2004 REVISED NRL PLASMA FORMULARY J.D. Huba Beam Physics Branch Plasma Physics Division Naval Research Laboratory Washington, DC 20375 Supported by The O(cid:14)ce of Naval Research 1 FOREWARD The NRL Plasma Formulary originated over twenty (cid:12)ve years ago and has been revised several times during this period. The guiding spirit and per- son primarily responsible for its existence is Dr. David Book. I am indebted to Dave for providing me with the TEX (cid:12)les for the Formulary and his continued suggestions for improvement. The Formulary has been set in TEX by Dave Book, Todd Brun, and Robert Scott. Finally, I thank readers for communicat- ing typographical errors to me. 2 CONTENTS Numerical and Algebraic . . . . . . . . . . . . . . . . . . . . . 4 Vector Identities . . . . . . . . . . . . . . . . . . . . . . . . . 5 Di(cid:11)erential Operators in Curvilinear Coordinates . . . . . . . . . . . 7 Dimensions and Units . . . . . . . . . . . . . . . . . . . . . . . 11 International System (SI) Nomenclature . . . . . . . . . . . . . . . 14 Metric Pre(cid:12)xes . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Physical Constants (SI) . . . . . . . . . . . . . . . . . . . . . . 15 Physical Constants (cgs) . . . . . . . . . . . . . . . . . . . . . 17 Formula Conversion . . . . . . . . . . . . . . . . . . . . . . . 19 Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . . . . 20 Electricity and Magnetism . . . . . . . . . . . . . . . . . . . . . 21 Electromagnetic Frequency/Wavelength Bands . . . . . . . . . . . . 22 AC Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Dimensionless Numbers of Fluid Mechanics . . . . . . . . . . . . . 24 Shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Fundamental Plasma Parameters . . . . . . . . . . . . . . . . . . 29 Plasma Dispersion Function . . . . . . . . . . . . . . . . . . . . 31 Collisions and Transport . . . . . . . . . . . . . . . . . . . . . 32 Ionospheric Parameters . . . . . . . . . . . . . . . . . . . . . . 41 Solar Physics Parameters . . . . . . . . . . . . . . . . . . . . . 42 Thermonuclear Fusion . . . . . . . . . . . . . . . . . . . . . . 43 Relativistic Electron Beams . . . . . . . . . . . . . . . . . . . . 45 Beam Instabilities . . . . . . . . . . . . . . . . . . . . . . . . 47 Approximate Magnitudes in Some Typical Plasmas . . . . . . . . . . 49 Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Atomic Physics and Radiation . . . . . . . . . . . . . . . . . . . 53 Atomic Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 59 Complex (Dusty) Plasmas . . . . . . . . . . . . . . . . . . . . . 62 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3 NUMERICAL AND ALGEBRAIC Gain in decibels of P relative to P 2 1 G = 10log (P =P ): 10 2 1 To within two percent 1=2 2 3 10 3 (2(cid:25)) 2:5; (cid:25) 10; e 20; 2 10 : (cid:25) (cid:25) (cid:25) (cid:25) Euler-Mascheroni constant1 (cid:13) = 0:57722 Gamma Function (cid:0)(x + 1) = x(cid:0)(x): (cid:0)(1=6) = 5.5663 (cid:0)(3=5) = 1.4892 (cid:0)(1=5) = 4.5908 (cid:0)(2=3) = 1.3541 (cid:0)(1=4) = 3.6256 (cid:0)(3=4) = 1.2254 (cid:0)(1=3) = 2.6789 (cid:0)(4=5) = 1.1642 (cid:0)(2=5) = 2.2182 (cid:0)(5=6) = 1.1288 (cid:0)(1=2) = 1:7725 = p(cid:25) (cid:0)(1) = 1.0 Binomial Theorem (good for x < 1 or (cid:11) = positive integer): j j 1 (cid:11) (cid:11)((cid:11) 1) (cid:11)((cid:11) 1)((cid:11) 2) (cid:11) k 2 3 (1 + x) = x 1 + (cid:11)x + (cid:0) x + (cid:0) (cid:0) x + :::: k (cid:17) 2! 3! X(cid:0) (cid:1) k=0 Rothe-Hagen identity2 (good for all complex x, y, z except when singular): n x x + kz y y + (n k)z (cid:0) x + kz k y + (n k)z n k X (cid:0) (cid:1) (cid:0) (cid:0) (cid:0) (cid:1) k=0 x + y x + y + nz = : x + y + nz n (cid:0) (cid:1) Newberger’s summation formula3 [good for (cid:22) nonintegral, Re((cid:11) + (cid:12)) > 1]: (cid:0) 1 ( 1)nJ (z)J (z) (cid:25) (cid:11) (cid:13)n (cid:12)+(cid:13)n (cid:0) (cid:0) = J (z)J (z): (cid:11)+(cid:13)(cid:22) (cid:12) (cid:13)(cid:22) n + (cid:22) sin(cid:22)(cid:25) (cid:0) X n= (cid:0)1 4 VECTOR IDENTITIES4 T I Notation: f; g; are scalars; A, B, etc., are vectors; is a tensor; is the unit dyad. (1) A B C = A B C = B C A = B C A = C A B = C A B (cid:1) (cid:2) (cid:2) (cid:1) (cid:1) (cid:2) (cid:2) (cid:1) (cid:1) (cid:2) (cid:2) (cid:1) (2) A (B C) = (C B) A = (A C)B (A B)C (cid:2) (cid:2) (cid:2) (cid:2) (cid:1) (cid:0) (cid:1) (3) A (B C)+ B (C A) + C (A B) = 0 (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (4) (A B) (C D) = (A C)(B D) (A D)(B C) (cid:2) (cid:1) (cid:2) (cid:1) (cid:1) (cid:0) (cid:1) (cid:1) (5) (A B) (C D) = (A B D)C (A B C)D (cid:2) (cid:2) (cid:2) (cid:2) (cid:1) (cid:0) (cid:2) (cid:1) (6) (fg) = (gf) = f g + g f r r r r (7) (fA) = f A + A f r (cid:1) r (cid:1) (cid:1) r (8) (fA) = f A + f A r (cid:2) r (cid:2) r (cid:2) (9) (A B) = B A A B r (cid:1) (cid:2) (cid:1) r (cid:2) (cid:0) (cid:1) r (cid:2) (10) (A B) = A( B) B( A) + (B )A (A )B r (cid:2) (cid:2) r (cid:1) (cid:0) r (cid:1) (cid:1) r (cid:0) (cid:1) r (11) A ( B) = ( B) A (A )B (cid:2) r (cid:2) r (cid:1) (cid:0) (cid:1) r (12) (A B) = A ( B) + B ( A) + (A )B+ (B )A r (cid:1) (cid:2) r (cid:2) (cid:2) r(cid:2) (cid:1) r (cid:1) r (13) 2f = f r r (cid:1) r (14) 2A = ( A) A r r r (cid:1) (cid:0) r (cid:2) r (cid:2) (15) f = 0 r (cid:2) r (16) A = 0 r (cid:1) r (cid:2) T If e , e , e are orthonormal unit vectors, a second-order tensor can be 1 2 3 written in the dyadic form T (17) = T e e ij i j i;j P In cartesian coordinates the divergence of a tensor is a vector with components T (18) ( ) = (@T =@x ) i ji j r(cid:1) j P [This de(cid:12)nition is required for consistency with Eq. (29)]. In general (19) (AB) = ( A)B + (A )B r (cid:1) r (cid:1) (cid:1) r T T T (20) (f ) = f +f r (cid:1) r (cid:1) r(cid:1) 5 Let r = ix + jy + kz be the radius vector of magnitude r, from the origin to the point x;y;z. Then (21) r = 3 r (cid:1) (22) r = 0 r (cid:2) (23) r = r=r r (24) (1=r) = r=r3 r (cid:0) (25) (r=r3) = 4(cid:25)(cid:14)(r) r (cid:1) I (26) r = r If V is a volume enclosed by a surface S and dS = ndS, where n is the unit normal outward from V; (27) dV f = dSf Z r Z V S (28) dV A = dS A Z r (cid:1) Z (cid:1) V S T T (29) dV = dS Z r(cid:1) Z (cid:1) V S (30) dV A = dS A Z r (cid:2) Z (cid:2) V S 2 2 (31) dV(f g g f) = dS (f g g f) Z r (cid:0) r Z (cid:1) r (cid:0) r V S (32) dV(A B B A) Z (cid:1) r (cid:2) r (cid:2) (cid:0) (cid:1) r (cid:2)r (cid:2) V = dS (B A A B) Z (cid:1) (cid:2) r (cid:2) (cid:0) (cid:2) r (cid:2) S If S is an open surface bounded by the contour C, of which the line element is dl, (33) dS f = dlf Z (cid:2)r I S C 6 (34) dS A = dl A Z (cid:1) r (cid:2) I (cid:1) S C (35) (dS ) A = dl A Z (cid:2) r (cid:2) I (cid:2) S C (36) dS ( f g) = fdg = gdf Z (cid:1) r (cid:2) r I (cid:0)I S C C DIFFERENTIAL OPERATORS IN CURVILINEAR COORDINATES5 Cylindrical Coordinates Divergence 1 @ 1 @A @A (cid:30) z A = (rA ) + + r r (cid:1) r @r r @(cid:30) @z Gradient @f 1 @f @f ( f) = ; ( f) = ; ( f) = r (cid:30) z r @r r r @(cid:30) r @z Curl 1 @A @A z (cid:30) ( A) = r r (cid:2) r @(cid:30) (cid:0) @z @A @A r z ( A) = (cid:30) r (cid:2) @z (cid:0) @r 1 @ 1 @A r ( A) = (rA ) z (cid:30) r (cid:2) r @r (cid:0) r @(cid:30) Laplacian 1 @ @f 1 @2f @2f 2 f = r + + r r @r @r r2 @(cid:30)2 @z2 (cid:16) (cid:17) 7 Laplacian of a vector 2 @A A 2 2 (cid:30) r ( A) = A r r r r (cid:0) r2 @(cid:30) (cid:0) r2 2 @A A 2 2 r (cid:30) ( A) = A + (cid:30) (cid:30) r r r2 @(cid:30) (cid:0) r2 2 2 ( A) = A z z r r Components of (A )B (cid:1) r @B A @B @B A B r (cid:30) r r (cid:30) (cid:30) (A B) = A + + A r r z (cid:1) r @r r @(cid:30) @z (cid:0) r @B A @B @B A B (cid:30) (cid:30) (cid:30) (cid:30) (cid:30) r (A B) = A + + A + (cid:30) r z (cid:1) r @r r @(cid:30) @z r @B A @B @B z (cid:30) z z (A B) = A + + A z r z (cid:1) r @r r @(cid:30) @z Divergence of a tensor 1 @ 1 @T @T T T (cid:30)r zr (cid:30)(cid:30) ( ) = (rT ) + + r rr r (cid:1) r @r r @(cid:30) @z (cid:0) r 1 @ 1 @T @T T T (cid:30)(cid:30) z(cid:30) (cid:30)r ( ) = (rT ) + + + (cid:30) r(cid:30) r (cid:1) r @r r @(cid:30) @z r 1 @ 1 @T @T T (cid:30)z zz ( ) = (rT ) + + z rz r (cid:1) r @r r @(cid:30) @z 8 Spherical Coordinates Divergence 1 @ 1 @ 1 @A 2 (cid:30) A = (r A ) + (sin(cid:18)A ) + r (cid:18) r (cid:1) r2 @r rsin(cid:18) @(cid:18) rsin(cid:18) @(cid:30) Gradient @f 1 @f 1 @f ( f) = ; ( f) = ; ( f) = r (cid:18) (cid:30) r @r r r @(cid:18) r rsin(cid:18) @(cid:30) Curl 1 @ 1 @A (cid:18) ( A) = (sin(cid:18)A ) r (cid:30) r (cid:2) rsin(cid:18) @(cid:18) (cid:0) rsin(cid:18) @(cid:30) 1 @A 1 @ r ( A) = (rA ) (cid:18) (cid:30) r (cid:2) rsin(cid:18) @(cid:30) (cid:0) r @r 1 @ 1 @A r ( A) = (rA ) (cid:30) (cid:18) r (cid:2) r @r (cid:0) r @(cid:18) Laplacian 1 @ @f 1 @ @f 1 @2f 2 2 f = r + sin(cid:18) + r r2 @r @r r2 sin(cid:18) @(cid:18) @(cid:18) r2 sin2 (cid:18) @(cid:30)2 (cid:16) (cid:17) (cid:16) (cid:17) Laplacian of a vector 2A 2 @A 2cot(cid:18)A 2 @A 2 2 r (cid:18) (cid:18) (cid:30) ( A) = A r r r r (cid:0) r2 (cid:0) r2 @(cid:18) (cid:0) r2 (cid:0) r2 sin(cid:18) @(cid:30) 2 @A A 2cos(cid:18) @A 2 2 r (cid:18) (cid:30) ( A) = A + (cid:18) (cid:18) r r r2 @(cid:18) (cid:0) r2 sin2 (cid:18) (cid:0) r2 sin2 (cid:18) @(cid:30) A 2 @A 2cos(cid:18) @A 2 2 (cid:30) r (cid:18) ( A) = A + + (cid:30) (cid:30) r r (cid:0) r2 sin2 (cid:18) r2 sin(cid:18) @(cid:30) r2 sin2 (cid:18) @(cid:30) 9 Components of (A )B (cid:1) r @B A @B A @B A B + A B r (cid:18) r (cid:30) r (cid:18) (cid:18) (cid:30) (cid:30) (A B) = A + + r r (cid:1) r @r r @(cid:18) rsin(cid:18) @(cid:30) (cid:0) r @B A @B A @B A B cot(cid:18)A B (cid:18) (cid:18) (cid:18) (cid:30) (cid:18) (cid:18) r (cid:30) (cid:30) (A B) = A + + + (cid:18) r (cid:1) r @r r @(cid:18) rsin(cid:18) @(cid:30) r (cid:0) r @B A @B A @B A B cot(cid:18)A B (cid:30) (cid:18) (cid:30) (cid:30) (cid:30) (cid:30) r (cid:30) (cid:18) (A B) = A + + + + (cid:30) r (cid:1) r @r r @(cid:18) rsin(cid:18) @(cid:30) r r Divergence of a tensor 1 @ 1 @ T 2 ( ) = (r T ) + (sin(cid:18)T ) r rr (cid:18)r r (cid:1) r2 @r rsin(cid:18) @(cid:18) 1 @T T + T (cid:30)r (cid:18)(cid:18) (cid:30)(cid:30) + rsin(cid:18) @(cid:30) (cid:0) r 1 @ 1 @ T 2 ( ) = (r T ) + (sin(cid:18)T ) (cid:18) r(cid:18) (cid:18)(cid:18) r (cid:1) r2 @r rsin(cid:18) @(cid:18) 1 @T T cot(cid:18)T (cid:30)(cid:18) (cid:18)r (cid:30)(cid:30) + + rsin(cid:18) @(cid:30) r (cid:0) r 1 @ 1 @ T 2 ( ) = (r T ) + (sin(cid:18)T ) (cid:30) r(cid:30) (cid:18)(cid:30) r (cid:1) r2 @r rsin(cid:18) @(cid:18) 1 @T T cot(cid:18)T (cid:30)(cid:30) (cid:30)r (cid:30)(cid:18) + + + rsin(cid:18) @(cid:30) r r 10