ebook img

The multiplicity of massive stars in the Orion Nebula cluster as seen with long-baseline interferometry PDF

0.43 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The multiplicity of massive stars in the Orion Nebula cluster as seen with long-baseline interferometry

Astronomy&Astrophysicsmanuscriptno.OrionTrapez˙final (cid:13)c ESO2013 January15,2013 The multiplicity of massive stars in the Orion Nebula Cluster as ⋆ seen with long-baseline interferometry R.Grellmann1,T.Preibisch1,T.Ratzka1,S.Kraus2,K.G.Helminiak3,4,andH.Zinnecker5,6 1 Universita¨ts-Sternwarte,Ludwig-Maximilians-Universita¨tMu¨nchen,Scheinerstr.1,81679Mu¨nchen,Germany 2 UniversityofMichigan,DepartmentofAstronomy,AnnArbor,MI48109-1090,USA 3 Departamento deAstronoma yAstrofisica,PontificiaUniversidadCatlicadeChile,Av.VicuaMackenna 4860, 7820436 Macul, Santiago,Chile 4 NicolausCopernicusAstronomicalCenter,DepartmentofAstrophysics,ul.Rabian´ska8,87-100Torun´,Poland 3 5 SOFIA-USRA,NASAAmesResearchCenter,MoffettField,CA94035,USA 1 6 DeutschesSOFIAInstitut,Universita¨tStuttgart,70569Stuttgart,Germany 0 2 Received/Accepted n ABSTRACT a J Context.Thecharacterizationofmultiplestellarsystemsisanimportantingredientfortestingcurrentstarformationmodels.Stars 4 aremoreoftenfoundinmultiplesystems,themoremassivetheyare.Acompleteknowledgeofthemultiplicityofhigh-massstars 1 overthefullrangeoforbitseparationsisthusessentialtounderstandtheirstilldebatedformationprocess. Aims.Infraredlongbaselineinterferometryisverywellsuitedtoclosethegapbetweenspectroscopicandadaptiveopticssearches. ] R ObservationsoftheOrionNebulaClusteringeneralandtheTrapeziumClusterinparticularcanhelptoanswerthequestionabout theoriginandevolutionofmultiplestars.Earlierstudies provideagoodknowledgeaboutthemultiplicityofthestarsatverysmall S (spectroscopiccompanions)andlargeseparations(AO,specklecompanions)andthusmaketheONCagoodtargetforsuchaproject. . h Methods.WeusedthenearinfraredinterferometricinstrumentAMBER atESOsVeryLargeTelescopeInterferometertoobservea p sampleofbrightstarsintheONC.WecomplementourdatasetbyarchivalNACOobservationsofθ1OriAtoobtainmoreinformation - abouttheorbitoftheclosevisualcompanion. o Results.Ourobservationsresolvetheknownmultiplesystemsθ1OriCandθ1OriAandprovideneworbitpoints,whichconfirmthe r predictedorbitandthedeterminedstellarparametersforθ1OriC.CombiningAMBERandNACOdataforθ1OriAwewereableto t s followthe(orbital)motionofthecompanionfrom2003to2011.Wefurthermorefindhintsforacompanionaroundθ1OriD,whose a existencehasbeensuggestedalreadybefore,andapreviouslyunknowncompaniontoNUOri.Withaprobabilityof∼90%wecan [ excludefurthercompanionswithmassesof≥3M aroundoursamplestarsforseparationsbetween∼2masand∼110mas. ⊙ Conclusions.Weconcludethatthecompanionaroundθ1 OriAismostlikelyphysicallyrelatedtotheprimarystarandnotonlya 1 chanceprojectedstar.ThenewlydiscoveredpossiblecompanionsfurtherincreasethemultiplicityintheONC.Foroursampleoftwo v OandthreeB-typestarswefindonaverage2.5knowncompanionsperprimary,whichisaroundfivetimesmorethanforlow-mass 5 stars. 4 0 Keywords.Techniques:interferometric-binaries(includingmultiple):close-Stars:formation-Stars:individual:θ1OriC,θ1OriA, 3 θ1OriD,NUOri-Stars:massive . 1 0 3 1. Introduction terization of the properties of binaries as a function of mass 1 andenvironment.TheresultsofKobulnicky&Fryer(2007)and v: A high number of stars in our galaxy are found to be in bina- Chinietal.(2012),e.g.,showthatthemajorityofmassivestars i ries or higher order multiple systems (Duquennoyetal. 1991; hasclosecompanionswithsimilarmass,pointingtoamultiplic- X Raghavanetal. 2010). The binary frequencyis correlated with ityoriginatingfromtheformationprocess. r thestellarmassandisfoundtobehigherthemoremassivethe a star is (Preibischetal. 2001; Delgado-Donateetal. 2004; Bate RecentsimulationsofstarclusterformationbyBate(2009) 2009). Very recently, Chinietal. (2012) found that more than andParkeretal.(2011)makedetailedpredictionsaboutthemul- 80% of the stars with a mass greater than 16M⊙ form close tiplicity of the forming stars and suggest the frequent forma- binary systems and Sanaetal. (2012) found that over ∼ 70% tionofso-calledmini-clusters.Thisis,however,observationally of stars born as O-type star will interact with a companion. still unproven even for the early stages of star formation. The Furthermore, the number of companions per system also in- observedpropertiesofmultiplesystems(separation,mass ratio creases with increasing stellar mass, i.e., massive stars are of- distribution) can be compared with such simulations and thus ten foundintriple orhigherordersystems(Zinnecker&Yorke provideimportantandstrongconstraintsonstar-formationthe- 2007).Hence,akeystepinadvancingourunderstandingofthe ories.Forsuchacomparison,onewouldideallylikeacomplete star and cluster formation process itself is an accurate charac- descriptionofthe‘primordial’binarypopulation(i.e.,a sample of companion stars over the full range of possible orbital dis- ⋆ Basedonobservations collectedattheEuropean Organisationfor tances,thatextendsfromafewstellarradiitoseveral1000AUs). Astronomical ResearchintheSouthernHemisphere, Chile,observing Anotherimportantapplicationofbinaryobservationsisthede- program086.C-0193 terminationof fundamentalstellar parametersby followingthe 1 R.Grellmannetal.:IR-InterferometryoftheONC orbitalmotionofthesystem.Thisisinparticulartrueforthede- 2. Observationsanddatareduction terminationofstellarmassesofyoungstars,whichareneededto The sample selected for the observations with AMBER con- calibratethestilluncertainevolutionmodelsfortheearlystages sisted of all members of the Orion Nebula Cluster which are ofstellarevolution. brightenoughtobeobservedwithAMBER(e.g.,K magnitude The OrionNebula Cluster (ONC), a partof the Orion OB1 ≤ 5.5)and the auxiliarytelescopes(ATs). Thisleads to a sam- association,locatedatadistanceof414pc(Mentenetal.2007), ple of 9 objects. For each target at least two observations are is a very good target for such a multiplicity study. It contains necessaryforareliabledeterminationofthesystemparameters. ∼ 3500 young (≤ 106yrs) stars, of which ∼ 30 are O- and AMBER (Petrovetal. 2007) is the near-infrared interferomet- B-stars (Hillenbrand 1997). While many lower mass stars are ric instrumentlocated at the VLTI and can combinelight from still pre-mainsequence (PMS) stars, the high-massstars of the three telescopes in the H- and K-band. For the observationsof Trapeziumsystemθ1 Ori(A,B,C,D)haveevolvedclosetothe theONCtargetsthelowresolutionmode(LRmode)withaspec- mainsequence.EachoftheTrapeziumstarsitselfisagainmul- tralresolutionof35wasused.TheATshavediametersof1.8m tiple. Thus, conclusionsabout whetherthese systems are grav- and can be moved to different stations. For the interferometric itationallyboundcan helptodetermineifthe abovementioned observationsitisalsopossibletousetheUnitTelescopes(UTs), predicted“mini-clusters”actuallyexist. whichhavediametersof8.2m,butareonfixedpositions. The program was granted time in the course of the ESO The multiplicity of the stars in the Orion cluster is al- program 086.C-0193(P.I.: R. Grellmann). We also included in ready well characterized as far as either very close spectro- our analysis the previous observations of θ1OriC and D from scopic (≤ 1AU) or relatively wide visual systems (≥ 50AU) the observing run 078.C-0360 (P.I.: S. Kraus). Further obser- areconcerned.SearchesforspectroscopicbinariesamongONC vations were taken as backup targets also in the course of the members have been performed by, e.g., Abtetal. (1991); programs 386.C-0721 (P.I.: R. Grellmann), 386.C-0650 (P.I.: Morrell&Levato(1991);Herbig&Griffin(2006).Searchesfor R.Grellmann),and088.D-0241(P.I.:K.Helminiak).Therefore, wide visual binaries have been performed with HST imag- the data were taken with a variety of telescope configurations, ing (Padgettetal. 1997), speckle holographic observations which can be foundtogetherwith informationaboutbaselines, (Petretal. 1998), andnear-infraredadaptiveoptic observations position angles, and calibrators used in Table 1. All data were (Simonetal.1999;Closeetal.2012).Weigeltetal.(1999)and takenintheLRmode.Intotal,6stars(2starsofspectraltypeO, Preibischetal.(1999)performedabispectrumspeckleinterfer- 3ofspectraltypeB,andoneAstar)ofthe9samplestarswere ometric survey for multiple systems among the O- and B-type observed,two of themonlyonce.However,some ofthe obser- Orion Nebula cluster members and found 8 new visual com- vations are of very low quality due to bad weather conditions. panions. A particularly interesting result of these speckle ob- Thesedataarenottakenintoaccountforthefurtheranalysisand servationswas the discoveryof a close (33 mas, ∼ 15 AU) vi- discussion. As AMBER is a single-mode instrument using op- sual companion to θ1OriC, the most massive star in the clus- tical fibres the field of view is limited to the Airy disk of the ter. Krausetal. (2007, 2009) followed the orbital motion of individual apertures. This results in a FOV of 250mas for the this system. They used speckle observations,and severalinter- ATsand60masfortheUTs. ferometric data taken with IOTA and the Astronomical Multi- The amdlib software Vers. 3.0.3 (Tatullietal. 2007; Beam Combiner (AMBER) at ESOs Very Large Telescope Chellietal.2009)providedbytheJean-Marie-Mariotti-Center1 Interferometer(VLTI). This allowed them to determine the or- was used for the data reduction and calibration. As for the de- bitofthissystemandtoderivefundamentalparameterssuch as tectionofa binarysignal(i.e.,asinusoidalvariationin thevis- thestellarmassesandanorbitalparallax. ibility) an absolute calibration is not necessary, the data were only calibrated using the associated calibratorrather than a set While these searches for spectroscopicand visual compan- of calibrators observed over the whole night. This is a simpli- ionshavealreadyprovideduswithimportantinformationabout fied method, assuming that the (instrumentaland atmospheric) the multiplicityof those stars, there is still a serious gap in the transferfunctionhasbeenconstantbetweenthestarandthecal- range of separations covered, extending from separations of a ibrator.Thesoftwareaccountsforthediametersofthecalibrator fewmilliarcseconds(mas)[∼1AU](toowideforspectroscopic starsautomaticallyandusuallyusestheprovideddatabasetoget detection) to ∼ 100mas [∼ 50AU] (too close for speckle and theangularsizes.Thiswasthecaseforallofthechosencalibra- adaptiveopticsstudies).Infraredlong-baselineinterferometryis tors.Otherwise,theycanbespecifiedbytheuser. very efficient in finding companionsat angularseparations be- The most critical point for the calibration process is the tween∼ 2and∼ 100mas;forstellardistancesofafew100pc, accurate calibration of the wavelength, which is not guaran- itisideallysuitedtofilltheobservationalgapbetweenthevery teed within the amdlib software. Thus, we compared the tel- close spectroscopic companions and the wide visual compan- luric absorption lines in the spectra of the calibrator stars (as ions. Therefore, an interferometric survey of a stellar sample they are brighter) with the telluric gaps in spectra observed at thathasalreadybeensearchedforspectroscopicaswellaswide the Gemini Observatory, similar to the procedure described in visualcompanionscanprovidetherequiredobservationalcom- Krausetal.(2007)(butwithoutdividingtheobjectspectrumby pleteness, at least for sufficiently bright companions with flux theP2vmspectrum)andshiftedthemaccordinglywhereneces- ratios≥0.1(∼3M ,seediscussionsection). ⊙ sary.However,theuncertaintyinwavelengthcalibrationisstilla Inthispaperwepresentnear-infraredinterferometricobser- largeerrorsource.Themaximumachievableaccuracyis0.03µm vationsof a sample of brightstars in the OrionNebula Cluster (i.e.,onespectralchannel),whichforscalestoanuncertaintyof takenwithAMBERattheVLTI.Thepaperisorganizedasfol- ∼2%(Krausetal.2009). lows: The observations and data reduction are described and For the supplementing NACO data we searched the ESO summarized in Sect. 2. In Sect. 3 the models used for the in- archive,wherewefoundalargenumberofobservationsinvar- terpretation of the obtained data are shown and the results are discussedforalloftheobservedtargets. 1 JMMC,http://www.jmmc.fr 2 R.Grellmannetal.:IR-InterferometryoftheONC iousfilters. Thedatawerereducedwith theinstrument-specific 3.1.θ1OriC ESO pipeline and we selected those images in which θ1OriA ThemostmassiveandbrighteststarintheOrionNebulaCluster is not or only marginally saturated. The relative positions of is θ1 Ori C. According to its stellar temperature of T = all stars were derived with StarFinder (Diolaitietal. 2000), eff which performs PSF-fitting. In most cases θ1OriE served as 39000K(Simo´n-D´ıazetal.2006)itisofspectraltypeO7-O5.5. θ1 Ori C was discovered to be a close visual companion by PSF-reference. A comparison of the measured positions of the Weigeltetal. (1999) using bispectrum speckle interferometry. stars with the positions reported in McCaughrean&Stauffer (1994)allowedustoderivewithastrom2foreachimagethede- Krausetal.(2007,2009)monitoredthesystemtofollowitsor- bitalmotionusinginfraredandvisualbispectrumspeckleinter- tectororientationandplatescale.Forthiscalibrationthebright- ferometryaswellasinfraredlong-baselineinterferometry.They est stars and actual binaries and outliers were excluded. After find a total system mass of 44±7M and an orbitalperiod of identifying obvious outliers by their residuals the fits were re- ⊙ peated.Therelativepositionofthecompanionofθ1OriAineach 11yrs. epochis listed in Table 4 . Since we haveonly analysedsingle As mentioned above, a good model for binary sources in images,theerrorsarehardtoquantify.Wethusshowaconser- Orion observed with AMBER is a combination of two point- vativeerrorof5masinFig.2. sources. Fitting the visibilities for the three observations of θ1 Ori C, we find a minimum in the x-y-coordinate plane at ∼ −25masinrightascensionand∼ −35masindeclinationfor 3. Modeling allthreemeasurements.Theexactpositionsaswellasolderor- bitpointsoftheclosevisualcompanioncanbefoundinTable2. As mentionedabove,a typicalsign forthe existenceofa com- Plotting our positions together with the orbit points used by panion(within a certain separation)is a sinusoidalvariationof Krausetal. (2009) (see Fig. 1) we find that the new obtained the visibility.Describinga binaryascompositionoftwo point- positionsagreeverywellwiththeprediction.Thisconfirms the sourcesseparatedbythedistanceathevisibilityisgivenby orbitalsolutionfoundbyKrausetal.(2009). In Table 5 it can be seen that there is another very close 1+ f2+2f cos2πaB binary, which due to its angular separation of 1 − 2.5mas V(B )= λ, λ s (1+ f)2 (Lehmannetal.2010;Vitrichenkoetal.2012)couldberesolved withAMBER.However,duetothesmallmassofthiscompan- ion (and thus the low flux ratio) we would need an optimized with f being the flux ratio of the two sources (f = I /I , 2 1 observing strategy to be able to detect it in the interferometric 0< f <1),andabeingthedistanceofthesourcesafterprojec- data(e.g.,assumingamassof36M fortheprimaryand1M tiononaplaneparalleltothebaselineB.Thedistanceofthetwo ⊙ ⊙ forthe companionwe expectthe amplitudeof the wobblingof sourcescan then be determinedfrom the oscillation frequency, theprimarytobeonly0.03mas.). whereas the oscillation amplitude depends on their flux ratio. Whenderivingtheseparationofthe binary,i.e.,the positionof thecompanion,usingonlythevisibilitiesanambiguityof180◦ 3.2.θ1OriA remains.Forauniquesolutiononeneedstoconsidertheclosure phase,whichisnotaffectedbyphaseerrorsduetotheearthat- The B0.5star θ1 OriA was discoveredto havea spectroscopic mosphereandprovidesinformationaboutthe(a)symmetryofan companion at a separation of at ∼ 1AU by Bossietal. (1989) object.Theclosurephaseinformationisthustakenintoaccount and a close visual companion at a separation of ∼ 500AU by to solve the 180◦ ambiguitywhen determiningthe positionsof Petretal.(1998).Schertletal.(2003)followedthesystem’s(or- the companions of θ1 Ori C, θ1 Ori A, and θ1 Ori D. The as- bital)motionoverseveralyearsandfoundthattherelative mo- sumption of the sources being point-like is valid as the radius tion of the companion is consistent with an inclined circular for a star of spectral type B1 is ∼ 8R . For the Orion Nebula or elliptical orbit, but also with a straight line (i.e., a physi- ⊙ Clusterthis correspondsto an angularsize of ∼ 0.1mas. Thus, cally unbound, chance projected system). Using the flux ratio thestarsthemselvesareunresolvedwithAMBER. from the speckle observations and photometric data compiled For the determination of the positions of the companions by Hillenbrandetal. (1998), Schertletal. (2003) estimated the weusedtheLitPROmodelingtooldevelopedattheJean-Marie near-infraredmagnitudes,theextinction,andfinallythemasses. Mariotti Center (Tallon-Boscetal. 2008). LitPRO is especially For θ1 Ori A1 theyfound AV ≈ 1.89mag and M ≈ 16M⊙, for designedtoperformmodelfittingofopticalinterferometricdata. θ1 OriA2theyfoundAV ≈3.8magandM ≈4M⊙. Differentgeometricalmodelscanbechosenandcombined,such Wedeterminedneworbitpointsforθ1OriA2usingarchival aspoint-sources,disks,rings,anddifferentlimb-darkeningfunc- NACO observations (see Table 3) and new AMBER observa- tions.Thefitofthemodelparameterscanbevisualizedina χ2 tions.Allnewpositionsaswellasthepositionsfromolderpub- planeforanytwoparameters,whichenablesaneasyfindingof licationscanbefoundinTable4.Thepositiondeterminedfrom localandglobalminima. theAMBERdataagreesverywellwithveryrecentobservations Forthedeterminationofthe companionspositionswe used takenwiththeLargeBinocularTelescope(LBT)byCloseetal. amodeloftwopoint-sourcesandusedtheseparationinRAand (2012).Fittingtheobservationswithalinearmovement,weob- DECaswellasthefluxratioasfittingparameter.Dueto prob- tainarelativevelocityof∼8.5±1km/s.Thisisinbetweenesti- lems with the calibrations (i.e., no absolute calibration of the matesof∼7.2±0.8km/sbyCloseetal.(2012)and∼10.3km/s data)thefluxratiosdeterminedhavehighuncertaintiesand are bySchertletal.(2003).Mentenetal.(2007)observedθ1OriA2 not reliable. For the estimation of the errors in separation and usingtheVeryLongBaselineArray.Theyfindapropermotion PA for θ1 OriC and θ1 OriA we consideredthe uncertaintyin of 9.5km/s in RA and −3 km/s in Dec, what leads to a total wavelength calibration as well as the standard deviations from velocityof∼10km/swellconsistentwithourvelocitymeasure- theLITprofit. ment.ThevelocitydispersionofthestarsintheONChasbeen estimated to be ≈ 2.3km/s (Jones&Walker 1988) assuming a 2 http://starlink.jach.hawaii.edu/ distanceof470pc.Foradistanceof414pcthisscalestoaveloc- 3 R.Grellmannetal.:IR-InterferometryoftheONC Table1.AMBERObservationsoftargetsinOrion Target Other Date. ProjectedBaselines Calibrator(s) Name θ1OriC PAR1891,HD37022 K0-I1 A0-I1 A0-K0 05/10/10 44m;8◦ 110m;-89◦ 123m;70◦ HD32613,HD34137 K0-G1 G1-A0 A0-K0 26/12/10 87m;29◦ 88m;-65◦ 128m;72◦ HD32613,HD33238 27/12/10 84m;22◦ 90m;-67◦ 122m;70◦ HD32613,HD33238 θ1OriA PAR1865,HD37020 K0-I1 G1-I1 G1-K0 14/12/10 44m;174◦ 38m;-158◦ 79m;-172◦ HD32613,HD33238 29/10/11 44m;171◦ 37m;-162◦ 79m;-176◦ HD40605,HD33238 θ1OriD PAR1889,HD37023 K0-I1 I1-G1 G1-K0 14/12/10∗ 43m;180◦ 40m;-150◦ 81m;-166◦ HD33238,HD47667 29/10/11∗ 43m;177◦ 41m;-147◦ 81m;-163◦ HD33238 30/10/11 43m;175◦ 38m;-156◦ 79m;-171◦ HD32613 U1-U3 U3-U4 U1-U4 17/01/11 102m;38◦ 58m;-113◦ 130m;64◦ HD34137,HD33238 09/01/07∗ 101m;40◦ 43m;125◦ 113m;62◦ HD41547 θ2OriA PAR1993,HD37041 A1-K0 A1-G1 G1-K0 01/01/12 128m;-113◦ 74m;110◦ 90m;-147◦ HD34137,HD40605 NUOri PAR2074,HD37061 K0-G1 G1-A0 A0-K0 26/03/11 90m;-144◦ 68m;-52◦ 111m;-106◦ HD32613,HD40605 27/03/11∗ 89m;-144◦ 60m;-45◦ 99m;-107◦ HD33238,HD40605 A1-G1 G1-K0 A1-K0 31/12/11 80m;107◦ 86m;-153◦ 127m;-115◦ HD32613,HD40605 V*TOri PAR2247,BD-051329 U1-U3 U3-U4 U1-U4 18/01/11 102m;40◦ 53m;116◦ 126m;64◦ HD34137 References.*Dataoflowqualityandnotfurthermentionedindiscussion Table 3. NACO observationsof the close visual companionof 3.3.θ1OriD θ1 OriA θ1 Ori D is of spectral type B0.5 and has been observed by Date Obs.-ID Camera Band Krausetal. (2007) with the Infrared Optical Telescope Array 2003.7014 060.A-9026(A) L27 L’ (IOTA)intheH-bandandusingtheLBTbyCloseetal.(2012) 2003.9452 072.C-0492(A) L27 L’ in the near-IR narrowband (2.16µm and 1.64µm). The near- 2004.9452 074.C-0637(A) S13 Ks infraredadaptiveoptic observationscarried outbySimonetal. 2005.0603 074.C-0401(A) L27 4.05 (1999) reveal a very wide optical companion with a distance 2005.9397 076.C-0057(A) S27 2.17 of ∼ 1.4′′, which is also resolved by the LBT observations. It 2007.7041 079.C-0216(A) S27 2.17 remains unclear, whether this source is really a physical com- 2009.0192 482.L-0802(A) S27 2.12 2009.8849 060.A-9800(J) S27 Ks panionorjust,e.g.,abackgroundobject.Aspectroscopiccom- 2009.8986 084.C-0396(A) L27 L’ panion with a period of 40 days was identified by Vitrichenko 2010.2603 085.C-0277(A) L27 L’ (2002). Krausetal. (2007) find a significant non-zero closure phasesignalintheIOTAmeasurementssuggestingthepresence of a companion with a separation of 18.4mas and a flux ratio of 0.14, although the uv-coverage and SNR was too low for a detailedcharacterization. Weobservedθ1 OriDwithAMBERonfivedifferentnights (see Table 1), however,we can only take into account2 of the itydispersionof2.0km/s.SincetherelativevelocityofA2with 5 observations(from30/10/11and from17/01/11)as the other respecttoA1ismorethanfourtimeslargerthanthisvalueit is onesareverynoisy.We donotfinda clearsinusoidalvariation highlyunlikelythatweseearandomchanceprojectionofunre- inthe visibility;however,we a seea clearsignalinthe closure latedstars.Furthermore,asdiscussedinSchertletal.(2003),the phase(seeFig.3),whichisconsistentwithaveryclosebinary. probabilitytoseeachanceprojectedstarwithaK-bandmagni- In this case, we would expect to see only a slight increase or tude of ≤ 9 at an angular separation of ≤ 1′′ to the position decrease in the visibility over wavelength band, which is con- ofA1isonly0.4%.Thus,althoughtheobservedmotionisstill sistent with the observations. Fitting the data with the LITpro linear and shows no significant curvature, we conclude that it softwarewefindminimaforaseparationof∼2masfortheob- is probablypart of an binary orbitseen undera relatively high servationon17/01/2011andaseparationof∼ 4masfortheob- inclination. servation obtainedon 30/10/2011.This componentcould, con- 4 R.Grellmannetal.:IR-InterferometryoftheONC Table2.Positionsoftheclosevisualcompanionofθ1OriC Date PA ∆PA Diff.Pred.PA* Sep. ∆Sep. Diff.Pred.Sep.* Ref. [◦] [◦] [◦] [′′] [′′] [′′] 1997.784 226.0 3 33 2 1 1998.383 222.0 5 37 4 1 1999.737 214.0 2 43 1 2 1999.819 213.5 2 42 1 3 2000.873 210.0 2 40 1 3 2001.184 208.0 2 38 1 2 2003.8 19.3 2 29 2 3 2003.925 19.0 2 29 2 3 2003.928 19.1 2 29 2 3 2004.822 10.5 4 24 4 3 2005.921 342.74 2 13.55 0.5 3 2006.149 332.3 3.5 11.80 1.11 4 2007.019 274.9 1 11.04 0.5 5 2007.143 268.1 5.2 11.94 0.31 4 2007.151 272.9 8.8 12.13 1.58 4 2007.175 266.6 2.1 12.17 0.37 4 2007.206 265.6 1.9 12.28 0.41 4 2007.214 263.0 2.3 12.14 0.43 4 2007.901 238.0 2 19.8 2 5 2007.923 241.2 1 19.07 0.5 5 2008.027 237.0 3 19.7 3 5 2008.027 236.5 3 19.6 3 5 2008.071 236.2 2 20.1 2 5 2008.148 234.6 1 21.17 0.5 5 2008.173 236.4 1 21.27 0.5 5 2010.762 216.3 2 +0.9 42.6 1 +0.7 thispaper 2010.986 215.7 2 +1.3 43.4 1 +0.8 thispaper 2010.989 215.0 2 +0.6 43.1 1 +0.5 thispaper References. *Differences between observed new orbit positions and positions predicted by the orbit obtained by Krausetal. (2009), (1)Weigeltetal.(1999);(2)Schertletal.(2003);(3)Krausetal.(2007);(4)Patienceetal.(2008);(5)Krausetal.(2009) Fig.1. Orbitofθ1 OriCfromKrausetal.(2009).ThegreenpointsaretheneworbitpositionsmeasuredwithAMBER. sideringthe largeuncertaintiesin the determinationof the sep- is the same source than the 18.4mas binary suggested by the aration,be eitheroriginatingfromthe spectroscopicbinaryde- IOTAdata.Analternativeexplanationfortheclosurephasesig- tectedbyVitrichenko(2002)orfromtheadditionalcomponent nalcouldbeaninclinedcircumstellardisk,whichwouldalsobe suggested by Krausetal. (2007). However, it seems very un- aninterestingresultforastarofspectraltypeB0.5. likely that the spectroscopic binary with a period of only 40d 5 R.Grellmannetal.:IR-InterferometryoftheONC 0.3 0.28 0.26 Offset RA [arcsec] 000 0...122.2824 2011.8272011.7912010.953 2010.2602009.8992009.8852009.019 2007.7042005.9402005.0602004.9452003.7012003.945 2001.7172001.1862000.7652000.7812000.7811999.7151998.8381999.737 1998.8411996.7461996.2741997.788 1995.775 1994.874 0.16 0.04 0.02 0 -0.02 -0.04 -0.06 -0.08 Offset Dec. [arcsec] Fig.2. Positionsofthecompanionofθ1OriA.ThebluepositionsarethenewpositionsmeasuredwithAMBER,redarethenewpo- sitionsmeasuredwithNACO,greenarethepositionsfromSchertletal.(2003),andthegraypointsarevariousothermeasurements (seeTable4). 150 150 100 100 50 50 °P[] 0 °P[] 0 C C -50 -50 -100 -100 -150 -150 1.4 1.6 1.8 2 2.2 2.4 1.4 1.6 1.8 2 2.2 2.4 λ [µm] λ [µm] Fig.3. Closurephasesofθ1 OriDfromtheobservationsinJanuary2011(left)andOctober2011(right)togetherwiththebest-fit modelasdeterminedwithLITpro. 3.4.NUOri 3.5.Othertargets TheB1starNU Oriisknownto haveaspectroscopiccompan- Inthedataforθ2OriA(spectraltypeO9.5)andV*TOri(spec- ionwithaperiodof8days(Morrell&Levato1991)andawide traltypeA3)wedonotdetectanyclearsignalforbinarityinthe visual companion at a distance of 0.47′′ (Ko¨hleretal. 2006). visibilities (see Figs. A.10 and A.11). The closure phases (see OurAMBERobservationsfrom31/12/2011(seeFig.A.8)show Fig.4)are∼0◦andhencedonotshowanyhintforanasymme- a sine-like variation in the K-band, while the H-band data are tryeither.We canthusdefineanareaintheseparation-position too noisy to provide useful information. The data obtained on angle parameter space, where a sufficiently bright companion 26/03/2011 are very noisy on two of the three baselines (see canbeexcluded.Forthis,wemakethefollowingassumption:a Fig.A.9).However,thereseemtobesomeoscillationsinthevis- binary would be detectable in our data if we could see at least ibilitydata.Fortheobservationsobtainedon31/12/2011wefind halfaperiodofthemodulationinoneband(i.e.,H-orK-band; abinarymodelwhichroughlyfitsthevisibilitiesforseparation sometimes we have only flux in the K-band data). In the other of ∼ 20mas, whereas the model for the data from 26/03/2011 case(i.e.,averywidebinary)atleastthreedatapointspermod- favorsa separationof ∼ 10mas. The observationsthussuggest ulationareneededtodetectit.Duetotheerrorbarsofthedata, thepresenceofafourthcompanioninahierarchicalsystem,but we furthermore can only be sure to detect binaries with a flux furtherobservationsareneededtoverifythisprediction. ratio of & 0.1(whichwouldresultin an amplitudeofvariation 6 R.Grellmannetal.:IR-InterferometryoftheONC Table4.Positionsoftheclosevisualcompanionofθ1OriA CombiningtheAMBER datawith archivalNACO datawe can followthemotionofthecompanionofθ1 OriA.Themotionis, Date PA ∆PA Sep. ∆Sep. Ref. however,stillconsistentwithalinearmovement,nocurvatureis [◦] [◦] [′′] [′′] detectedinthetrajectory.Therelativevelocityof∼8.5±1km/s 1994.901 343.5 5 208 30 3 obtainedfromalinearfitissignificantlyhigherthanthevelocity 1995.775 350.6 2 227 5 2 dispersionmeasuredfortheONC,suchthattheobservedmotion 1996.247 352.8 2 227 4 2 is probablydue to a companionwith highly inclinedorbit. For 1996.746 352.7 2 223 4 2 two of our targets, θ1 Ori D and NU Ori, we find hints for the 1997.788 353.0 2 224 4 2 presenceoffurthercompanions,whichneedtobeconfirmedby 1998.838 353.8 2 221 5 2 furtherobservations. 1998.841 353.8 2 221.5 5 4 The detection limits of the AMBER observations depend 1999.715 355.4 2 219 3 2 1999.737 354.8 2 215 3 2 onthe brightnessofthe primaryandthe baseline configuration 1999.819 175.1* 0.5 212 2.5 5 used.InTable5thecoveredrangeinangularseparationandthe 2000.765 356.2 2 215 4 2 required minimum mass of the companion are given for each 2000.781 356.1 2 216 4 2 of the observed targets. As mentioned in Sect. 3.5 we assume 2000.781 356.0 2 211 4 2 a minimum flux ratio of ∼ 0.1. This corresponds to a magni- 2001.186 356.0 2 215 3 2 tudedifferenceof ∆K ∼ 2.5mag.Usingthepre-mainsequence 2001.718 356.9 1 205.1 3 1 modelsfromSiessetal.(2000)foranageof106yrswecancal- 2003.701 3.9 1 210 5 thispaper culatetheminimumrequiredcompanionmasstobedetectable. 2003.945 3.9 1 209 5 thispaper With the AMBER observations we are able to detect compan- 2004.816 0.3 1.6 203 2 6 2004.822 0.9 0.8 205 3 6 ions with masses down to ∼ 3M⊙ and with projected angular 2004.945 4.6 1 207 5 thispaper separationsof∼1to∼80AU. 2005.060 5.3 1 208 5 thispaper The multiplicity in the Orion Nebula Cluster has been 2005.940 5.9 1 204 5 thispaper measured and discussed in various publications, e.g., 2007.704 6.1 1 202 5 thispaper Hillenbrand (1997); Preibischetal. (1999); Ko¨hleretal. 2009.019 7.5 1 199 5 thispaper (2006). Preibischetal. (1999) find a companion frequency of 2009.885 8.2 1 197 5 thispaper ≥ 1.5perprimaryforthe massivestars (earlierthanB3) in the 2009.899 8.5 1 198 5 thispaper ONC, which is around three times higher than for low-mass 2010.260 9.4 1 197 5 thispaper stars. Including all newly discovered possible companions the 2010.877 6.5 0.3 193.1 0.5 1 multiplicity in the ONC increases further. It might be even 2010.953 6.2 2 193.0 1 thispaper higherinrealityasallofthetechniquesusedtofindcompanions 2011.827 7.3 2 193.2 1 thispaper miss,e.g.,veryfaintcompanions.ForoursampleoftwoOand References. *180◦ ambiguity could not be solved from the measure- three B-type stars we find on average 2.5 known companions ment itself, but taking into account the other measurements should per primary, around five times more than for low-mass stars. probably be 355.1◦, (1) Closeetal. (2012); (2) Schertletal. (2003); This is in agreement with the finding that stars are more often (3)Petretal.(1998);(4)Weigeltetal.(1999);(5)Balegaetal.(2004); foundinmultiplesystems,themoremassivetheyare. (6)Balegaetal.(2007) Acknowledgements. We gratefully acknowledge funding of this work by the of∼0.2).Plotsoftheareaswhereacompanioncanbeexcluded German Deutsche Forschungsgemeinschaft, DFG project number PR 569/8- 1. K.G.H. acknowledges support provided by the Proyecto FONDECYT fromtheAMBERdatacanbefoundinFig.5.Itcanclearlybe Postdoctoral No. 3120153 and the Polish Nacional Science Center grant no. seentherethattheknown0.38′′separatedcompanionofθ2OriA 2011/03/N/ST9/01819.ThisresearchhasmadeuseoftheJean-MarieMariotti istoofarawayalreadytobedetectedwithAMBER.Wenowcan CenterAMBER data reduction package3andLITpro4serviceco-developed alsoestimatetheprobabilitytomissacompanioninsideacertain byCRAL,LAOGandFIZEAU.Thisresearch has madeuseoftheSIMBAD database, operated atCDS,Strasbourg, France. Wethankthe referee Douglas radius,whichdependsonthebaselineconfiguration(thusitcan Giesforthehelpfulundconstructive comments,whichhelpedtoimprovethe be differentfor differentobservations).The probabilityto miss paper. acompanionaroundθ2 OriAwithaseparationbetween0.002′′ and0.11′′ is∼ 10%,ifitisbychanceinoneofthegapsofthe coveredarea.Todecreasetheprobabilityofmissingacompan- References ion atleast onemoreAMBER observationwith an appropriate Abt,H.A.,Wang,R.,&Cardona,O.1991,ApJ,367,155 baselineconfigurationwouldbeneeded.ForV* T Orithe sep- Balega,I.,Balega,Y.Y.,Maksimov,A.F.,etal.2004,A&A,422,627 arationradiusforadetectionislimitedbytheFOVofAMBER Balega,I.I.,Balega,Y.Y.,Maksimov,A.F.,etal.2007,AstrophysicalBulletin, togetherwiththeUTs.Wecanthusexcludeacompanionforthis 62,339 sourcebetween0.002′′and0.06′′(blackcircleinFig.5). Bate,M.R.2009,MNRAS,397,232 Bossi,M.,Gaspani,A.,Scardia,M.,&Tadini,M.1989,A&A,222,117 Chelli,A.,Utrera,O.H.,&Duvert,G.2009,A&A,502,705 Chini, R., Hoffmeister, V. H., Nasseri, A., Stahl, O., & Zinnecker, H. 2012, 4. Summary&Conclusions ArXive-prints Close,L.M.,Puglisi,A.,Males,J.R.,etal.2012,ApJ,749,180 We presented observations of a brightness-selected sample of Corporon,P.&Lagrange,A.-M.1999,A&AS,136,429 starsintheOrionNebulaClusterobtainedwiththenear-infrared Delgado-Donate, E. J., Clarke, C. J., Bate, M. R., & Hodgkin, S. T. 2004, interferometricinstrumentAMBERattheVLTI.Were-observed MNRAS,351,617 Diolaiti,E.,Bendinelli,O.,Bonaccini,D.,etal.2000,A&AS,147,335 the already known companions around θ1 Ori C at a distance Duquennoy,A.,Mayor,M.,&Halbwachs,J.-L.1991,A&AS,88,281 of ∼ 40mas and around θ1 Ori A at a separation of ∼ 0.2′′. Thenew orbitpointsfor θ1 OriC confirmthe predictedorbital 3 Availableathttp://www.jmmc.fr/amberdrs periodof≈11yrsandthestellarparametersderivedfromthefit. 4 LITprosoftwareavailableathttp://www.jmmc.fr/litpro 7 R.Grellmannetal.:IR-InterferometryoftheONC 150 150 100 100 50 50 °P[] 0 °P[] 0 C C -50 -50 -100 -100 -150 -150 1.4 1.6 1.8 2 2.2 2.4 1.4 1.6 1.8 2 2.2 2.4 λ [µm] λ [µm] Fig.4. Closurephasesofθ2 OriAandV*TOri. Fig.5. Coverageoftheareaaroundtheobservedobjects,whereabinarycomponentwithinthedefinedconditions(seeSect.3.5) canbeexcludedfromtheAMBERdata.Thedifferentcolorsindicatetheareasforthethreedifferentbaselinesandpositionangles. Left:θ2OriARight:V*TOri.Here,theblackcirclemarksthesizeoftheFOVofAMBERwiththeUTs,thus,abinarycomponent canonlybeexcludedinsidethisFOV. Herbig,G.H.&Griffin,R.F.2006,AJ,132,1763 Preibisch,T.,Weigelt,G.,&Zinnecker,H.2001,inIAUSymposium,Vol.200, Hillenbrand,L.A.1997,AJ,113,1733 TheFormationofBinaryStars,ed.H.Zinnecker&R.Mathieu,69 Hillenbrand,L.A.,Strom,S.E.,Calvet,N.,etal.1998,AJ,116,1816 Raghavan,D.,McAlister,H.A.,Henry,T.J.,etal.2010,ApJS,190,1 Jones,B.F.&Walker,M.F.1988,AJ,95,1755 Sana,H.,deMink,S.E.,deKoter,A.,etal.2012,Science,337,444 Kobulnicky,H.A.&Fryer,C.L.2007,ApJ,670,747 Schertl,D.,Balega,Y.Y.,Preibisch,T.,&Weigelt,G.2003,A&A,402,267 Ko¨hler,R.,Petr-Gotzens,M.G.,McCaughrean,M.J.,etal.2006,A&A,458, Shevchenko, V.S.&Vitrichenko, E.A.1994,inAstronomical Societyofthe 461 Pacific Conference Series, Vol. 62,TheNature andEvolutionary Status of Kraus,S.,Balega,Y.Y.,Berger,J.-P.,etal.2007,A&A,466,649 HerbigAe/BeStars,ed.P.S.The,M.R.Perez,&E.P.J.vandenHeuvel,55 Kraus,S.,Weigelt,G.,Balega,Y.Y.,etal.2009,A&A,497,195 Siess,L.,Dufour,E.,&Forestini,M.2000,A&A,358,593 Lehmann, H., Vitrichenko, E., Bychkov, V., Bychkova, L., & Klochkova, V. Simon,M.,Close,L.M.,&Beck,T.L.1999,AJ,117,1375 2010,A&A,514,A34 Simo´n-D´ıaz,S.,Herrero,A.,Esteban,C.,&Najarro,F.2006,A&A,448,351 Lohsen,E.1975,InformationBulletinonVariableStars,988,1 Stelzer,B.,Flaccomio,E.,Montmerle,T.,etal.2005,ApJS,160,557 Lohsen,E.1976,InformationBulletinonVariableStars,1211,1 Tallon-Bosc,I.,Tallon,M.,Thie´baut,E.,etal.2008,inSocietyofPhoto-Optical Mason,B.D.,Hartkopf,W.I.,Gies,D.R.,Henry,T.J.,&Helsel,J.W.2009, Instrumentation Engineers(SPIE)ConferenceSeries,Vol. 7013,Societyof AJ,137,3358 Photo-OpticalInstrumentationEngineers(SPIE)ConferenceSeries McCaughrean,M.J.&Stauffer,J.R.1994,AJ,108,1382 Tatulli,E.,Millour,F.,Chelli,A.,etal.2007,A&A,464,29 Menten,K.M.,Reid,M.J.,Forbrich,J.,&Brunthaler,A.2007,A&A,474,515 Vitrichenko,E.,Tsymbal,V.,Bychkova,L.,&Bychkov,V.2011,Astrophysics, Morrell,N.&Levato,H.1991,ApJS,75,965 54,68 Padgett,D.L.,Strom,S.E.,&Ghez,A.1997,ApJ,477,705 Vitrichenko,E´.A.2002,AstronomyLetters,28,843 Parker,R.J.,Goodwin,S.P.,&Allison,R.J.2011,MNRAS,418,2565 Vitrichenko, E. A., Bondar, N. I., Bychkova, L., & Bychkov, V. 2012, Patience,J.,Zavala,R.T.,Prato,L.,etal.2008,ApJ,674,L97 Astrophysics,55,199 Petr, M. G., Coude´ du Foresto, V., Beckwith, S. V. W., Richichi, A., & Vitrichenko, E. A., Klochkova, V. G., & Plachinda, S. I. 1998, Astronomy McCaughrean,M.J.1998,ApJ,500,825 Letters,24,296 Petrov,R.G.,Malbet,F.,Weigelt,G.,etal.2007,A&A,464,1 Vitrichenko,E.I.&Plachinda,S.I.2001,AstronomyLetters,27,581 Preibisch,T.,Balega,Y.,Hofmann,K.-H.,Weigelt,G.,&Zinnecker,H.1999, Weigelt,G.,Balega,Y.,Preibisch,T.,etal.1999,A&A,347,L15 NewA,4,531 Wheelwright,H.E.,Oudmaijer,R.D.,&Goodwin,S.P.2010,MNRAS,401, 8 R.Grellmannetal.:IR-InterferometryoftheONC Table5.CompanionsoftheONCtargets.Astheobservationallimitsfordetectablecompanionschangewiththebrightnessofthe primarytargetandtheusedbaselineconfiguration,inrow7thelimitsforeachoftheobservedsamplestarsaregiven.Themassis theminimumrequiredmassofthecompanionasobtainedfromtheSiessetal.(2000)modelsforanageof106yrstobeabletobe clearlydetected.Belowtherangeofseparationscoveredbytheobservationsisgiven. Star Component Sep./Period SpT Mass DetectionMethod Comp.detect.limits Reference/Comment [′′]/days [M⊙] AMBER θ1OriC C1 O5.5 ∼38 ∼4M⊙ 2,5 2–240mas C2 0.040′′ ∼5 speckleinterferometry 5,thispaper C3 0.002′′ ∼1 spectroscopy 11,12 C4 ∼1.4 spectroscopy 10 C5 28daroundC4 ∼1.3 spectroscopy 10 θ1OriA A1 B0.5 ∼20 ∼3M⊙ 6 3–280mas A2 0.2′′ ∼4 AO 2,3,4,thispaper A3 65d≈1.5mas A0 ∼4 spectroscopy 1,13,14,15,16 θ1OriD D1 B0.5 ∼3M⊙ 4 2–240mas D2 1.401′′ AO 4 D3 0.0184′′ interferometry 4,thispaper D4 40d spectroscopy 22,thispaper θ2OriA A1a O9.5 ∼25 ∼3.5M⊙ 6,7 2–140mas A1b 21d,≈1mas ∼9 spectroscopic 8,17 A2 0.38′′ ∼7 AO 7,18 NUOri Aa B1 ∼2.7M⊙ 6 2–150mas Ab 8-19d≈0.4−−0.8mas ∼3 spectroscopic 6,8,17 B 0.47′′ ∼1 AO 9 C ∼0.015′′ interferometry thispaper V*TOri Aa A3 ∼2.2M⊙ 9 2–200mas Ab 14.3d spectroscopy 20,21 B 0.84′′ spectroscopy 19 References. (1) Bossietal. (1989); (2) Schertletal. (2003); (3) Petretal. (1998); (4)(1) Closeetal. (2012); (5) Krausetal. (2009); (6) Stelzeretal. (2005); (7) Preibischetal. (1999); (8) Morrell&Levato (1991); (9) Ko¨hleretal. (2006); (10) Vitrichenkoetal. (2011); (11) Lehmannetal. (2010); (12) Vitrichenkoetal. (2012); (13) Vitrichenko&Plachinda (2001); (14) Vitrichenkoetal. (1998); (15) Lohsen (1975); (16) Lohsen (1976); (17) Abtetal. (1991); (18) Masonetal. (2009), (19) Wheelwrightetal. (2010); (20) Shevchenko&Vitrichenko (1994);(21)Corporon&Lagrange(1999);(22)Vitrichenko(2002) 1199 Zinnecker,H.&Yorke,H.W.2007,ARA&A,45,481 AppendixA: Visibilities 9 R.Grellmannetal.:IR-InterferometryoftheONC 1.4 1.4 1.4 1.2 1.2 1.2 1 1 1 Visibility 00..68 Visibility 00..68 Visibility 00..68 0.4 0.4 0.4 0.2 0.2 0.2 0 0 0 1.4 1.6 1.8 2 2.2 2.4 1.4 1.6 1.8 2 2.2 2.4 1.4 1.6 1.8 2 2.2 2.4 λ [µm] λ [µm] λ [µm] Fig.A.1. Visibilitiesof θ1 OriCobservedon05/10/2010.Left: Baseline K0-I1,44m, PA 8◦ Middle:Baseline I1-A0,110m, PA −89◦Right:BaselineA0-K0,123m,PA70◦ 1.4 1.4 1.4 1.2 1.2 1.2 1 1 1 Visibility 00..68 Visibility 00..68 Visibility 00..68 0.4 0.4 0.4 0.2 0.2 0.2 0 0 0 1.4 1.6 1.8 2 2.2 2.4 1.4 1.6 1.8 2 2.2 2.4 1.4 1.6 1.8 2 2.2 2.4 λ [µm] λ [µm] λ [µm] Fig.A.2. Visibilitiesofθ1 OriCobservedon26/12/2010.Left:BaselineK0-G1,87m,PA29◦ Middle:BaselineG1-A0,88m,PA −65◦Right:BaselineA0-K0,128m,PA72◦ 1.4 1.4 1.4 1.2 1.2 1.2 1 1 1 Visibility 00..68 Visibility 00..68 Visibility 00..68 0.4 0.4 0.4 0.2 0.2 0.2 0 0 0 1.4 1.6 1.8 2 2.2 2.4 1.4 1.6 1.8 2 2.2 2.4 1.4 1.6 1.8 2 2.2 2.4 λ [µm] λ [µm] λ [µm] Fig.A.3. Visibilitiesofθ1 OriCobservedon27/12/2010.Left:BaselineK0-G1,84m,PA22◦ Middle:BaselineG1-A0,90m,PA −67◦Right:BaselineA0-K0,122m,PA70◦ 1.4 1.4 1.4 1.2 1.2 1.2 1 1 1 Visibility 00..68 Visibility 00..68 Visibility 00..68 0.4 0.4 0.4 0.2 0.2 0.2 0 0 0 1.4 1.6 1.8 2 2.2 2.4 1.4 1.6 1.8 2 2.2 2.4 1.4 1.6 1.8 2 2.2 2.4 λ [µm] λ [µm] λ [µm] Fig.A.4. Visibilitiesofθ1 OriAobservedon14/12/2010.Left:BaselineK0-I1,43m,PA180◦ Middle:BaselineG1-I1,40m,PA −150◦Right:BaselineG1-K0,81m,PA−166◦ 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.