ebook img

The nature of damped Lyman alpha and sub-damped Lyman alpha absorbers PDF

0.12 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The nature of damped Lyman alpha and sub-damped Lyman alpha absorbers

Astronomy&Astrophysicsmanuscriptno.ms (cid:13)c ESO2008 February5,2008 α α The nature of damped Lyman and sub-damped Lyman absorbers PushpaKhare1,VarshaP.Kulkarni2,Ce´linePe´roux3,DonaldG.York4,5,JamesT.Lauroesch6,andJosephD.Meiring2 1 DepartmentofPhysics,UtkalUniversity,Bhubaneswar,751004,India 2 DepartmentofPhysicsandAstronomy,UniversityofSouthCarolina,Columbia,SC29208,USA 3 EuropeanSouthernObservatory,Garching-bei-Mu¨nchen,Germany 7 4 DepartmentofAstronomyandAstrophysics,UniversityofChicago,Chicago,IL60637,USA 0 5 EnricoFermiInstitute,UniversityofChicago,Chicago,IL60637,USA 0 6 DepartmentofPhysicsandAstronomy,UniversityofLouisville,Louisville,KY40292,USA 2 Preprintonlineversion:February5,2008 n a ABSTRACT J 2 WepresentargumentsbasedonthemeasuredabundancesinindividualdampedLymanαsystems(DLAs)andsub-dampedLyman αsystems(sub-DLAs),andalsotheaverageabundancesinferredinlargesamplesofQSOabsorptionlinesystems,tosuggestthat 2 theamountofdustininterveningQSOabsorbersissmallandisnotresponsibleformissingmanyQSOsinmagnitudelimitedQSO v surveys.Whilewecannottotallyruleoutabimodaldustdistributionwithapopulationofverydusty,metalrich,absorberswhich 7 pushthebackgroundQSOsbelowtheobservationalthresholdofcurrentopticalspectroscopicstudies,baseduponthecurrentsamples 2 itappearsthatthemetallicityinQSOabsorbersdecreaseswithincreaseinHIcolumndensitiesbeyond1019cm−2.Thusthesub-DLA 1 populationismoremetalrichthantheDLAs,atrendwhichmaypossiblyextendtothenon-dampedLymanlimitsystems(NDLLS). 8 Basedontherecentlydiscoveredmass-metallicityrelationforgalaxies,wesuggest thatmostsub-DLAsandpossiblyNDLLS,are 0 associatedwithmassivespiral/ellipticalgalaxieswhilemostDLAsareassociatedwithlowmassgalaxies.Thesub-DLAgalaxieswill 6 thencontributealargerfractionoftotalmass(stellarandISM)andthereforemetals,tothecosmicbudget,speciallyatlowredshifts, 0 ascomparedtotheDLAs. / h Keywords.Quasars:absorptionlines—ISM:abundances,dust,extinction p - o r 1. Introduction (SDSS)DataRelease1(DR1).Thesub-samplewithhighestes- t s timated(nearsolar)Znmetallicity,wasfoundtohavealowaver- a Damped Lyman α systems (DLAs), having column density of ageinferredN of∼1020cm−2.Severalargumentsweregiven v: HI(NHI)≥ 2×1020cm−2havebeensuggestedtobethehigh- inY06tosuggHeIstthattheDLAsmaynotbetheanalogsofthe i redshift analogs of disks of nearby luminous galaxies. In spite localbrightgalaxies,rather,thesub-DLAsandpossiblythenon- X of having a high amount of neutral hydrogen these absorbers DLALymanlimitsystems(NDLLS)withN between1017and HI r haveverylittleH2 (Ledouxetal.2003),whichraisesquestions 1019 cm−2 maybeassociatedwithlargegalaxies.Herewecon- a abouttheirbeingassociatedwithhighstarformationactivity.A siderthisscenariofurther,usingthe currentlyavailabledataon large fraction of DLAs do indeed appear to have low star for- individual absorbers and the results of Y06. We consider vari- mationratesbasedondeepemission-lineimagingsearches(e.g. ousselectioneffectsatworkanddiscusstheimplicationsofthe Kulkarniet al. 2006a and referencestherein). Metallicity mea- recently established mass-metallicity relation for the nature of surements, using intermediate to high resolution observations, DLAsandsub-DLAs. areavailablefor>100DLAs.Theseindicatethatthemetallicity In section 2 we study the dependenceof the Zn abundance evolutionofDLAsisweak;mostoftheDLAs,evenatzabs ∼ 0 onthecolumndensityofHI,fortheobservationsofindividual arefoundtobemetalpoor(Kulkarnietal.2005).Itisthuspos- systems taken from the literature and for the average valuesof sible thattheDLAsmaynottracethe bulkofstarformationin thesequantitiesobtainedbyY06forlargesamples.We present theUniverseandthereforemaynotbeamongtheleadingmetal otherrelevantobservationalinformationanddiscusstheobscu- carriers. rationthresholdandotherselectioneffectstoargueforthereality Compilation of observed metallicities of individual DLA oftheobserveddependence.Theimplicationofthisdependence systems shows a trend of decreasing abundance with increas- forthenatureoftheabsorbinggalaxiesarepresentedinsection ingHIcolumndensity(Boisseetal.1998;Akermanetal.2005; 3andconclusionsarepresentedinsection4. Meiringetal.2006a).ThetrendpossiblyexiststolowerHIcol- umndensitiescoveringthesub-DLAs,havingN between1019 HI and2×1020cm−2(Pe´rouxetal.2003).Asimilarconclusionwas 2. Dependenceofmetallicityontheneutral drawnbyYorketal.(2006,hereafter,Y06)basedontheaverage hydrogencolumndensity abundancesinferredfromthecompositespectraofsub-samples 2.1.Observationaldata drawn from a sample of 809, intervening Mg II QSO absorp- tion line systems (rest equivalent width of λ2796 > 0.3 Å and The number of metallicity measurements of individual sub- 1 < z < 1.86) compiled from the Sloan Digital Sky Survey DLAshasgrownconsiderablysince the compilationofPe´roux abs 2 PushpaKhareetal.:ThenatureofdampedLymanαandsub-dampedLymanαabsorbers et al. (2003). We have compiled a sample (the literature sam- ple, hereafter TLS) of all the measurements of Zn abundance of DLAs and sub-DLAs from the literature. This sample con- sists of 119 DLAs with 0.1 < z < 3.9 and 30 sub-DLAs abs with 0.6 < z < 3.2. The DLA Zn sample is based on our abs recentHST,MMT,andVLTdata(Khareetal.2004;Kulkarniet al. 2005;Meiringet al. 2006a,2006b;Pe´roux et al. 2006b)and thosefromtheliterature(datacompiledinKulkarnietal.2005, andmorerecentdatafromRaoetal.2005;Akermanetal.2005; Ledoux et al. 2006). For the sub-DLAs, we compile the data from Lu et al. (1995, 1996); Pettini et al. (1994, 1999, 2000); Kulkarni et al. (1999); Ellison & Lopez (2001); Srianand & Petitjean(2001);Dessauges-Zavadskyetal.(2003);Khareetal. (2004);Pe´rouxetal.(2006a);Ledouxetal.(2006);andMeiring et al. (2006a,2006b).The DLA sample contains 68 detections and51limits,whilethesub-DLAsamplecontains13detections and17limits.Mostoftheselimitsareathighredshifts.Thefull sampleusedhereisgiveninKulkarnietal(2006b). In Fig. 1, we have plotted[Zn/H],as a functionof N for HI TLS.ThetrendofdecreasingabundancewithincreasingN is HI clear. The Spearman rank correlation test gives the probability of chancecorrelationto be 1.6×10−11. Itcan be seen fromthe figure that the trend is similar for systems with z < 1.5 and abs z >1.5. abs Fig.1.Metallicity([Zn/H])vs.log(N ).Solid(Red)circlesrep- We note that we have only used Zn abundances in Fig.1. HI resent average values for large samples as obtained by Y06. There have been studies which use the Si and S abundancesin Open (Black) circles and (blue) stars are for z < 1.5 and systemswhereZnabundancesarenotavailableduetoobserva- abs z > 1.5, respectively, for TLS. One sigma error bars are tional limitations. We, however, refrain from using these as (i) abs shown. Also shown are the best fit lines (long dashed (black) giventheintrinsicallyhigherabundanceandhigherstrengthsof line and short dashed (red)line for TLS and Y06 respectively) thedetectableabsorptionlinesoftheseelements,linesaturation obtainedbyignoringthelimits. Thetopsolidline(blue)repre- effects may be important, leading to an underestimate of their sentstheempiricalobscurationbias(N =1.4×1013cm−2). abundances;(ii)Simaybedepletedonthedustgrains(upto-1.4 ZnII dexincoldISM);(iii)thelinesofZnIIaredetectabletolower redshifts;and(iv)linesofSareoftenintheLymanαforest. Meiringetal.2006a).Wehaveconfirmedthatasimilartrendis Asnotedinthelastsection,Y06inferredtheaverageabun- shownbytheresultsofY06.Otherdistributions,e.g.[Cr/Zn]vs. dances of various elements in the composite spectra of several log(N )and[Cr/Zn]vs.log(N )arealsosimilarforY06and sub-samplesof SDSSDR1 QSOswith strongMgIIabsorbers. ZnII HI TLS,showingthattheresultsofY06,whichareaveragevalues Thesub-sampleswerechosenonthebasisofvariousproperties for large samples, are consistent with the observationsof indi- of the absorption line systems and QSOs. The column densi- vidualsystems. tiesofseveralspecies,includingZnII,wereestimatedfromin- WenotethattheY06resultsarebasedontheassumptionofa versevariance-weighted,arithmeticmean,normalizedspectraof constantdust-to-gasratio.Thisratiomaydependonmetallicity individualQSOs in the samples. The geometricmean compos- inviewoftheanticorrelationbetween[Cr/Zn]and[Zn/H](and ite spectra of the same sub-samples were compared with simi- inview ofFig.2below).We havetriedtoestimate theeffectof larspectraofmatching(inemissionredshiftsandimagnitudes) thisontherelationbetween[Zn/H]andN ,obtainedbyY06,as samplesofQSOswithoutabsorptionlinesintheirspectra,tode- HI follows.WeassumedthattheabundanceofZn,(X )ispropor- termine the absorber rest frame extinction, E(B−V). The col- Zn tionaltoNα .ThusE(B−V)whichisproportionaltoX N umn densities of neutral hydrogen were estimated by assum- HI Zn HI ingtheSmallMagellaniccloud(SMC)dust-to-gasratio,asthe will be proportional to NH(1.I0+α), giving NHI ∝ E(B− V)(1.10.+0α). SMC extinction law was found to fit the composite extinction NotethattheY06resultsassumeα = 0.Fordifferentvaluesof curves well. In Fig. 1 we have plotted the results for various α,wedeterminedN fromtheE(B−V)values,usingtheabove HI sub-samplesofY06.Notethatwehaveusedallthesub-samples relation.UsingthisvalueofHIcolumndensitywedetermined fromTable1ofY06forwhichtherelevantdatawereavailable, [Zn/H]andthentheslopeofthebestfitlinebetween[Zn/H]and someofwhichwerenotlistedintheirTableA4.Detailsoftheir Log(N ).Notethatbyconstruction,thisslopeshouldequalα. HI sub-sampleswhichareusedherearegiveninTable1.Thetrend We foundthat for positive valuesof α the slope remains nega- ofmetallicitydependenceonN issimilar tothatin TLS,the tive for α < 0.81 and beyondthat remains < α/2 until α = 3. HI Spearmanrank correlationtest for Y06 pointsgivesthe proba- Fornegativevaluesofαtheslopeissomewhatsmallerthanthe bility of chance correlation to be 0.098. We have included the assumedvalueofαandcomesclosetoit(-0.94)forα = −0.9. mainsample(#1)ofY06inouranalysis.Astherestofthesub- Thusweseethatassumptionofametallicitydependentdust-to- samplesaredrawnfromthis,itsinclusionmaycausesomebias. gasratio,infact,makesthedecreaseofZnabundancewithN HI Wehaveverifiedthatremovingthissamplehasverylittleeffect even steeper (slope ∼ -0.9) than that (slope = -0.45) found for onthecorrelationnotedabove. theassumptionofconstant-dust-to-gasratio(Fig.1). DataforindividualDLAsshowatrendofincreasingdeple- From an earlier version of this diagram (Fig. 1), with 37 tionofCrwithrespecttoZn,andthus,higherdust-to-metalratio, points, including limits, Boisse´ et al. (1998)noted the trend of forhighermetallicity(Ledouxetal.2003;Akermanetal.2005; decreasingabundancewithincreasingN (theirFig.19;here- HI PushpaKhareetal.:ThenatureofdampedLymanαandsub-dampedLymanαabsorbers 3 Table1.RelevantdataforY06sub-samples E(B−V) Sample SelectionCriteriona Number Log(N )b Log(N )c ZnII HI (SMC) number ofsystems 0.002 24 ∆(g−i)d <0.2 698 12.4 20.0 0.003 23 We <2.0 558 12.2 20.1 MgII 0.006 9 z <1.3127 404 >12.4 20.4 abs 0.007 5 1.53≤W <1.91 139 12.6 20.5 MgII 0.009 11 if <19.12 398 >12.4 20.6 0.010 13 βg <0.103 405 <12.3 20.7 0.011 12 i≥19.12 411 >12.4 20.7 0.011 14 β≥0.103 404 12.5 20.7 0.012 26 W ≥2.5,∆(g−i)<0.2 97 12.5 20.7 MgII 0.013 1 Fullsample 809 12.3 20.8 0.014 16 Wh /W ≥0.577 369 12.4 20.8 FeII MgII 0.018 6 1.91≤W <2.52 132 12.8 20.9 MgII 0.019 20 FeIIλ2374present 392 12.5 20.9 0.031 7 2.52≤W <5.0 134 12.9 21.1 MgII 0.032 8 W ≥2.0 251 12.6 21.2 MgII 0.034 17 Wi /Wj <1.538 85 12.5 21.2 AlII MgI 0.034 19 FeIIλ2260present 58 13.0 21.2 0.036 21 ZnII-MgIλ2026present 83 13.1 21.2 0.058 22 ZnII-CrIIλ2062present 31 13.3 21.4 0.081 25 ∆(g−i)≥0.2 111 >12.7 21.6 0.085 27 W ≥2.5,∆(g−i)≥0.2 48 >12.4 21.6 MgII aForselectionfromthefullsample(sample1) bEstimatedfromequivalentwidthsincompositespectraaftercorrectionforblends cEstimatedfromE(B-V)assumingaconstantdust-to-gasratio dThedifferencebetweentheactualcoloursofQSOsandthemediancoloursofQSOsatthat redshift(Richardsetal.2003) eRestequivalentwidthofMgIIλ2796inÅ f imagnitudeoftheQSO gRelativevelocityw.r.t.theQSO hRestequivalentwidthofFeIIλ2382inÅ iRestequivalentwidthofAlIIλ1670inÅ jRestequivalentwidthofMgIλ2852inÅ after, the Boisse´ plot). They interpreted this as being due to 2.2.Establishingtherealityoftheobservedtrend the observational limitations in detecting weak Zn II lines at Inthissectionwepresentsomerelevantobservationalfactsand the low N end and an obscuration bias (caused by dimming HI discuss the known selection effects to suggest that the Boisse´ of the QSOs, by the dust in the absorbers, below the limit of plot may indeed not be affected by these and that the trend of magnitudelimited surveys) towardsthe high N end, causing HI decreasingabundancewithincreasingN maybereal. a dearth of points in the lower left and upper right corners of HI We first discuss the observedextinctionin QSOs and point the plot respectively. Boisse´ et al. (1998) proposed an obscu- ration threshold at N = 1.4×1013 cm−2 (above which the out that it is much smaller than that observed in typical Milky ZnII Way sight lines and may not cause significant dimming of the background QSO may be rendered invisible by dust obscura- backgroundQSOs. tion),shownasasolid(blue)lineinourFig.1.Thiswasonlyan empiricallimitbasedonthesampleusedbyBoisse´etal.(1998). Vladilo&Pe´roux(2005)haveshownthattheextinctionAV It is thus not surprising that a few systems (with zabs < 1.5) isproportionaltoNZnIIforMilkyWaysightlines.Theirrelation in Fig. 1 do lie above this threshold. Most of these systems isplottedinFig.2.Alsoplottedisasimilarrelationobtainedfor were observed recently by Khare et al. (2004), Meiring et al. the sub-samples of Y06. It can be seen that a correlation does (2006a,2006b) and Pe´roux et al. (2006a, 2006b) and many of existbetweenAV andNZnII forQSOabsorbersbutthattheav- them have strong Mg II and/orFe II lines in the SDSS spectra erageextinctionperZnioninthetheseabsorbersappearstobe oftheQSO’s.Recently,Herbert-Fortetal.(2006)havereported smallerthanthatinMilkywaybyafactorofthree. the presence of two metal strong systems (with z > 1.6) in ThemaximumvalueofE(B−V)foundbyY06fortheirsub- abs SDSSDR3,havingZnIIcolumndensitygreaterthantheobscu- sample(#27)ofmostreddenedsystemswas0.085whilethatfor ration threshold (SDSS1610+4724, log(N )=13.4±0.03 and the sub-sample(#23)of systemswith the restframeequivalent ZnII SDSS1709+3258,log(N )=13.19±0.03) and have estimated widthofMgIIλ2796 < 2.0Åisaslowas0.003.Theobserver ZnII that≃5%oftheSDSS-DR3DLApopulationwithz ≥2.2in frameA ,fortheaverageredshiftof1.33fortheirsamples,as- abs V QSOswithr <19.5havesimilarZnIIcolumndensities. suming a 1/λ extinction law, is thus smaller than 0.6 and 0.02, respectivelyforthe two samples. These valuessuggestthatthe dust obscuration by the absorbers observed towards the SDSS QSOs,maynotbeveryimportantandmaynotcausesignificant decreaseinthebrightnessoftheQSOs.Asimilarconclusionis 4 PushpaKhareetal.:ThenatureofdampedLymanαandsub-dampedLymanαabsorbers founda significantexcessofC IVsystemsin brightQSOs and interpreted this to be evidence for gravitational lensing. Some of these C IV systems could howeverbe intrinsic to the QSOs (Richards2001).Menard(2005)showedthatlensingduetoin- terveningMgIIsystemswithrestequivalentwidthsmallerthan 1.5,couldbrightenQSOsbyupto-0.2magnitudes.Thoughthe twoeffects(lensinganddustobscuration)havedifferentorigins andneedtobeunderstoodfurther,theresultsofProchaskaetal. (2005)indicatethattheeffectsoflensingdominateoverobscu- rationeffectsthatmaybepresent. Theaboveargumentsseemtoindicatethatdustobscuration is not important even in faint QSOs in the SDSS sample. We, however,notethatallthese argumentsare basedonsamplesof optically selected QSOs and can only apply if the dust content in QSO absorbers has a continuous distribution. We note that a few dusty DLAs have been observed (e.g. Junkkarinen et al. 2004;Motta et al. 2002;Wild et al. 2006)butin none of these casesE(B−V)exceeds0.42.SuchvaluesofE(B−V)maypush brightQSOsbelowthecutoff(19.1)ofSDSStargetingalgorithm butthesewill stillbe presentin thefaintsampleofY06.Some emptyfieldshavebeenobservedinopticalobservationstowards radioQSOs by Jorgensonet al. (2006)which couldpotentially beobscuredbydustyabsorbers,thoughtheauthorshaveargued againstsuchapossibilityonthebasisoftheDLAstatisticsob- Fig.2. Absorberrest frameaverageextinction,A , assumed to V servedinradioselectedQSOs. be2.93×E(B−V)vs.log(N )fortheY06results.Thelinear ZnII Sometheoreticalstudies(e.g.VladiloandPe´roux2005)have best fit relation A = 0.1×1013 N is shown as solid (red) V ZnII argued that up to 30% to 50% of the QSOs may be missed line. The best fit line obtained for Milky Way sight lines, A V in magnitudelimited surveysdueto dustobscuration.Smooth- = 0.3×1013 N by Vladilo and Pe´roux (2005) is shown, as ZnII particle-hydrodynamics simulations do need to introduce dust dashed(black)lineforcomparison. obscurationtoexplaintheobserved(low)DLAmetallicity(Cen etal.2003).Ourargumentsabovedonotruleoutthepossibility ofabimodaldistributionofdustcolumns,witha populationof drawnbyMurphy&Liske(2004)fromtheanalysisofspectral dustyabsorberswhichhavepushedthebackgroundQSOsbelow energydistributionsofQSOswithDLAsatzabs ∼3intheSDSS the observationallimitof the opticalsurveys.Thoughthispos- DR1. Ellison et al. (2005a) found no significant difference be- sibility can onlybe verifiedwith observationsof fainterQSOs, tweentheB-KcoloursofradioselectedQSOswithandwithout nocompellingevidenceforsuchapopulationisfoundfromthe DLAs,indicatingthatdustobscurationisnotveryimportant. studyofmetallicity,columndensitydistributionandmassden- Belowwediscussotherindirectevidenceindicatingthatdust sityofHIinDLAsinradioselectedsamplesofQSOs(Akerman obscurationisnotsignificantinQSOs. etal.2005;Jorgensonetal.2006).Theirstudysuggeststhatthe Wolfe et al. (2005),from the observed depletion pattern of opticallyselectedsamplesgiveafaircensusofthepopulationof elements, estimated the fraction of dust obscured QSOs to be DLAabsorbers.Itshould,however,benotedthatthesesamples < 10%. Schaye (2001;also see Zwaan & Prochaska2005) has arestillsmallandcoverredshifts>1.86only. shown that there is an upper limit of < 1022 cm−2 on the neu- Fromall the abovearguments,it seemsvery likely thatnot tralhydrogencolumndensitiesofDLAsbecauseofconversion many points in the upper right corner of the Boisse´ plot are of H I to H and notbecause of dust obscuration.Herbert-Fort missedduetodustobscuration. 2 et al. (2006) have presented several arguments against the ob- ThemissingpointsinthelowerleftcorneroftheBoisse´plot scurationbiasatredshifts>1.6,mostimportantly,onebasedon havebeen attributedto an artifactof the sensitivity of observa- the magnitude distribution of the parent QSOs of metal strong tions(Boisse´ etal.1998).Afewsystemsmayindeedbepresent systems. in this region as seen from the few upper limits there in Fig. Samples 11 and 12 of Y06 had i magnitude smaller/larger 1. However, it may be noted that in the analysis of Y06, solar than 19.1. Coincidently, this is the cutoff for the SDSS target- metallicity was estimated in the sub-sample (#24) of 698 sys- ing algorithm.Thusthe brightsample consists of QSOs which temswithaverageNHI ofabout1020cm−2.Most(638)ofthese shouldbeunreddenedtoenterintotheSDSSQSOcatalogwhile systems did not have detectable Zn II lines in their individual thefaintsampleconsistsofcandidateswhichwereobserved(and SDSSspectra.Wenotethatevenasolarmetallicitysystemwith foundtobeQSOs)onthebasisoftheirbeingX-raysources,ra- NHI ofabout1020cm−2,maynotproducedetectableZnIIlines dio sources etc. Thus one would expect the faint sample to be inanindividualSDSSspectrumwhichtypicallyhasS/N∼ 10- more reddened. However, both samples have similar values of 15anda3σdetectionlimitintheobserverframeof>0.3Å.So E(B−V)andsimilardistributionof∆(g−i)values.Thusthereis theabsenceofZnIIlinesinanindividualSDSSspectrumdoes noevidenceforhigherextinctioninfaintSDSSQSOsfromthe not mean low Zn abundance. The composite spectrum of 698 Y06 study. Prochaska et al. (2005) measured 40±20% higher systemshasS/NhigherthanthatinatypicalSDSSspectrumby gas density in DLAs towards bright QSOs than towards faint afactorof∼25-30,enablingthedetectionofZnIIlines.Inthe QSOsinSDSSDR3havingDLAs(z >2).Thisiscontraryto sub-samplesof Y06 (#s21 and 22) comprisedof systems with abs the obscurationbiasand they suggestthat gravitationallensing detectable Zn II and Cr II lines, the metallicity was estimated dueto DLAsmay beimportant.VandenBerket al. (1997)had to be lower than that in the sample of 698 systems. It thus ap- PushpaKhareetal.:ThenatureofdampedLymanαandsub-dampedLymanαabsorbers 5 pears that their metallicity measurements, being averages over ofthehypothesisthatthesub-DLAs,andpossiblyNDLLS,have large samples, are not affected by observational limitations in higherabundancesthanDLAsandrepresentaselectionofgalax- detectingweaklines.Wealsonotethattheaveragesolarmetal- iesthatarethemajormetalcarriersintheuniverse. licityinthesub-sample#24cannotbeanartifactofapossible highmetallicitytailofthemetallicitydistributioninsub-DLAs. 3. Implications The composite spectrum, used for abundance determination is the arithmetic mean of individual spectra. Thus, if 90% of the Recentlyamass-metallicityrelationhasbeendiscoveredbysev- 698 systems had subsolar abundance with [Zn/H]=-1 and only eralgroups.Tremontietal.(2004),fromtheimagingandspec- 10%hadsolarabundancethen,assuminganHIcolumndensity troscopy of 53,000 star-forming galaxies at z ∼ 0.1, found a of 1020 cm−2 for the systems, the average equivalent width of tight (±0.1 dex) correlation between stellar mass and metallic- λ2026lineofZnIIwillbe0.9×0.007+0.1×0.07 = 0.013Å, ity spanning over 3 orders of magnitude in stellar mass and a which will correspond to highly sub-solar abundance of Zn II factor of 10 in metallicity. Savaglio et al (2005), from a sam- for this sub-sample as opposed to the solar abundance derived ple of 56 galaxiesidentified a strong correlationbetween mass byY06.Itmayalso benotedthatthesub-samples#23and24, and metallicity at 0.4 < z < 1.0. They predict that the gener- dohavealargenumberofsystemswithlowNHIwhichinprinci- allymetalpoorDLAgalaxieshavestellarmassesoftheorderof ple,couldhavehadlow[Zn/H]andcouldthenhavebeenpresent 108.8M (withadispersionof0.7dex)fromz=0.2toz=4.Erbet ⊙ inthelowerleftcorneroftheBoisseplot.Sub-sample#23which al.(2006)haveobtainedamass-metallicityrelationinasample is the sample of systems with W < 2.0 Å, includes all the of 87 galaxies at < z > ∼ 2.26 which is similar to the relation MgII systemsinsub-samples#s2,3and4(withW <1.91Å,all forlocalgalaxies(Tremontiet al. 2004)exceptforan offsetof MgII together 397 systems) which have E(B−V) < 0.001 and thus 0.3dexinmetallicities,indicatingthatgalaxiesofagivenmass N <5×1019cm−2.Similarlysub-ample#24has698systems. havelowermetallicityathighredshift.Theyhowever,notethat HI theuncertaintyinthemetallicityoffsetbetweenthez∼2andlo- EvenassumingithasallthesystemswithW > 1.91Å(i.e. MgII calgalaxiesisapproximatelyafactorof2,aboutthesameasthe all the systems notincludedin sub-amples#s 2, 3 and 4) from theoriginalsampleof809systems,itwillstillhave≥ 286sys- offsetitself.Ledouxetal.(2006)foundacorrelationbetweenthe temswithN <5×1019cm−2.However,thehighvaluesofthe metallicityandvelocitywidthsoflinesoflowionizationspecies HI over two orders of magnitude in metallicity, at 1.7 < z < 4.3. averageabundancesforthesesub-samplessuggestthatmostof Assumingvelocitywidthstobeameasureofmass,theirmass- theselowN systemsdonothavelowabundanceandthusdo HI metallicityrelationisconsistentwiththatfoundforlocalgalax- notoccupythelowerleftcorneroftheBoisseplot.Wealsonote iesbyTremontietal.(2004).We,however,notethatBoucheet that it is possible that these two sub-samples do include some al.(2006)foundananticorrelationbetweenhalomassandMgII DLAs. However, as argued above, the DLAs do not have high λ2796equivalentwidthswhichseemstogoagainsttheresults abundancesandcanonlyreducetheaverageabundancesofthe ofLedouxetal.(2006). sub-samples,thereby,makingthe case forhigherabundanceof At low redshifts the metallicity of most DLAs is almost an sub-DLAsevenstronger. order of magnitude lower than the solar value, while, as sug- On the conservative side, we point out that even if some gestedbyresultsofY06andthoseofKulkarnietal.(2006b),the points (in TLS) are indeed missing in the lower left region of meansub-DLAmetallicityseemstobeclosetothesolarvalue. Fig.1duetosensitivitylimitofobservations,theaveragemetal- Themass-metallicityrelationofTremontietal.(2004)wouldim- licityatlowN (inTLS)willstillbehigherthanthatathigh HI plystellarmassesofabout1011 M and< 109 M respectively N duetothelargenumberofhighmetallicity,lowN sys- ⊙ ⊙ HI HI forthesub-DLAsandDLAs.Thesenumberswillbesmallerbya temsthathavebeenobserved(assumingtheobscurationbiasto factor of 2 if the mass-metallicity relation of Erb et al. (2006) be absent, as argued above). It thus appears that the sub-DLA is used. If the stellar metallicity is lower/higher than the gas metallicityisindeedhigherthanthatofDLAsandisclosetothe phasemetallicity(asdeterminedbytheabundancesinDLAsand solarvalue,atlowredshifts. sub-DLAs)the massesoftheDLA andsub-DLAgalaxiesmay Itthusseemsverylikely,thattheobservedtrendofdecreas- be correspondinglylower/higher,however,the ratio of the two ingabundancewithincreasingNHIisnotduetoselectioneffects masseswillnotbeaffected. andisrealandthatDLAsarenotamongthemajormetalcarri- We thus propose that the sub-DLAs and DLAs in general ers in the universe. We note that super-solar abundances have representdifferenttypesofgalaxies.Byandlarge,thesub-DLAs beenobservedinsevensub-DLAs(Pettinietal.2000;Khareet areproducedbymassivegalaxies,withhighermetallicity,while al.2004;Prochaskaetal.2006;Meiringetal.2006b).Nearso- the DLAs are produced by less massive galaxies with lower larabundancehasbeenestimatedinoneNDLLS(Jenkinsetal. metallicity. A few sub-DLAs may indeed arise from lines of 2005).Bergeronetal.(1994),estimatedabundances([X/H]),of sight which encounter low H I columns through DLA galax- severalMgIILymanLimitsystemswithlowLymanlimitopti- ies and therefore, have lower metallicity. These will give rise caldepth,withredshiftsbetween0.1and1.1,tobebetween-0.5 to points in the lower left region of Fig. 1. Similarly, a few and-0.3dex.Super-solarabundanceshave also beenestimated DLAsmayariseinlinesofsightthroughsub-DLAgalaxiesand forthreesystemswithredshiftsbetween0.7and0.95(Charlton mayhavehighermetallicitiesthoughtheprobabilityofthishap- etal.2003,Dingetal.2003;Meseiroetal.2005)andnear-solar pening may be small. In our Galaxy, for instance, clouds with abundancehasbeenestimatedinonesystematredshiftof0.064 log(N )>20.3are verysmalland representonlya tiny partof (Araciletal.2006);allthesesystemshaveNHI <1016cm−2.We thecroHsIssectionoftheentireGalaxy. howevercautionthatthederivedabundanceinNDLLSandsys- IthasbeensuggestedthatthelowmetallicityfoundinDLAs temswithsmallerHIcolumndensitiesdodependonthedetails is caused by metallicity gradients. Differences between emis- ofphotoionizationcalculations. sion line and absorption line metallicities have been observed Havingarguedabove,fortherealityoftheobserveddepen- in a few cases (Chen et al. 2005; Ellison et al. 2005b) but not denceofZn metallicityonH I columndensity,below,we con- inothers(Schulte-Ladbecketal.2005;Bowenetal.2005).The sider its implications. In particular, we consider consequences metallicitygradientsinnearbyspiralsarefairlyweak(Bresolin 6 PushpaKhareetal.:ThenatureofdampedLymanαandsub-dampedLymanαabsorbers et al. 2004) and can not explain the low metallicity in DLAs ies.Chunetal.(2006),usingadaptiveopticsimagingfor4DLAs withsmallimpactparameters(e.g.Kulkarnietal. 2005).Ithas and2sub-DLAsatz<0.5,foundmostofthecandidateabsorber beensuggestedinseveralstudies(e.g.Kauffmann1996;Daset galaxiesortheircompanionstohavelow-luminosity(<0.1L ). ∗ al.2001;Zwaanetal.2005)thatDLAsmayresultforsmallval- Thus, it seems that the results of some of the DLA and uesofimpactparameterswhilelargerimpactparametersthrough sub-DLAimagingstudiesareconsistentwiththehypothesiswe thesame absorbersmay giverise to NDLLSandLymanα for- makehere.Moresystematicimagingsurveysareneededtocon- est systems. In this case, abundance gradients can not be in- firmthe ideaspresentedin thispaper.DeepimaginginK-band voked to explain lower abundances in DLAs as compared to forabsorberswithhighabundancesatz < 1.5shouldbeable abs sub-DLAs/NDLLS.Thisscenariohasalsonotbeenverifiedob- toconfirmthepresenceofmassive(red)galaxies,whileimaging servationally. searches in narrow, optical emission lines should help in con- Kulkarni et al. (2006b) have shown that the N weighted firmingthatDLAsaremostlydwarfgalaxies. HI meanmetallicityforsub-DLAsisafactorof6 higherthanthat forDLAsatlowredshifts.Theyestimatethatattheseredshifts, 4. Conclusions the contribution of the ISM in sub-DLAs to the cosmic metal budgetmaybeseveraltimesthatofISMinDLAs.Prochaskaet We havestudiedthedependenceofmetallicityonN inQSO HI al.(2006),basedontheirobservationsoftwometalstrongsub- absorbers with N > 1019 cm−2 and have discussed various HI DLAs(SuperLLSintheirpaper)andresultsfromtheirsub-DLA selection effects that may be giving rise to the observed trend. survey, estimated that the ISM in sub-DLAs may contribute at We havearguedthatthe selectioneffectsare notimportantand least15%tothemetalbudgetoftheuniverseatz≃2. that the observedtrend is real. Our conclusionsbased on these If the galaxies that give rise to sub-DLAs are indeed more arguments, and subject to confirmation by future observations, massive than the galaxies that give rise to DLAs, as suggested areasfollows: above,thenanindividualsub-DLAgalaxywillcontributemore to the stellar mass of the universe than an individual DLA 1. TheamountofdustinQSOabsorbersissmallandisnotre- galaxy.Also,inCDMcosmology,asthemassivegalaxiesform sponsibleformissingmanyQSOsinmagnitudelimitedsur- by mergers of smaller galaxies which triggers star formation veys. We can not, however,rule out the possibility of a bi- leading to a higher rate of metal production, they are not only modaldistributionofdustcolumnssuchthattheremayexist expected to show a higher rate of metallicity evolution (as is apopulationofdustyabsorberswhichpushthebackground found by Kulkarni et al. 2006b) but are also expected to con- QSOs below the observational threshold of current optical tributemoremassatlowerredshifts.Itisthuspossiblethatthe spectroscopicstudiesandiscompletelyinvisible. contributionofsub-DLAproducinggalaxiestothecosmicmetal 2. The metallicity in QSO absorbers with NHI > 1019 cm−2, budget at lower redshifts may indeed be considerably higher decreases with increase in H I column density of these ab- than 15% (as estimated by Prochaska et al. (2005) at z ≃ 2) sorbers. The trend possibly continues to lower H I column andmayhelpalleviatethemissingmetalsproblem. densities.Thesub-DLAsthushavehighermetalabundances Boissier et al. (2003) compared the observed properties of ascomparedtotheDLAsatredshiftsbetween0and2. DLAswiththepredictionsofsimplemodelsofpresentdaydisk 3. The observed mass-metallicity relation suggests that most galaxies and showed that low surface brightness galaxies con- DLAs are associated with low mass (< 109 M⊙) galax- tributeasmuchasspiralstothenumberandHImassofDLAs. ies while most sub-DLAs are associated with massive spi- Zwaanetal.(2005)haveshownthatpropertiesofDLAsarecon- ral/elliptical galaxies. It is possible that the non-DLA LLS sistent with their formingin galaxies of variousmorphological mayalsobemetalrichandmaybeassociatedwithmassive types,with87%ofDLAcross-sectionbeingcontributedbysub- galaxies. L galaxies.Semi-analyticmodelsindicatesub-L galaxiestobe 4. Thesub-DLAgalaxieswillcontributealargerfractionofto- ∗ ∗ majorcontributorstoDLAcross-section(Okoshi&Nagashima talmass(stellarandISM)andthereforemetals,tothecosmic 2005). Thus there seems to be some evidence for a significant budget,speciallyatlowredshifts,ascomparedtotheDLAs. fractionofDLAstobeassociatedwithsub-L galaxies. The Sub-DLAs and possibly, non-DLA LLS galaxies, may ∗ DeepimaginghasshownlowredshiftDLAstobeoftenas- containamuchlargerfractionofthemetalsatz<1thanhas sociated with dwarf galaxies (Rao et al. 2003). Le Brun et al. beenappreciated. (1997) suggested that the DLA galaxies (which were selected 5. Thefewimagingstudies,ofgalaxiesresponsibleforquasar on the basis of a damped Lyman α line or 21 cm absorption absorption line systems done so far, are ambiguous on the or a very high Mg II/Fe II ratio) strongly differ from the Mg morphologyof DLA and sub-DLA galaxies. More system- II selected galaxies, the latter being mostly luminous galaxies atic, deep imaging in r-band, Ks-band and in narrow emis- withevidenceofrecentstarformationactivity.Indeedemission- sionlinesisessentialtoconfirmingtheinferencesofthispa- lineimagingsearchessuggestthatalargefractionofDLAsap- per. peartohavelowstarformationrates(Kulkarnietal.2006aand Acknowledgements. PKacknowledgessupportfromtheDepartmentofScience referencestherein).Deepimagingofthreesub-DLAgalaxiesat andTechnology,GovernmentofIndia(SP/S2/HEP-07/03).VPKandJDMac- z <0.7showsthemtobeassociatedwithL>0.6L∗,disk/spiral knowledge support from the U.S. National Science Foundation grant AST- galaxies(Zwaanetal.2005).Notethatthelinesofsightthrough 0206197. our Galaxy are, statistically speaking, mostly metal rich sub- DLAs with N < 2×1020 cm−2, perpendicular to the plane. HI References All these support our hypothesis about the nature of DLA and sub-DLA galaxies. Chen and Lanzetta (2003), however, found Akerman,C.J.,Ellison,S.L.,Pettini,M.,&Steidel,C.C.2005,A&A,440,449 theDLAgalaxiestohaveavarietyofmorphologies.Djorgovski Aracil,B.,Tripp,T.M.,Bowen,D.V.,Proschaska,J.X.,Chen,H.W.,&Frye, B.L.2006,MNRAS,367,139 etal.(1996)andMolleretal.(2002,2004)haveobservedafew Bergeron,J.etal.1994,ApJ,436,33 high-redshift(z≥2)absorbinggalaxiesinLymanαemissionand Boisse´,P.,LeBrun,V.,Bergeron,J.,&Deharveng,J.M.1998,A&A,333,841 foundtheirpropertiestobesimilar todisk/Lymanbreakgalax- Boissier,S.,Pe´roux,C.&Pettini,M.2003,MNRAS,338,131 PushpaKhareetal.:ThenatureofdampedLymanαandsub-dampedLymanαabsorbers 7 Bowen,D.V.,Jenkins,E.B.,Pettini,M.,&Tripp,T.M.2005,ApJ,635,880 Rao,S.M.,Prochaska,J.X.,Howk,C.,&Wolfe,A.M.2005,AJ,129,9 Bouche´,N.,Murphy,M.T.,Pe´roux,C.,Csabai,I.,&Wild,V.2006,MNRAS, Richards,G.T.2001,ApJS,133,53 371,495 Richards,G.T.etal.2003,AJ,126,1131 Bresolin,F.,Garnett,D.R.,&Kennicutt,R.C.2004,ApJ,615,228 Savaglio,S.etal.2005,ApJ,635,260 Cen,R.,Ostriker,J.P.,Prochaska,J.X.,&Wolfe,A.M.2003,ApJ,598,741 Schaye,J.2001,ApJ,562,L95 Charlton,J.C.,Ding,J.,Zonak,S.G.,Churchill,C.W.,Bond,N.A.,&Rigby, Schulte-Ladbeck.R.E.,Konig,B.,Miller,C.J.,Hopkins,A.M.,Drozdovsky,I. J.R.2003,ApJ,589,111 O.,Turnshek,D.A.,Hopp,U.2005,ApJ,625,L79 Chen,H.W.,&Lanzetta,K.M.2003,ApJ,597,706 Srianand,R.,Petitjean,P.2001,A&A,373,816 Chen,H.W.,Kennicutt,R.C.,&Rauch,M.2005,ApJ,620,703 Tremonti,C.A.etal.2004,ApJ,613,898 Chun,M.R.,Gharanfoli,S.,Kulkarni,V.P.,&Takamiya,M.2006,AJ,131,686 VandenBerk,D.E.,Quashnock,J.M.,York,D.G.,Yanny,B.1997,ApJ,469, Das,S.,Khare,P.,&Samantray,A.2001,A&A,373,843 78 Dessauges-Zavadsky,M.,Pe´roux,C.,Kim,T.-S.,D’Odorico,S.,&McMahon, Vladilo,G.,&Pe´roux,C.2005,A&A,444,461 R.G.2003,MNRAS,345,447 Wild,V.,Hewett,P.C.,&Pettini,M.2006,MNRAS,367,211 Ding,J.,Charlton,J.C.,Churchill,C.W.,&Palma,C.2003,ApJ,590,746 Wolfe,A.M.,Gawiser,E.,&Prochaska,J.X.2005,ARAA,43,861 Djorgovski,S.G.,Pahre,M.A.,Bechtold,J.,&Elston,R.1996,Nature,382, York,D.G.,etal.2006,MNRAS,367,945 234 Zwaan,M.A.,&Prochaska,J.X.2006,ApJ,643,675 Ellison,S.L.,Lopez,S.2001,A&A,380,117 Zwaan,M.A.,vanderHulst,J.M.,Briggs,F.H.,Verheijen,M.A.W.,&Ryan- Ellison,S.L.,Hall,P.B.&Lira,P.2005a,ApJ, Weber,E.V.2005,MNRAS,364,1467 Ellison,S.L.,Kewley,L.J.,Mallen-Orleans,G.2005b,MNRAS,357,354 Erb, D. K., Shapley, A. E., Pettini, M., Steidel, C. C., Reddy, N. A., & Adelberger,K.L.2006,ApJ,644,813 Herbert-Fort, S., Prochaska, J. X., Dessauges-Zavadsky, M., Ellison, S. L., Howk,C.,Wolfe,A.M.,&Prochter,G.E.2006,PASP,118,1077 Jenkins,E.B.,Bowen,D.V.,Tripp,T.M.,&Sembach,K.R.2005,ApJ,623, 767 Jorgenson,R.A.,Wolfe,A.M.,Prochaska,J.X.,Lu,L.,Howk,J.C.,Cooke,J., Gawaiser,E.,&Gelino,D.M.2006,ApJ,646,730 Junkkarinen,V.T.,Cohen,R.D.,Beaver,E.A.,Burbidge,E.M.,Lyons,R.W. &Madejski,G.2004,ApJ,614,658 Kauffmann,G.1996,MNRAS,281,475 KhareP.,KulkarniV.P.,LauroeschJ.T.,YorkD.G,CrottsP.S.,&Nakamura O.2004,ApJ,616,86 Kulkarni, V. P., Bechtold, J., Ge, J. 1999, in Proc. of ESO Conference on “Chemical Evolution fromZerotoHighRedshifts”, eds.M.RosaandJ. Walsh,(Springer-Verlag),275 Kulkarni,V.P.,Fall,S.M.,Lauroesch,J.T.,York,D.G,Welty,D.E,Khare,P., &Truran,J.W.2005,ApJ,618,68 Kulkarni, V. P.,Woodgate, B. E.,York, D. G., Thatte, D. G.,Meiring, J. D., Palunas,P.,&Wassell,E.2006a,ApJ,636,30 Kulkarni,V.P.,Khare,P.,Pe´roux,C.,York,D.G.,Lauroesch,J.T.,&Meiring, J.D.2006b,submittedtoApJL,astro-ph/0608126 LeBrun,V.,Bergeron,J.,Boisse´,P.,&Deharveng,J.M.1997,A&A,321,733 Ledoux,C.,Petitjean,P.,&Srianand,R.2003,MNRAS,346,209 Ledoux,C.,Petitjean, Fynbo,J.P.U.,Moller,P.,&Srianand,R.2006,A&A, 457,71L Lu,L.,Savage,B.D.,Tripp,T.M.,Meyer,D.M.1995,ApJ,447,597 Lu,L.,Sargent, W.L.W.,Barlow, T.A.,Churchill, C. W.,Vogt, S.S.1996, ApJS,107,475 Maseiro,J.D.R.,Charlton, J.C.,Ding,J.,Churchill, C.W.,&Kacprzak, G. 2005,ApJ,623,57 Meiring, J. D., Kulkarni, V. P., Khare, P., Bechtold, J., York, D. G., Cui, J., Lauroesch, J.T.,Crotts,A.P.S.,&Nakamura, O.2006a,MNRAS,370, 43 Meiring,J.D.,Lauroesch,J.T.,Kulkarni,V.P.,Pe´roux,C.,Khare,P.,York,D. G.2006b,MNRAS,submitted Menard,B.2005,ApJ,630,28 Moller,P.,Warren,S.J.,Fall,S.M.,Fynbo,J.U.,&Jakobsen,P.2002,ApJ, 574,51 Moller,P.,Fynbo,J.P.U.,&Fall,S.M.2004,A&A,422,L33 Motta,V.,Mediavilla,E.,Muoz,J.A.,Falco,E.,Kochanek,C.S.,Arribas,S., Garca-Lorenzo,B.,Oscoz,A.,&Serra-Ricart,M.2002,ApJ,574,719 Murphy,M.&Liske,J.2004,MNRAS,354,31 Okoshi,K.,&Nagashima,M.2005,ApJ,623,99 Pe´roux,C.,Dessauges-Zavadsky,M.,D’Odorico,S.,Kim,T.S.,&McMahon, R.G.2003,MNRAS,345,480 Pe´roux,C.,Kulkarni,V.P.,Meiring,J.D.,Ferlet,R.,Khare,P.,Lauroesch,J.T., Vladilo,G.,&York,D.G.2006a,A&A,450,53 Pe´roux,C.,Meiring,J.D.,Kulkarni,V.P.,Ferlet,R.,Khare,P.,Lauroesch,J.T., Vladilo,G.,&York,D.G.2006b,MNRAS,372,369 Pettini,M.,Smith,L.J.,Hunstead,R.W.,King,D.L.1994,ApJ,426,79 Pettini,M.,Ellison,S.L.,Steidel,C.C.,Bowen,D.V.1999,ApJ,510,576 Pettini,M.,Ellison,S.L.,Steidel,C.C.,Shapley,A.E.,&Bowen,D.V.2000, ApJ,532,65 Prochaska,J.X.,Herbert-Fort,S.,&Wolfe,A.M.2005,ApJ,635,123 Prochaska,J.X.,O’Meara,J.M.,Herbert-Fort,S.,Burles,S.,Prochter,G.E.,& Bernstein,R.A.2006,astro-ph/0606573 Rao, S. M., Nestor, D. B., Turnshek, D. A., Lane, W. M., Monier, E. M. & Bergeron,J.2003,ApJ,595,94

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.