DRAFTVERSIONFEBRUARY5,2008 PreprinttypesetusingLATEXstyleemulateapjv.10/09/06 THEMORPHOLOGYOFM17-UC1– ADISKCANDIDATESURROUNDINGAHYPER-COMPACTHIIREGION1 M.NIELBOCK,R.CHINI,V.H.HOFFMEISTER,ANDC.M.SCHEYDA AstronomischesInstitut,Ruhr–UniversitätBochum,Universitätsstraße150,44780Bochum,Germany J.STEINACKER Max–Planck–InstitutfürAstronomie,Königstuhl17,69117Heidelberg,Germany AstronomischesRechen-InstitutamZentrumfürAstronomieHeidelberg,Mönchhofstraße12-14,69120Heidelberg,Germany 7 D.NÜRNBERGER 0 EuropeanSouthernObservatory,AlonsodeCordova3107,Vitacura,Santiago,Chile 0 2 R.SIEBENMORGEN n EuropeanSouthernObservatory,Karl-Schwarzschild-Straße2,85748Garching,Germany a DraftversionFebruary5,2008 J 6 ABSTRACT 2 Weinvestigatethemorphologyandtheevolutionarystageofthehyper-compactHIIregionM17-UC1using observationsatinfraredwavelengthsandNIRradiativetransfermodelling. Itisforthefirsttimeresolvedinto 6 twoemissionareasseparatedbyadarklanereminiscentofanobscuringsilhouettecausedbyacircumstellar v 9 disk. The observationaldata as well as model calculationsso far suggest that M17-UC1 is surroundedby a 5 diskofcooldust. Thisdirectdetectionofacircumstellardiskcandidatearoundahyper-compactHIIregionis 5 inagreementwiththeexpectationsofthediskaccretionmodelforhigh-massstarformation. 0 Subjectheadings:stars: formation,circumstellarmatter,pre-mainsequence–openclustersandassociations: 1 general,individual(M17) 6 0 h/ 1. INTRODUCTION Inthepresentstudy,weinvestigatedthehyper-compactHII region(HCHII)M17-UC1(seeSect.1.2fordetails). HCHII p 1.1. Generalmotivation - arecommonlyassociatedwiththeearlieststagesofhigh-mass o The hypothesis that high-mass stars form by accretion is starformation(Kurtz2000;DePreeetal.2005).Theycanbe r supported by a number of indirect indicators like rotating explainedasaphaseinearlystellarevolution,whenthehigh- t s molecularenvelopescombinedwithbipolaroutflows,gasin- mass star begins to ionise its molecular accretion flow. In a fallormaseremissiontowardscandidatehigh-massprotostel- suchastage,ionisationandaccretioncanco-exist(Keto2003, v: lar objects (HMPOs) (e. g. Ho&Haschick 1986; Ketoetal. 2006). Weusednear-IRobservationsinordertoi)overcome i 1987, 1988; Cesaronietal. 1997, 2005; Zhang&Ho 1997; thestrongextinctiontowardsthesource,andii)utiliseadap- X Zhangetal. 1998; Beltránetal. 2004, 2005; Keto&Wood tiveopticstechniquesallowingforhighspatialresolution.As r 2006). Although it seems plausible that such rotating and aresult,wefindabipolarstructurereminiscentofasilhouette a collapsing configurations will eventually form a disk, the diskagainstabrightbackgroundascommonlyfoundforlow- involved observations usually lack the spatial resolution to mass protostars. Starting from this hypothesis, we perform firmly verifysuch a claim. Presently, there is noconvincing radiativetransfermodellingtoverifythisclaim. exampleofadirectdetectionofacircumstellardiskarounda HMPOthatcanbestudiedtoinferthedetailsoftheaccretion 1.2. Theobject:M17-UC1 process including the ionisation effects. Even the currently M17-UC1 was initially discovered as a cometary ultra- mostpromisingcandidate,IRAS20126+4104,mustbeques- compact H II region by Fellietal. (1980, 1984), who sug- tioned:Sridharanetal.(2005)reportabipolarstructure,sim- gested a B0 - B0.5 ZAMS star as the ionising source pos- ilartowhatwepresentinthisletter. However,Cesaronietal. sessing a modelled Lyman continuum photon flux of 2 (2005)recentlyreviseditsmasstoavaluethatliesjustbelow 1047s- 1. It was later re-classified as a HCHII with≃broa×d what is commonly accepted as “high mass”. Furthermore, ( 35kms- 1) radiorecombinationlinesanda risingspectral Hofneretal. (1999) explained their detection of radio con- in≥dex of +1 between 1.4 and 43GHz (Johnsonetal. 1998; tinuumemission asshockedgascausedby a protostellarjet, Sewiloetal. 2004). A number of class II methanol masers althoughtheyalsodiscussedfree-freeemissionfromionised (Menten 1991) and hydroxyl masers (e.g. Churchwelletal. gasasapossiblesource. 1990; Caswell 1997; Walshetal. 1998; Forster&Caswell 1999) are located in the vicinity of M17-UC1 being typical Electronicaddress:[nielbock,chini,vhoff,scheyda]@astro.rub.de Electronicaddress:[email protected] forthesurroundingsofhigh-massprotostars. Electronicaddress:[dnuernbe,rsiebenm]@eso.org Withinthepositionalaccuracyof5.′′7,Harperetal.(1976) 1Based on observations made with ESO telescopes at the La Silla and detecteda strongcompact10.6µm source(IRc2)coinciding Paranal observatories under programme IDs 71.C-0185(A), 71.C-0353(A), 73.C-0170(A),73.C-0407(A),75.C-0418(A),77.C-0174(A) with M17-UC1 with an SED suggesting the presence of hot dust. The IR flux was assumed to originate entirely from 2 FIG. 1.—M17-UC1asseenbyNACO(KsandL′)andVISIR(SiC/N). Thecentralpositionis18:20:24.82,- 16:11:34.9(J2000),thefieldsizeis10′′×10′′. The3σcontouroftheKsbandfluxissuperimposedonallimages.ThelocationsofassociatedOH(×)andclassIImethanolmasers(+)areindicatedintheKs bandimage. Anenlargement(1.′′1×1.′′1)ofthesourceisshownintheupperrightcorner. TheinsetintheVISIRimageillustratestheintensitydistribution acrossthebrightinneremission.Blackcontoursatarbitraryintensityvaluesareshownforenhancement.ThelowerrightpanelisaRGBcodedcompositeofthe threeimages(blue:Ks,green:L′,red:N). M17-UC1 (Fellietal. 1984). When Felli&Stanga (1987) sourceswith the detectionsof the ISAAC data that were as- observed M17-UC1 from 1.25 to 18.1µm, they also found trometricallycalibratedusingthe2MASSdatabase.Withthis anunresolvedIRsourcewhichtheyattributedtotheHCHII. procedure,weestimatearelativeastrometricaccuracyofbet- However,they used the strongestK band peakas their posi- terthan 0.′′1. ± tionalreference,whichinfactisnotM17-UC1butthenearby TheTIMMI2(Reimannetal.1998)NIR/MIRimagingwas IR-bright star IRS5 (Chini&Wargau 1998). It is dominat- carriedoutduring3observingrunsinJuly2003,April2004, ingtheemissionatJHK. AdditionalIRimagingwascarried andJuly 2005at the ESO 3.6m telescopeatLa Silla, Chile. outbyGiardetal.(1994),Chinietal.(2000)andJiangetal. TheobservationscoveredtheL,M,N1,N10.4,N11.9andQ1 (2002). Kassisetal. (2002) characterised the source as a bands. Astandardchoppingandnoddingtechniquewasused ZAMS B0 type surroundedby a shell of 0.6- 3.4M and a withanamplitudeof10′′. Alldataarelimitedbydiffraction ⊙ radiusoflessthan6600AU. withaFWHMof0.′′7. M17-UC1wasimagedwithVISIR(Lagageetal.2004)in 2. OBSERVATIONSANDCALIBRATIONS May2006throughtheSiC filter. Thepixelscale was0.′′127 The JHKsL′ adaptive optics imaging was carried out resultinginafield-of-viewof32.′′5 32.′′5. Astandardchop- × in June 2003 using NAOS/CONICA (Lenzenetal. 2003; pingandnoddingtechniquein perpendiculardirectionswith Roussetetal. 2003) at the ESO VLT. The pixel resolution throw amplitudes of 15′′ was applied. The measured image was 0.′′027, the limiting magnitudes are J =20.6, H =19.3, quality(FWHM)of 0.32′′islimitedbydiffraction.Theas- ≃ Ks = 18.4 and L′ = 16.2. The photometric calibration was trometric calibration was achieved by fitting transformation obtained from our ISAAC observations in September 2002 equations between the NACO L′ data and the VISIR data (Chinietal. 2004; Hoffmeisteretal. 2006). We adjusted the after identifying several point-sources visible in both wave- astrometry in the JHKsL′ images by referencing the NACO bands. Image restoration of the TIMMI2 and VISIR data ThemorphologyofM17-UC1 3 wasachievedwiththesoftwareMOPSI(maintainedbyR.W. 106 10 Wavelength [m m] 1 Zylka,IRAM,Grenoble,France).Theoverallastrometricac- 105 curacy is demonstrated by the RGB coded KLN composite imagepresentedinFig.1. 104 y] TheKbandspectroscopywasobtainedinAugust2004with mJ 103 aIaSbsAsloiAtrpwCtii(odMnthofeooafrwt0uo.r′′eo3d.w1aT9sh9ep7e)srpafoetcramtrsopesdeccowtrpiaytlhroeTfsIotMhlueMtiNoIn2boaafnt1dth5se0il0EicaSanOtde Flux density [ 110021 TNIAMOMSI/C2 OspNeIcCtrAum (2 (020030)3) 12 W11avelen1g0th [mm9] 8 3.6m telescope at La Silla, Chile in July 2003. The seeing 100 TIMMI2 (2003) was0.′′7;theslitwidthwas1.′′2. 10-1 TTKIIaMMssMMis II(221 9((22900900)45)) VISIR (2006) 3. RESULTS 10-12013 1014 1015 3.1. Morphology Frequency [Hz] FIG. 2.—SEDofM17-UC1. Thedatawereobtainedbetween1999and Fig. 1 displays the morphology of M17-UC1 at NIR and 2006.TheredsolidlineistheMIRspectrumofthesilicateabsorptionfeature MIR wavelengths. On our images, M17-UC1 is barely vis- at9.7µm. Theinsetisazoomintothespectrum. Acontinuum fitoftwo ible at H with a brightness of 17.83 0.25mag. Surpass- black-bodycomponentswithformalcolourtemperatures ofT =425Kand ± 225Kisshownasadottedline. ing previousNIR studies, we resolve the source for the first time into two K band emission blobs, separated by 0.′′46 at a position angle of 126◦ measured clockwise from north 4. DISCUSSION to south. A dark lane separates the two K band nebu- 4.1. Observationalevidenceforadisk lae (Fig. 1). The south-western emission has an elliptical shape of 0.′′9 0.′′5 (3σ contour) and a pronounced peak at The symmetric absorption pattern of M17-UC1 in the 18:20:24.83,-×16:11:35.0(J2000)with a FWHM (fullwidth K band along with the perpendicularly scattered light at half maximum)of 0.′′19 0.′′13. The north-easternemis- nebulosities on both sides very much resembles the ap- sionat18:20:24.85,- 16:11×:34.7(J2000)ismorediffuseand pearance of young low-mass stars with circumstellar has a size of 0.′′8 0.′′5. The integrated brightness of both disks (e.g McCaughrean&O’dell 1996; Padgettetal. 1999; × blobswithin a radius of 3600AU is Ks=13.1mag, their in- Brandneretal. 2000; Grossoetal. 2003). This view is sup- tensityratiois10:1(SW:NE).AtLband,thesourceattainsa ported by the morphology of theoretically derived synthetic sphericalshapewitharadiusof 1.′′0(3σcontour)andanL′ imagesof protostellardisks presentedby Starketal. (2006). ∼ brightnessof6.1magwithin3600AU. Theseimagesarebasedonvaryingdiskradiusandaccretion On previous MIR images (Chinietal. 2000; Kassisetal. rate,amongwhichonecanfindsuitingrepresentationsofthe 2002),M17-UC1appearedasapoint-likesourcewithspheri- Ks image of M17-UC1. In addition, the class II methanol callysymmetriccircumstellaremission.OurnewNbanddata masers that are located in the general direction of the sup- resolve M17-UC1(see inset in Fig. 1). The peak brightness poseddisksupportourconjecture. is centred on the south-western K band peak, and shows an Apart from the almost uniformly extended L and N band elongationwithaFWHMof0.′′7 0.′′5towardsnortheastbe- emission one would expect to see the supposed disk to be × ingcompatiblewithwithnorth-easternK bandpeak. Wede- emittingstronglyintheMIR,too.Nevertheless,theremustbe riveafluxdensityof29.87 0.13Jyforthecentralcompact cooldustinside thedisk aswitnessed bythe silicate absorp- source. Thetotalcircumste±llaremission( 5′′ 3′′) isrela- tion feature. We interpretthe elongatedshape of the central ∼ × tively complex with a noticeable extent to the northwest. It MIR emission perpendicular to the disk orientation as scat- addsanother3.52Jytothetotalfluxdensity. teredlight fromthe centralsource. Due to the lower optical depth,however,theMIRdiskemissionisveiledbythesilicate 3.2. Spectralappearance absorption and scattered MIR photons. At larger distances from the HCHII, we see a warmer and less dense envelope Our K band spectrum (not shown) of M17-UC1 includes stronglyemittingintheMIR. both nebulae and shows an extremelyred continuumcaused Interestingly, stellar MIR emission is not necessarily at- by hot dust. Apart from the Brγ line emission, which most tributedtodisks,butcanalsooriginatefromthewallsofout- likely originates from scattered photons emitted by the gas flowcavitieswheretheambientinterstellarmediuminteracts insidetheHCHII,thespectrumappearsfeatureless. with the gas stream (DeBuizer 2006, 2007). In fact, the K In the N band, M17-UC1 displays a deep silicate feature band nebulae could also be dominated by emission from an (Fig.2);itsexistencewasalreadysuggestedbyearlierphoto- outflow with a wide openingangle. In this case, the narrow metricdata(Harperetal. 1976;Kassisetal. 2002). Thisab- waist would indicate a small disk that restricts the outflow sorptionindicatesthepresenceofcooldustalongthelineof inthese directions. However,ourK bandspectrumdoesnot sighttowardsM17-UC1. Usingthestandardrelationforcon- showanyhintsforshocksoroutflows,sowediscardthisin- vertingopticaldepthsofτ 17 τ (Krügel2003),weinfer V ∼ · 9.7 terpretation. avisualextinctionofabout40mag. Theluminositybetween 1.6and20µm correctedforextinctionis1.1 104L being ⊙ × 4.2. Modelcalculations consistentwithanearlyB-typestar. Allourbroad-bandpho- tometric data from previous epochs that were obtained with We have modelled the 2.2µm radiation with a star-disk differentfilterstracethe shapeofthe silicate absorptionfea- system using a 3D radiative transfer code described by ture fairly well. This rules out possible MIR flux variations Steinackeretal.(2006). Thestar wasassumedtohaveT = eff thatweresuggestedbyNielbocketal. (2001). Althoughour 30000K.Thediskhasaradialpower-lawdensityprofilewith broadN bandimagingfilteralsoincludesthesilicatefeature, an exponential atmosphere above and below the disk mid- weonlyseetheextendedwarmemittingdustinFig.1. planelike 4 (cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1) flif(inaaFgvitinhegontt.usgnr3ietot)ynh.rteerhraTd-ateihiloslaeyksrbteemeexfrtoontwerdenepe,edelnstaoh5kftv.ehaecreCrrtahaOstndhteNrnrieoCaoonfitLtiugUvlbateSsemaIoOlteurorNeantnhpntg-rsmwoftehdoereudsctecfieelalr.dlancmuspaleeatnaitstik,ofaaancnnstddoarttlihhsloyee DFisIkG.m3o.d—eliMncoldineeldfitatof30M◦1a7s-UdiCsc1u.sLseedft:inOtrhieginteaxlt.KsRbigahntd:iSmcaagttee.reCdenlitgrhe:t We have presentednew NIR and MIR observationsof the imageat2.2µmfromafilamentinfrontofaB0star. Thefilamenthasa hyper-compact HII region M17-UC1. As a prominent fea- diameterofabout3000AUandadistanceof5000AUtothestar,thedust ture, the Ks band image shows a dark lane in scattered light propertiesareidenticaltothoseofthediskmodel. producingasubstantialsilicateabsorptionfeatureobservedin theMIR.Analysingtheimagewithradiativetransfermodels, α r z 2 wefindthebestagreementbyassumingadisk-likestructure n(r,z)=n exp - (1) 0 around the central source instead of a foreground filament. (cid:18)r0(cid:19) (cid:20) (cid:16)hr(cid:17) (cid:21) Forthisreasonandbecauseofthe"highmass" natureofthe with r = √x2+z2, where n is the number density normal- embeddedstarasdeterminedbymanyindependentmeasure- 0 isation, h the scale height, r the inner radius, and r the ments,wesuggestthatM17-UC1mightbethefirstdoubtless 0 1 outer radius where the disk vanishes. The K band image candidateof a HCHII where at least parts of a circumstellar withthetriangularabsorptioniswellrepresentedbyparame- diskarestillpresent. tersn =104m- 3, α=1.3,h=0.2,r =20AU,r =1000AU d 0 1 (Fig.3)andstandard0.12µm-sizedsilicatedustparticleswith opacitiestakenfromDraine&Lee(1984). ThisworkwaspartlyfundedbytheNordrhein-Westfälische Theinclinationofthediskisabout30◦(edge-on=0◦). We Akademie der Wissenschaften. M. N. acknowledges the obtain a lower mass limit of 4 10- 4M from the scattered support by the Deutsche Forschungsgemeinschaft, project ⊙ × lightthatonlyprobesthesurfaceofthedisk. Asimilarmass SFB 591 and the Ministerium für Innovation, Wissenschaft, limitisderivedfromtheextinctionthatblocksthestellarlight Forschung und Technik (MIWFT) des Landes Nordrhein- at 2.2µm. Of course, more mass can be hidden in the inte- Westfalen. WethankE.Churchwell,H.BeutherandM.Haas riorofthediskwithoutaffectingtheappearanceoftheobject. for helpful discussions. Likewise, we thank the referee Likewise,foramildlyedge-ondisk,additionaldustcouldre- E.Keto forhis exemplaryandvaluablesuggestionsthatsig- sideoutsidethescatteredlightpattern. nificantly improvedthe manuscript. This publication makes We havealsocarriedoutradiativetransfercalculationsfor use of data products from the Two Micron All Sky Survey, the alternative scenario of a dusty filament that is unrelated whichisajointprojectoftheUniversityofMassachusettsand to M17-UC1. We modelled dust configurations of differing theInfraredProcessingandAnalysisCenter/CaliforniaInsti- sizes and masses located at various distances in front of the tute of Technology,fundedby the NationalAeronauticsand star. In contrast to the observed morphology, the scattered SpaceAdministrationandtheNationalScienceFoundation. REFERENCES Beltrán,M.T.,Cesaroni,R.,Neri,R.,etal.2004,ApJ,601,L187 Keto,E.2006,astro-ph/0603856 Beltrán,M.T.,Cesaroni,R.,Neri,R.,etal.2005,A&A,435,901 Keto,E.&Wood,K.2006,ApJ,637,850 Brandner,W.,Sheppard,S.,Zinnecker,H.,etal.2000,A&A,364,L13 Keto,E.R.,Ho,P.T.P.,&Haschick,A.D.1988,ApJ,324,920 Caswell,J.L.1997,MNRAS,289,203 Keto,E.R.,Ho,P.T.P.,&Reid,M.J.1987,ApJ,323,L117 Cesaroni,R.,Felli,M.,Testi,L.,Walmsley,C.M.,&Olmi,L.1997,A&A, Krügel,E.2003,ThePhysicsofInterstellarDust,SeriesinAstronomyand 325,725 Astrophysics(Bristol,UK:InstituteofPhysicsPublishing) Cesaroni,R.,Neri,R.,Olmi,L.,etal.2005,A&A,434,1039 Kurtz,S.E.2000,inRevistaMexicanadeAstronomíayAstrofísica(Serie Chini,R.,Hoffmeister,V.H.,Kämpgen,K.,etal.2004,A&A,427,849 de Conferencias), Vol. 9, Astrophysical Plasmas: Codes, Models, and Chini,R.,Nielbock,M.,&Beck,R.2000,A&A,357,L33 Observations, ed. J. Arthur, N. Brickhouse, & J. Franco (Instituto de Chini,R.&Wargau,W.F.1998,A&A,329,161 Astronomía,UNAM,Mexico),169–176 Churchwell,E.,Walmsley,C.M.,&Cesaroni,R.1990,A&AS,83,119 Lagage,P.O.,Pel,J.W.,Authier,M.,etal.2004,TheMessenger,117,12 DeBuizer,J.M.2006,ApJ,642,L57 Lenzen, R.,Hartung, M.,Brandner, W.,etal. 2003, in Proceedings ofthe DeBuizer,J.M.2007,ApJ,654,L147 SPIE,Vol.4841,InstrumentDesignandPerformanceforOptical/Infrared DePree,C.G.,Wilner,D.J.,Deblasio,J.,Mercer,A.J.,&Davis,L.E.2005, Ground-based Telescopes, ed. M. Iye & A. M. F. Moorwood (The ApJ,624,L101 InternationalSocietyforOpticalEngineering),944–952 Draine,B.T.&Lee,H.M.1984,ApJ,285,89 McCaughrean,M.J.&O’dell,C.R.1996,AJ,111,1977 Felli,M.,Johnston,K.J.,&Churchwell,E.1980,ApJ,242,L157 Menten,K.M.1991,ApJ,380,L75 Felli,M.,Massi,M.,&Churchwell,E.1984,A&A,136,53 Moorwood, A. F. 1997, in Proceedings of the SPIE, Vol. 2871, Optical Felli,M.&Stanga,R.1987,A&A,175,193 TelescopesofTodayandTomorrow,ed.A.L.Ardeberg(TheInternational Forster,J.R.&Caswell,J.L.1999,A&AS,137,43 SocietyforOpticalEngineering),1146–1151 Giard, M., Bernard, J. P., Lacombe, F., Normand, P., & Rouan, D. 1994, Nielbock,M.,Chini,R.,Jütte,M.,&Manthey,E.2001,A&A,377,273 A&A,291,239 Padgett,D.L.,Brandner,W.,Stapelfeldt,K.R.,etal.1999,AJ,117,1490 Grosso,N.,Alves,J.,Wood,K.,etal.2003,ApJ,586,296 Reimann,H.,Weinert,U.,&Wagner,S.1998,inProceedingsoftheSPIE, Harper,D.A.,Low,F.J.,Rieke,G.H.,&Thronson,H.A.1976,ApJ,205, Vol.3354,InfraredAstronomicalInstrumentation,ed.A.M.Fowler(The 136 InternationalSocietyforOpticalEngineering),865–876 Ho,P.T.P.&Haschick,A.D.1986,ApJ,304,501 Rousset,G.,Lacombe,F.,Puget,P.,etal.2003,inProceedingsoftheSPIE, Hoffmeister,V.H.,Chini,R.,Scheyda,C.M.,etal.2006,A&A,457,L29 Vol.4839,AdaptiveOpticalSystemTechnologiesII,ed.P.L.Wizinowich Hofner,P.,Cesaroni,R.,Rodríguez,L.F.,&Martí,J.1999,A&A,345,L43 &D.Bonaccini(TheInternationalSocietyforOpticalEngineering),140– Jiang,Z.,Yao,Y.,Yang,J.,etal.2002,ApJ,577,245 149 Johnson,C.O.,DePree,C.G.,&Goss,W.M.1998,ApJ,500,302 Sewilo,M.,Churchwell,E.,Kurtz,S.,Goss,W.M.,&Hofner,P.2004,ApJ, Kassis,M.,Deutsch,L.K.,Campbell,M.F.,etal.2002,AJ,124,1636 605,285 Keto,E.2003,ApJ,599,1196 Sridharan,T.K.,Williams,S.J.,&Fuller,G.A.2005,ApJ,631,L73 ThemorphologyofM17-UC1 5 Stark,D.P.,Whitney,B.A.,Stassun,K.,&Wood,K.2006,ApJ,649,900 Zhang,Q.&Ho,P.T.P.1997,ApJ,488,241 Steinacker,J.,Chini,R.,Nielbock,M.,etal.2006,A&A,456,1013 Zhang,Q.,Hunter,T.R.,&Sridharan,T.K.1998,ApJ,505,L151 Walsh,A.J.,Burton,M.G.,Hyland,A.R.,&Robinson,G.1998,MNRAS, 301,640