. 6. Conclusions We have identified the near-infraredcounterpartof the neutron starbursterLMXB4U1636–53.Itsmagnitudesonthedatesob- servedareK =16.14±0.12(VLT/ISAAC), J =16.65±0.22 S (2MASS). The intrinsic infrared–optical–UV spectrum of the persistent (non-burst) emission is consistent with a blackbody, likelyfromthe irradiatedsurfaceoftheaccretiondisc. We find noevidenceforemissionfromothercomponentsthatmaybeex- pectedtocontribute,suchasthedonorstarorsynchrotronemis- sionfromajet,althoughsimultaneousopticalandinfrareddata areneededtoconstrainthesecontributionsfurther. Acknowledgements. This research was partly supported by a Netherlands Organisation forScientific Research (NWO)Veni Fellowship andpartly bya Marie Curie Intra European Fellowship within the 7th European Community Framework Programme under contract no. IEF 274805. Theresearch leading totheseresultshasreceived fundingfromtheEuropeanCommunitysSeventh Framework Programme (FP7/2007-2013) under grant agreement number ITN 215212 -Black Hole Universe-. Partially funded by the Spanish MEC under the Consolider-Ingenio 2010 Program grant CSD2006-00070: First Science withtheGTC(http://www.iac.es/consolider-ingenio-gtc/).TMDacknowledges support by ERC advanced investigator grant 267697-4PI-SKY. PC acknowl- edges funding via a EU Marie Curie Intra-European Fellowship under con- tract no. 2009-237722. MR is supported by grants MD-1832.2011.2, RFBR 10-02-00492 and by Dynasty foundation. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California InstituteofTechnology,fundedbytheNationalAeronautics andSpaceAdministrationandtheNationalScienceFoundation. References Bandyopadhyay,R.,Shahbaz,T.,Charles,P.A.,vanKerkwijk,M.H.,&Naylor, T.1997,MNRAS,285,718 Callanan,P.J.,Curran,P.,Filippenko,A.V.,etal.2002,ApJ,574,L143 Cardelli,J.A.,Clayton,G.C.,&Mathis,J.S.1989,ApJ,345,245 Casares,J.,Cornelisse,R.,Steeghs,D.,etal.2006,MNRAS,373,1235 Giles,A.B.,Hill,K.M.,Strohmayer,T.E.,&Cummings,N.2002,ApJ,568, 279G Homan,J.,Kaplan,D.L.,vandenBerg,M.,&Young,A.J.2009,ApJ,692,73 Hynes,R.I.2005,ApJ,623,1026 Jernigan,J.G.,Bradt,H.V.,Doxsey,R.E.,McClintock,J.E.,&Apparao,K.M. V.1977,Nature,270,321 King,A.R.,Kolb,U.,&Burderi,L.1996,ApJ,464,L127 Lawrence,A.,Cominsky,L.,Engelke,C.,etal.1983,ApJ,271,793 Liu,Q.Z.,vanParadijs,J.,&vandenHeuvel,E.P.J.2001,A&A,368,1021 Migliari,S.,&Fender,R.P.2006,MNRAS,366,79 Migliari,S.,Tomsick,J.A.,Miller-Jones,J.C.A.,etal.2010,ApJ,710,117 Pedersen,H.,Motch,C.,vanParadijs,J.etal.1982,ApJ,263,340 Roming,P.W.A.,Kennedy,T.E.,Mason,K.O.,etal.2005,SpaceSci.Rev., 120,95 Russell,D.M.,&Fender,R.P.2008,MNRAS,387,713 Russell,D.M.,Fender,R.P.,&Jonker,P.G.2007,MNRAS,379,1108 Samus,N.N.,Goranskii,V.P.,Durlevich,O.V.,etal.2003,AstL,29,468 Shih,I.C.,Charles,P.A.,&Cornelisse,R.2011,MNRAS,412,120 Skrutskie,M.F.,Cutri,R.M.,Stiening,R.,etal.2006,AJ,131,1163 Thomas,R.M.,Duldig,M.L.,Haynes,R.F.,etal.1979,MNRAS,187,299 vanParadijs,J.,vanderKlis,M.,vanAmerongen,S.,etal.1990,A&A,234, 181 4