ebook img

The Multiple Pheromone Ant Clustering Algorithm PDF

180 Pages·2014·1.46 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Multiple Pheromone Ant Clustering Algorithm

Some pages of this thesis may have been removed for copyright restrictions. If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately T M P HE ULTIPLE HEROMONE A C A NT LUSTERING LGORITHM VOL 1 OF 1 JAN CHIRCOP DoctorofPhilosophyinComputerScience ASTON UNIVERSITY MAY 2014 (cid:13)c JanChircop,2014 JanChircopassertshismoralrighttobeidentifiedastheauthorofthisthesis Thiscopyofthethesishasbeensuppliedonconditionthatanyonewhoconsultsitis understoodtorecognisethatitscopyrightrestswithitsauthorandthatnoquotationfromthe thesisandnoinformationderivedfromitmaybepublishedwithoutappropriatepermissionor acknowledgement. 1 ASTONUNIVERSITY ThesisSummary TheMultiplePheromoneAntClusteringAlgorithm byJan CHIRCOP Degree: DoctorofPhilosophy May2014 AntColonyOptimisationalgorithmsmimicthewayantsusepheromonesformarkingpathsto importantlocations. Pheromonetracesarefollowedandreinforcedbyotherants,butalsoevap- orateovertime. Asaconsequence,optimalpathsattractmorepheromone,whilstthelessuseful paths fade away. In the Multiple Pheromone Ant Clustering Algorithm (MPACA), ants detect features of objects represented as nodes within graph space. Each node has one or more ants assignedtoeachfeature. Antsattempttolocatenodeswithmatchingfeaturevalues,depositing pheromonetracesontheway. Thisuseofmultiplepheromonevaluesisakeyinnovation. Ants record other ant encounters, keeping a record of the features and colony membership of ants. The recorded values determine when ants should combine their features to look for conjunctions and whether they should merge into colonies. This ability to detect and deposit pheromone representative of feature combinations, and the resulting colony formation, renders thealgorithmapowerfulclusteringtool. The MPACA operates as follows: (i) initially each node has ants assigned to each feature; (ii) ants roam the graph space searching for nodes with matching features; (iii) when departing matchingnodes,antsdepositpheromonestoinformotherantsthatthepathgoestoanodewith theassociatedfeaturevalues;(iv)antfeatureencountersarecountedeachtimeanantarrivesat a node; (v) if the feature encounters exceed a threshold value, feature combination occurs; (vi) asimilarmechanismisusedforcolonymerging. The model varies from traditional ACO in that: (i) a modified pheromone-driven movement mechanismisused;(ii)antslearnfeaturecombinationsanddepositmultiplepheromonescents accordingly;(iii)antsmergeintocolonies,thebasisofclusterformation. The MPACA is evaluated over synthetic and real-world datasets and its performance compares favourablywithalternativeapproaches. 2 Acknowledgements Withoutthepatienceandassistanceofseveralpeoplethisthesiswouldhavenevermaterialised. A thesis which required a considerable amount of commuting, in conjunction with a full time jobinanareaunrelatedtothefieldofresearchwasharderthanIcouldhaveeverimagined. Iimmeasurablythankmysupervisor, Dr. ChristopherBuckinghamwhowashappytodedicate extrahourswhenrequiredandmetwithmeinnumerabletimesafterofficehours. Furthermore,I wouldalsoliketothankDr. M.ChliandProf. F.Guinand,respectivelytheinternalandexternal examinersfortheirhelpfulfeedbackonthethesis. Otherimportantpeopletothankincludemyfamilyfortheirunfailingsupportandlastly,butnot theleast,Stephwhogotontotheridewithmeattheverystart,andbytheend,eventhoughthe ridegotbumpy,wasstilltheretoencouragemethroughit. 3 Contents Abstract 2 Acknowledgements 3 Contents 4 ListofFigures 8 ListofTables 9 Abbreviations 10 1 Introduction 13 1.1 ProblemofDataExplosionandMotivation . . . . . . . . . . . . . . . . . . . 13 1.2 UnderstandingandInterpretingData: Top-DownandBottom-Upapproaches . 14 1.3 SwarmIntelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3.1 Self-organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3.2 Stigmergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3.3 PositiveFeedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.3.4 ACOinaNutshell . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.4 ObjectivesofthisThesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.4.1 TheNewACOModel . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.4.2 EvaluationTechniques . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.4.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.4.3 MPACAOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.6 OrganisationofWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.7 ChapterConclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2 LiteratureReview 23 2.1 ChapterOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 ClusteringandClassification . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.1 DefinitionofClustering . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.1.1 TheClusteringproblemasanNP-hardProblem . . . . . . . 25 2.2.2 OperandswithinClusteringAlgorithms . . . . . . . . . . . . . . . . . 25 2.2.2.1 Architectures. . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.2.2 DistanceMetrics . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.2.3 SimilarityMetrics-DistanceastheSimilarityProxy . . . . . 27 2.2.2.4 CurseofDimensionality . . . . . . . . . . . . . . . . . . . . 29 2.2.3 ComparingModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.3.1 ExternalEvaluationTechniques . . . . . . . . . . . . . . . . 29 2.2.4 GeneralClusteringTechniques . . . . . . . . . . . . . . . . . . . . . . 31 4 2.2.4.1 HierarchicalClustering . . . . . . . . . . . . . . . . . . . . 31 2.2.4.2 FlatorPartitionalClustering . . . . . . . . . . . . . . . . . 33 2.2.4.3 Density-basedClustering . . . . . . . . . . . . . . . . . . . 35 2.2.4.4 Graph-theoreticClusteringapproaches . . . . . . . . . . . . 36 2.2.5 TheRelevanceofTraditionalClusteringAlgorithms . . . . . . . . . . 37 2.3 SwarmIntelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.3.1 GeneralSwarmIntelligenceApproaches. . . . . . . . . . . . . . . . . 39 2.3.2 ParticleSwarmOptimisation . . . . . . . . . . . . . . . . . . . . . . . 40 2.3.3 Bio-InspiredSIAlgorithms . . . . . . . . . . . . . . . . . . . . . . . 41 2.3.3.1 BeeColonyAlgorithms . . . . . . . . . . . . . . . . . . . . 41 2.3.3.2 AntAlgorithms . . . . . . . . . . . . . . . . . . . . . . . . 42 2.3.4 TowardstheAntColonyOptimisationMeta-Heuristic . . . . . . . . . 43 2.3.4.1 RelevanceandnoveltytotheMPACA . . . . . . . . . . . . 47 2.4 ConclusionsfromSIliterature . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.5 AntAlgorithmsandtheirApplicationtoClustering . . . . . . . . . . . . . . . 48 2.5.1 FundamentalOperatorsBehindtheChosenModels . . . . . . . . . . . 48 2.5.1.1 TypeI-KnowledgeStructureFormingAnts . . . . . . . . . 49 2.5.1.2 TypeII-AntAggregationsandAnts’Self-Aggregation . . . 49 2.5.1.3 Type III - Clustering Inspired by the Chemical Recognition SystemofAnts . . . . . . . . . . . . . . . . . . . . . . . . 51 2.5.1.4 TypeIV-ClusteringusingAntColonyOptimisationAlgorithms 52 2.5.2 ComparisonCriteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.6 SelectedModelsinDetail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.6.1 TypeI-ClusteringusingAnts’Self-Aggregation . . . . . . . . . . . . 57 2.6.1.1 TheAntTreeAlgorithm . . . . . . . . . . . . . . . . . . . . 57 2.6.2 TypeII-ClusteringusingAntAggregationsandAnts’Self-Aggregation 59 2.6.2.1 StandardAntClusteringAlgorithm(SACA) . . . . . . . . . 59 2.6.2.2 Self-Aggregationwithina2DGrid . . . . . . . . . . . . . . 62 2.6.2.3 AntAggregationthroughPheromoneina2DGrid . . . . . . 63 2.6.3 Type III - Clustering Inspired by the Chemical Recognition System of Ants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.6.4 TypeIV-ClusteringusingAntColonyOptimisationAlgorithms . . . . 70 2.6.4.1 Multi-ObjectiveProblemSolving . . . . . . . . . . . . . . . 70 2.6.4.2 Multi-ColonyandMulti-PheromoneACOApproaches. . . . 71 2.6.4.3 AntColonyOptimisation(ACO)anditsApplicationtoClus- tering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 2.6.4.4 ACOAppliedtoGraphPartitioning . . . . . . . . . . . . . . 75 2.6.4.5 RuleLearningAlgorithms . . . . . . . . . . . . . . . . . . . 82 2.7 ChapterConclusionandIntroductiontotheMPACA . . . . . . . . . . . . . . 86 3 TheMPACAModel 87 3.1 ChapterOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.2 IntroductiontotheMPACA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.2.1 RelationshiptotheGenericAntColonyAlgorithm . . . . . . . . . . . 88 3.3 TheMainModelArchitectureandProcesses . . . . . . . . . . . . . . . . . . . 88 3.3.1 Partially-ConnectedGraphSpace . . . . . . . . . . . . . . . . . . . . 90 3.3.2 ConnectingNodesandMeasuringDistances . . . . . . . . . . . . . . 90 3.3.3 Multiple-stepswithinEdges . . . . . . . . . . . . . . . . . . . . . . . 92 3.4 PlacingAntsonNodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.4.1 AssigningFeaturestoAnts . . . . . . . . . . . . . . . . . . . . . . . . 92 3.4.2 FeatureMatchingaNode . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.5 AntMovement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5 3.5.1 Pheromone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.5.1.1 AntDepositState . . . . . . . . . . . . . . . . . . . . . . . 94 3.5.1.2 PheromoneQuantityDeposited . . . . . . . . . . . . . . . . 94 3.5.1.3 PheromoneEvaporation . . . . . . . . . . . . . . . . . . . . 95 3.5.2 EdgeSelectionMechanism . . . . . . . . . . . . . . . . . . . . . . . . 96 3.5.3 AntEncounters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 3.5.3.1 IdentifyingAntFeatureEncounters . . . . . . . . . . . . . . 98 3.5.3.2 DataStructuresforRecordingEncounters . . . . . . . . . . 98 3.5.4 MergingFeaturesandColonies . . . . . . . . . . . . . . . . . . . . . 100 3.5.4.1 MergingFeatures: ALearningandForgettingMechanism . . 100 3.5.4.2 ColonyMerging . . . . . . . . . . . . . . . . . . . . . . . . 101 3.6 OverallOperationoftheMPACA . . . . . . . . . . . . . . . . . . . . . . . . 102 3.7 TheMPACAandClusterDerivation . . . . . . . . . . . . . . . . . . . . . . . 105 3.7.1 MappingColoniestoClusters . . . . . . . . . . . . . . . . . . . . . . 105 3.7.2 TerminationCriteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 3.7.3 ClusterMembershipandEvaluation . . . . . . . . . . . . . . . . . . . 105 3.7.3.1 CentroidClusterMembershipCalculation . . . . . . . . . . 106 3.8 TheMPACAParameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 3.8.1 ASyntheticDatasetforDemonstratingtheParameters’Impact . . . . . 106 3.8.2 BaselineAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.8.3 DomainInitialisationAnalysis . . . . . . . . . . . . . . . . . . . . . . 109 3.8.3.1 MaximumEdgeLengthParameter . . . . . . . . . . . . . . 110 3.8.3.2 StepSizeParameter . . . . . . . . . . . . . . . . . . . . . . 111 3.8.4 AntInitialisationAnalysis . . . . . . . . . . . . . . . . . . . . . . . . 113 3.8.4.1 AntComplementParameter . . . . . . . . . . . . . . . . . . 113 3.8.4.2 DetectionRangeforOrdinalDimensionsParameter . . . . . 114 3.8.5 PheromoneDepositionandMovementAnalysis . . . . . . . . . . . . . 115 3.8.5.1 Pheromone quantity, maximum coefficient and the evapora- tionparameters . . . . . . . . . . . . . . . . . . . . . . . . 115 3.8.5.2 ResidualParameter . . . . . . . . . . . . . . . . . . . . . . 117 3.8.6 MergingThresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 3.8.6.1 FeatureMergingThresholdParameter . . . . . . . . . . . . 118 3.8.6.2 ColonyMergingThresholdParameter . . . . . . . . . . . . 120 3.8.6.3 VisibilityonEdgeParameter . . . . . . . . . . . . . . . . . 121 3.8.6.4 Time-windowParameter. . . . . . . . . . . . . . . . . . . . 122 3.9 TheMPACAasaClassifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 3.9.1 TrainingTerminationCriteria . . . . . . . . . . . . . . . . . . . . . . 124 3.9.2 EvaluationoftheMPACAasaClassifier . . . . . . . . . . . . . . . . 124 3.10 NoveltyandContributionoftheMPACA . . . . . . . . . . . . . . . . . . . . 125 3.10.1 DistinctiveElementsoftheMPACA . . . . . . . . . . . . . . . . . . . 125 3.10.2 VariationsoftheMPACAfromtheTraditionalClusteringAlgorithms . 126 3.10.3 VariationsfromAntBasedClusteringLiterature . . . . . . . . . . . . 127 3.10.4 AdvantagesoftheMPACAArchitecture . . . . . . . . . . . . . . . . . 128 3.10.5 NoveltyinAntMovement . . . . . . . . . . . . . . . . . . . . . . . . 129 3.10.6 AbilitytoLearnandAcquireFeatures . . . . . . . . . . . . . . . . . . 130 3.10.7 MultiplePheromonesandMultipleColonies . . . . . . . . . . . . . . 131 3.11 ChapterConclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 4 TheMPACAApplied 133 4.1 ChapterOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 4.2 EvaluationCriteriaandExperimentSet-up . . . . . . . . . . . . . . . . . . . . 133 4.2.1 SyntheticDatasets: the2D-4Cand10D-10CDatasets . . . . . . . . . 134 6 4.2.2 Real-worldUCIdatasets . . . . . . . . . . . . . . . . . . . . . . . . . 134 4.2.2.1 Irisdataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 4.2.2.2 Winedataset . . . . . . . . . . . . . . . . . . . . . . . . . . 134 4.2.2.3 Soya-beandataset . . . . . . . . . . . . . . . . . . . . . . . 135 4.2.2.4 WisconsinBreastCancerdataset . . . . . . . . . . . . . . . 135 4.2.2.5 PimaIndiansDiabetesdataset . . . . . . . . . . . . . . . . . 135 4.2.2.6 Yeastdataset . . . . . . . . . . . . . . . . . . . . . . . . . . 135 4.3 ExperimentationFramework . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 4.3.1 BasicSet-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 4.3.2 AnalysisbasedonaSimulatedAnnealingTechnique . . . . . . . . . . 136 4.4 BaselineExperiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 4.4.1 ObservationsfromBaselineExperiments . . . . . . . . . . . . . . . . 141 4.4.2 EvaluatingtheMPACAClusteringPerformance. . . . . . . . . . . . . 142 4.5 SensitivityAnalysisofchosenParameters . . . . . . . . . . . . . . . . . . . . 146 4.5.1 SensitivityMetric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 4.5.2 PheromoneDrivenversusaRandomModel . . . . . . . . . . . . . . . 147 4.6 Real-worldGRiSTandADVANCEdatasets . . . . . . . . . . . . . . . . . . . 148 4.6.1 GRiST-Mentalhealthriskassessment . . . . . . . . . . . . . . . . . 148 4.6.2 ADVANCE-Hub-and-SpokeLogisticsNetworks . . . . . . . . . . . . 150 4.6.2.1 PredictingShipments . . . . . . . . . . . . . . . . . . . . . 151 4.7 DiscussionofResultsAttained . . . . . . . . . . . . . . . . . . . . . . . . . . 154 5 ConclusionandFutureWork 155 5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 5.1.1 UniquepropertiesoftheMPACA . . . . . . . . . . . . . . . . . . . . 156 5.1.1.1 ModifiedAntTransitionMechanism . . . . . . . . . . . . . 156 5.1.1.2 FeatureLearningandtheMulti-PheromoneMechanism . . . 156 5.1.1.3 Multi-ColonyClusteringviaColonyFormation . . . . . . . 157 5.1.2 GoalsandObjectivesmetbytheMPACA . . . . . . . . . . . . . . . . 157 5.2 AlternativePaths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 5.2.1 VariationintheAntTypes . . . . . . . . . . . . . . . . . . . . . . . . 158 5.2.2 AcquisitionofMultipleFeaturesonEachDimension . . . . . . . . . . 158 5.2.3 FeatureMergingwithNo-ForgettingMechanism . . . . . . . . . . . . 158 5.2.4 ClusterRepresentationinFirstOrderLogic . . . . . . . . . . . . . . . 158 5.3 AdvancesoftheAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 5.4 CurrentLimitationsandRecommendedImprovements . . . . . . . . . . . . . 160 5.4.1 ParallelversusNon-Parallel . . . . . . . . . . . . . . . . . . . . . . . 160 5.4.2 ParametersandParameterAdjustment . . . . . . . . . . . . . . . . . . 161 5.4.3 TerminationCriteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 5.4.4 TacklingUnevenDatasets . . . . . . . . . . . . . . . . . . . . . . . . 161 5.5 Futurework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 5.5.1 BayesianClusterMembershipCalculation . . . . . . . . . . . . . . . . 162 5.5.2 K-NearestNeighbourhoodClusterMembershipCalculation . . . . . . 163 5.5.3 OngoingResearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 5.5.4 ApplicationoftheMPACAasaClassifier . . . . . . . . . . . . . . . . 165 5.6 ConcludingArguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 7 List of Figures 1.1 Experimentalset-updemonstratingtheshortestpathfinding. . . . . . . . . . . 17 2.1 Dwellingsthatappertaintothetwoparishesandpossibleconfigurations. . . . . 24 2.2 EuclideanversusCityblockdistanceproblemdepiction . . . . . . . . . . . . . 26 2.3 Dendrogramrepresentationoftheanimalkingdomcategorisation . . . . . . . . 31 2.4 Density-reachabilityanddensity-connectivityintheDBSCAN . . . . . . . . . 35 2.5 Fireantscoalescetogethertoformabridgewiththeirbodies . . . . . . . . . . 49 2.6 Asequentialclusteringtaskofcorpsesperformedbyarealantcolony . . . . . 50 2.7 PrinciplesoftheANTCLUST . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.8 ClusteringasanOptimisationProblem . . . . . . . . . . . . . . . . . . . . . . 53 2.9 Thetournamentselectionmechanism . . . . . . . . . . . . . . . . . . . . . . 79 3.1 A finite state machine representing the changes in ant behaviour as it traverses thegraph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.2 Resultsofvaryingthemaximumedgelengthparameter . . . . . . . . . . . . . 110 3.3 Resultsofvaryingthestepsizeparameter . . . . . . . . . . . . . . . . . . . . 112 3.4 Resultsofvaryingtheantcomplementparameter . . . . . . . . . . . . . . . . 113 3.5 Resultsofvaryingthedetectionrangeforcontinuousdomainsparameter . . . . 115 3.6 Resultsofvaryingthepheromonerelatedparameters . . . . . . . . . . . . . . 116 3.7 Resultsofvaryingtheresidualparameter. . . . . . . . . . . . . . . . . . . . . 117 3.8 Resultsofvaryingthefeaturemergingparameter . . . . . . . . . . . . . . . . 119 3.9 Resultsofvaryingthecolonymergingparameter . . . . . . . . . . . . . . . . 120 3.10 Resultsofvaryingthevisibilityrangeparameter . . . . . . . . . . . . . . . . . 121 3.11 Resultsofvaryingthetime-windowparameter . . . . . . . . . . . . . . . . . . 123 4.1 Transportationinamultiplehub-and-spokelogisticssystem. . . . . . . . . . . 150 4.2 Fluctuationsinthenumberofpalletseachdayforaspecificdepot . . . . . . . 151 8 List of Tables 3.1 TheMPACAparametersettingsasappliedtotheSquare1dataset . . . . . . . . 108 4.1 Summaryoftheselecteddatasets . . . . . . . . . . . . . . . . . . . . . . . . . 136 4.2 TheMPACAasappliedtotheSquare1,2D-4C,10D-10C,IrisandWinedatasets. 138 4.3 TheMPACAasappliedtotheSoya-Bean,WBC,PimaandYeastdatasets. . . . 139 4.4 TheMPACAperformanceappliedoversyntheticdatasets . . . . . . . . . . . . 142 4.5 TheMPACAperformanceappliedoverreal-worlddatasets . . . . . . . . . . . 143 4.6 ParametersensitivityanalysisasappliedtotheIrisandWinedataset. . . . . . . 147 4.7 PheromoneDrivenversusaRandomModelappliedtotheIrisandWinedataset. 148 4.8 ParametersettingsfortheMPACAasappliedtotheGRiSTdataset . . . . . . . 149 4.9 ParametersettingsfortheMPACAasappliedtotheADVANCEdataset . . . . 153 4.10 ResultsoftheMPACAasappliedtotheADVANCEdataset. . . . . . . . . . . 154 5.1 ParallelversusNon-ParallelexecutionovertheIrisdataset . . . . . . . . . . . 160 9

Description:
Ant Colony Optimisation algorithms mimic the way ants use pheromones for 1992], are inspired by the foraging behaviour of honey bees and ant . to one cluster over another depending on their inherent composing values . for traditional clustering and those originating from the ant metaphors,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.