ebook img

The Natl. Plasma physics formulary PDF

70 Pages·2004·0.396 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Natl. Plasma physics formulary

2004 REVISED NRL PLASMA FORMULARY J.D. Huba Beam Physics Branch Plasma Physics Division Naval Research Laboratory Washington, DC 20375 Supported by The O(cid:14)ce of Naval Research 1 FOREWARD The NRL Plasma Formulary originated over twenty (cid:12)ve years ago and has been revised several times during this period. The guiding spirit and per- son primarily responsible for its existence is Dr. David Book. I am indebted to Dave for providing me with the TEX (cid:12)les for the Formulary and his continued suggestions for improvement. The Formulary has been set in TEX by Dave Book, Todd Brun, and Robert Scott. Finally, I thank readers for communicat- ing typographical errors to me. 2 CONTENTS Numerical and Algebraic . . . . . . . . . . . . . . . . . . . . . 4 Vector Identities . . . . . . . . . . . . . . . . . . . . . . . . . 5 Di(cid:11)erential Operators in Curvilinear Coordinates . . . . . . . . . . . 7 Dimensions and Units . . . . . . . . . . . . . . . . . . . . . . . 11 International System (SI) Nomenclature . . . . . . . . . . . . . . . 14 Metric Pre(cid:12)xes . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Physical Constants (SI) . . . . . . . . . . . . . . . . . . . . . . 15 Physical Constants (cgs) . . . . . . . . . . . . . . . . . . . . . 17 Formula Conversion . . . . . . . . . . . . . . . . . . . . . . . 19 Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . . . . 20 Electricity and Magnetism . . . . . . . . . . . . . . . . . . . . . 21 Electromagnetic Frequency/Wavelength Bands . . . . . . . . . . . . 22 AC Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Dimensionless Numbers of Fluid Mechanics . . . . . . . . . . . . . 24 Shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Fundamental Plasma Parameters . . . . . . . . . . . . . . . . . . 29 Plasma Dispersion Function . . . . . . . . . . . . . . . . . . . . 31 Collisions and Transport . . . . . . . . . . . . . . . . . . . . . 32 Ionospheric Parameters . . . . . . . . . . . . . . . . . . . . . . 41 Solar Physics Parameters . . . . . . . . . . . . . . . . . . . . . 42 Thermonuclear Fusion . . . . . . . . . . . . . . . . . . . . . . 43 Relativistic Electron Beams . . . . . . . . . . . . . . . . . . . . 45 Beam Instabilities . . . . . . . . . . . . . . . . . . . . . . . . 47 Approximate Magnitudes in Some Typical Plasmas . . . . . . . . . . 49 Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Atomic Physics and Radiation . . . . . . . . . . . . . . . . . . . 53 Atomic Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 59 Complex (Dusty) Plasmas . . . . . . . . . . . . . . . . . . . . . 62 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3 NUMERICAL AND ALGEBRAIC Gain in decibels of P relative to P 2 1 G = 10log (P =P ): 10 2 1 To within two percent 1=2 2 3 10 3 (2(cid:25)) 2:5; (cid:25) 10; e 20; 2 10 : (cid:25) (cid:25) (cid:25) (cid:25) Euler-Mascheroni constant1 (cid:13) = 0:57722 Gamma Function (cid:0)(x + 1) = x(cid:0)(x): (cid:0)(1=6) = 5.5663 (cid:0)(3=5) = 1.4892 (cid:0)(1=5) = 4.5908 (cid:0)(2=3) = 1.3541 (cid:0)(1=4) = 3.6256 (cid:0)(3=4) = 1.2254 (cid:0)(1=3) = 2.6789 (cid:0)(4=5) = 1.1642 (cid:0)(2=5) = 2.2182 (cid:0)(5=6) = 1.1288 (cid:0)(1=2) = 1:7725 = p(cid:25) (cid:0)(1) = 1.0 Binomial Theorem (good for x < 1 or (cid:11) = positive integer): j j 1 (cid:11) (cid:11)((cid:11) 1) (cid:11)((cid:11) 1)((cid:11) 2) (cid:11) k 2 3 (1 + x) = x 1 + (cid:11)x + (cid:0) x + (cid:0) (cid:0) x + :::: k (cid:17) 2! 3! X(cid:0) (cid:1) k=0 Rothe-Hagen identity2 (good for all complex x, y, z except when singular): n x x + kz y y + (n k)z (cid:0) x + kz k y + (n k)z n k X (cid:0) (cid:1) (cid:0) (cid:0) (cid:0) (cid:1) k=0 x + y x + y + nz = : x + y + nz n (cid:0) (cid:1) Newberger’s summation formula3 [good for (cid:22) nonintegral, Re((cid:11) + (cid:12)) > 1]: (cid:0) 1 ( 1)nJ (z)J (z) (cid:25) (cid:11) (cid:13)n (cid:12)+(cid:13)n (cid:0) (cid:0) = J (z)J (z): (cid:11)+(cid:13)(cid:22) (cid:12) (cid:13)(cid:22) n + (cid:22) sin(cid:22)(cid:25) (cid:0) X n= (cid:0)1 4 VECTOR IDENTITIES4 T I Notation: f; g; are scalars; A, B, etc., are vectors; is a tensor; is the unit dyad. (1) A B C = A B C = B C A = B C A = C A B = C A B (cid:1) (cid:2) (cid:2) (cid:1) (cid:1) (cid:2) (cid:2) (cid:1) (cid:1) (cid:2) (cid:2) (cid:1) (2) A (B C) = (C B) A = (A C)B (A B)C (cid:2) (cid:2) (cid:2) (cid:2) (cid:1) (cid:0) (cid:1) (3) A (B C)+ B (C A) + C (A B) = 0 (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (4) (A B) (C D) = (A C)(B D) (A D)(B C) (cid:2) (cid:1) (cid:2) (cid:1) (cid:1) (cid:0) (cid:1) (cid:1) (5) (A B) (C D) = (A B D)C (A B C)D (cid:2) (cid:2) (cid:2) (cid:2) (cid:1) (cid:0) (cid:2) (cid:1) (6) (fg) = (gf) = f g + g f r r r r (7) (fA) = f A + A f r (cid:1) r (cid:1) (cid:1) r (8) (fA) = f A + f A r (cid:2) r (cid:2) r (cid:2) (9) (A B) = B A A B r (cid:1) (cid:2) (cid:1) r (cid:2) (cid:0) (cid:1) r (cid:2) (10) (A B) = A( B) B( A) + (B )A (A )B r (cid:2) (cid:2) r (cid:1) (cid:0) r (cid:1) (cid:1) r (cid:0) (cid:1) r (11) A ( B) = ( B) A (A )B (cid:2) r (cid:2) r (cid:1) (cid:0) (cid:1) r (12) (A B) = A ( B) + B ( A) + (A )B+ (B )A r (cid:1) (cid:2) r (cid:2) (cid:2) r(cid:2) (cid:1) r (cid:1) r (13) 2f = f r r (cid:1) r (14) 2A = ( A) A r r r (cid:1) (cid:0) r (cid:2) r (cid:2) (15) f = 0 r (cid:2) r (16) A = 0 r (cid:1) r (cid:2) T If e , e , e are orthonormal unit vectors, a second-order tensor can be 1 2 3 written in the dyadic form T (17) = T e e ij i j i;j P In cartesian coordinates the divergence of a tensor is a vector with components T (18) ( ) = (@T =@x ) i ji j r(cid:1) j P [This de(cid:12)nition is required for consistency with Eq. (29)]. In general (19) (AB) = ( A)B + (A )B r (cid:1) r (cid:1) (cid:1) r T T T (20) (f ) = f +f r (cid:1) r (cid:1) r(cid:1) 5 Let r = ix + jy + kz be the radius vector of magnitude r, from the origin to the point x;y;z. Then (21) r = 3 r (cid:1) (22) r = 0 r (cid:2) (23) r = r=r r (24) (1=r) = r=r3 r (cid:0) (25) (r=r3) = 4(cid:25)(cid:14)(r) r (cid:1) I (26) r = r If V is a volume enclosed by a surface S and dS = ndS, where n is the unit normal outward from V; (27) dV f = dSf Z r Z V S (28) dV A = dS A Z r (cid:1) Z (cid:1) V S T T (29) dV = dS Z r(cid:1) Z (cid:1) V S (30) dV A = dS A Z r (cid:2) Z (cid:2) V S 2 2 (31) dV(f g g f) = dS (f g g f) Z r (cid:0) r Z (cid:1) r (cid:0) r V S (32) dV(A B B A) Z (cid:1) r (cid:2) r (cid:2) (cid:0) (cid:1) r (cid:2)r (cid:2) V = dS (B A A B) Z (cid:1) (cid:2) r (cid:2) (cid:0) (cid:2) r (cid:2) S If S is an open surface bounded by the contour C, of which the line element is dl, (33) dS f = dlf Z (cid:2)r I S C 6 (34) dS A = dl A Z (cid:1) r (cid:2) I (cid:1) S C (35) (dS ) A = dl A Z (cid:2) r (cid:2) I (cid:2) S C (36) dS ( f g) = fdg = gdf Z (cid:1) r (cid:2) r I (cid:0)I S C C DIFFERENTIAL OPERATORS IN CURVILINEAR COORDINATES5 Cylindrical Coordinates Divergence 1 @ 1 @A @A (cid:30) z A = (rA ) + + r r (cid:1) r @r r @(cid:30) @z Gradient @f 1 @f @f ( f) = ; ( f) = ; ( f) = r (cid:30) z r @r r r @(cid:30) r @z Curl 1 @A @A z (cid:30) ( A) = r r (cid:2) r @(cid:30) (cid:0) @z @A @A r z ( A) = (cid:30) r (cid:2) @z (cid:0) @r 1 @ 1 @A r ( A) = (rA ) z (cid:30) r (cid:2) r @r (cid:0) r @(cid:30) Laplacian 1 @ @f 1 @2f @2f 2 f = r + + r r @r @r r2 @(cid:30)2 @z2 (cid:16) (cid:17) 7 Laplacian of a vector 2 @A A 2 2 (cid:30) r ( A) = A r r r r (cid:0) r2 @(cid:30) (cid:0) r2 2 @A A 2 2 r (cid:30) ( A) = A + (cid:30) (cid:30) r r r2 @(cid:30) (cid:0) r2 2 2 ( A) = A z z r r Components of (A )B (cid:1) r @B A @B @B A B r (cid:30) r r (cid:30) (cid:30) (A B) = A + + A r r z (cid:1) r @r r @(cid:30) @z (cid:0) r @B A @B @B A B (cid:30) (cid:30) (cid:30) (cid:30) (cid:30) r (A B) = A + + A + (cid:30) r z (cid:1) r @r r @(cid:30) @z r @B A @B @B z (cid:30) z z (A B) = A + + A z r z (cid:1) r @r r @(cid:30) @z Divergence of a tensor 1 @ 1 @T @T T T (cid:30)r zr (cid:30)(cid:30) ( ) = (rT ) + + r rr r (cid:1) r @r r @(cid:30) @z (cid:0) r 1 @ 1 @T @T T T (cid:30)(cid:30) z(cid:30) (cid:30)r ( ) = (rT ) + + + (cid:30) r(cid:30) r (cid:1) r @r r @(cid:30) @z r 1 @ 1 @T @T T (cid:30)z zz ( ) = (rT ) + + z rz r (cid:1) r @r r @(cid:30) @z 8 Spherical Coordinates Divergence 1 @ 1 @ 1 @A 2 (cid:30) A = (r A ) + (sin(cid:18)A ) + r (cid:18) r (cid:1) r2 @r rsin(cid:18) @(cid:18) rsin(cid:18) @(cid:30) Gradient @f 1 @f 1 @f ( f) = ; ( f) = ; ( f) = r (cid:18) (cid:30) r @r r r @(cid:18) r rsin(cid:18) @(cid:30) Curl 1 @ 1 @A (cid:18) ( A) = (sin(cid:18)A ) r (cid:30) r (cid:2) rsin(cid:18) @(cid:18) (cid:0) rsin(cid:18) @(cid:30) 1 @A 1 @ r ( A) = (rA ) (cid:18) (cid:30) r (cid:2) rsin(cid:18) @(cid:30) (cid:0) r @r 1 @ 1 @A r ( A) = (rA ) (cid:30) (cid:18) r (cid:2) r @r (cid:0) r @(cid:18) Laplacian 1 @ @f 1 @ @f 1 @2f 2 2 f = r + sin(cid:18) + r r2 @r @r r2 sin(cid:18) @(cid:18) @(cid:18) r2 sin2 (cid:18) @(cid:30)2 (cid:16) (cid:17) (cid:16) (cid:17) Laplacian of a vector 2A 2 @A 2cot(cid:18)A 2 @A 2 2 r (cid:18) (cid:18) (cid:30) ( A) = A r r r r (cid:0) r2 (cid:0) r2 @(cid:18) (cid:0) r2 (cid:0) r2 sin(cid:18) @(cid:30) 2 @A A 2cos(cid:18) @A 2 2 r (cid:18) (cid:30) ( A) = A + (cid:18) (cid:18) r r r2 @(cid:18) (cid:0) r2 sin2 (cid:18) (cid:0) r2 sin2 (cid:18) @(cid:30) A 2 @A 2cos(cid:18) @A 2 2 (cid:30) r (cid:18) ( A) = A + + (cid:30) (cid:30) r r (cid:0) r2 sin2 (cid:18) r2 sin(cid:18) @(cid:30) r2 sin2 (cid:18) @(cid:30) 9 Components of (A )B (cid:1) r @B A @B A @B A B + A B r (cid:18) r (cid:30) r (cid:18) (cid:18) (cid:30) (cid:30) (A B) = A + + r r (cid:1) r @r r @(cid:18) rsin(cid:18) @(cid:30) (cid:0) r @B A @B A @B A B cot(cid:18)A B (cid:18) (cid:18) (cid:18) (cid:30) (cid:18) (cid:18) r (cid:30) (cid:30) (A B) = A + + + (cid:18) r (cid:1) r @r r @(cid:18) rsin(cid:18) @(cid:30) r (cid:0) r @B A @B A @B A B cot(cid:18)A B (cid:30) (cid:18) (cid:30) (cid:30) (cid:30) (cid:30) r (cid:30) (cid:18) (A B) = A + + + + (cid:30) r (cid:1) r @r r @(cid:18) rsin(cid:18) @(cid:30) r r Divergence of a tensor 1 @ 1 @ T 2 ( ) = (r T ) + (sin(cid:18)T ) r rr (cid:18)r r (cid:1) r2 @r rsin(cid:18) @(cid:18) 1 @T T + T (cid:30)r (cid:18)(cid:18) (cid:30)(cid:30) + rsin(cid:18) @(cid:30) (cid:0) r 1 @ 1 @ T 2 ( ) = (r T ) + (sin(cid:18)T ) (cid:18) r(cid:18) (cid:18)(cid:18) r (cid:1) r2 @r rsin(cid:18) @(cid:18) 1 @T T cot(cid:18)T (cid:30)(cid:18) (cid:18)r (cid:30)(cid:30) + + rsin(cid:18) @(cid:30) r (cid:0) r 1 @ 1 @ T 2 ( ) = (r T ) + (sin(cid:18)T ) (cid:30) r(cid:30) (cid:18)(cid:30) r (cid:1) r2 @r rsin(cid:18) @(cid:18) 1 @T T cot(cid:18)T (cid:30)(cid:30) (cid:30)r (cid:30)(cid:18) + + + rsin(cid:18) @(cid:30) r r 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.