ebook img

The morphism axiom for n-angulated categories PDF

0.08 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The morphism axiom for n-angulated categories

THEMORPHISMAXIOMFORn-ANGULATEDCATEGORIES EMILIEARENTZ-HANSEN,PETTERANDREASBERGH,ANDMARIUSTHAULE ABSTRACT. Weshowthatthemorphismaxiomforn-angulatedcategoriesisredundant. 6 1 0 2 1. INTRODUCTION n In[3],Geiss, Keller andOppermannintroducedn-angulatedcategories. Theseare a generalizations of triangulated categories, in the sense that triangles are replaced by J n-angles,thatis,morphismsequencesoflengthn.Thusa3-angulatedcategoryispre- 6 ciselyatriangulatedcategory. 2 Therearebynownumerousexamples ofsuchgeneralizedtriangulated categories. ] They appear for example as certain cluster tilting subcategories of triangulated cate- T gories.Recently,in[4],Jassointroducedthenotionofalgebraicn-angulatedcategories. C SuchacategoryisbydefinitionequivalenttoastablecategoryofaFrobeniusn-exact . category,thelatterbeingagenralizationofanexactcategory;exactsequencesarere- h t placedbyso-calledn-exactsequences. Algebraicn-angulatedcategoriesaretherefore a naturalgeneralizationsofalgebraictriangulatedcategories,whicharedefinedascate- m goriesequivalenttostablecategoriesofFrobeniusexactcategories. By[4,Section6.5], [ then-angulatedcategoriesthatariseasclustertiltedsubcategoriesofalgebraictrian- 1 gulated categories are themselves algebraic. Actually, the only examples so far of n- v angulatedcategoriesthatarenotalgebraicaretheratherexoticonesin[1]. Atthetime 8 ofwriting,thereisnonotionoftopologicaln-angulatedcategories,exceptinthetrian- 1 gulatedcase. 0 7 Theaxiomsdefiningn-angulatedcategoriesaregeneralizedversionsoftheaxioms 0 defining triangulated categories. Among these axioms, themorphism axiom and the . generalizedoctahedralaxiomaretheonesthatguaranteeaninterestingtheory. Apart 1 0 fromtheexistenceaxiom,whichstatesthateverymorphismispartofann-angle,the 6 otheraxiomsare“bookkeepingaxioms,”toborrowPaulBalmer’sterminology.Thegen- 1 eralized octahedral axiom was introduced in [2], but in this paper we present it in a : v muchmorecompactandreadableform. i Thetopic ofthis paper isthe morphism axiom, whichstates that a morphism be- X tweenthebasesoftwon-anglescanbeextendedtoamorphismofn-angles. Weshow r a thatthisaxiomisredundant;itfollowsfromthegeneralizedoctahedralaxiomandthe existenceaxiom.Fortriangulatedcategories,thiswasprovedbyMayin[5]. 2. THEAXIOMSFORn-ANGULATEDCATEGORIES Inthissection, werecalltheaxiomsforn-angulated categories. Wefixanadditive categoryC withanautomorphismΣ:C →C,andanintegerngreaterthanorequalto three. AsequenceofobjectsandmorphismsinC oftheform A −α→1 A −α→2 ···−α−n−−→1 A −α−→n ΣA 1 2 n 1 Date:January27,2016. 2010MathematicsSubjectClassification. 18E30. Keywordsandphrases. Triangulatedcategories,n-angulatedcategories,morphismaxiom. 1 2 EMILIEARENTZ-HANSEN,PETTERANDREASBERGH,ANDMARIUSTHAULE iscalledann-Σ-sequence. Whenever convenient, weshalldenotesuchsequences by A•,B•etc.TheleftandrightrotationsofA•arethetwon-Σ-sequences A −α→2 A −α→3 ···−α−→n ΣA −(−−−1)−n−Σ−α→1 ΣA 2 3 1 2 and Σ−1An−(−−−1−)n−Σ−−−1−α→n A1−α→1 ···−α−n−−→2 An−1−α−n−−→1 An respectively,andatrivialn-Σ-sequenceisasequenceoftheform A→−1 A→0→···→0→ΣA oranyofitsrotations. A morphism A• −→ϕ B• of n-Σ-sequences is a sequence ϕ=(ϕ1,ϕ2,...,ϕn) of mor- phismsinC suchthatthediagram A α1 A α2 A α3 ··· αn−1 A αn ΣA 1 2 3 n 1 ϕ1 ϕ2 ϕ3 ϕn Σϕ1 B β1 B β2 B β3 ··· βn−1 B βn ΣB 1 2 3 n 1 commutes. Itisanisomorphismifϕ ,ϕ ,...,ϕ areallisomorphismsinC,andaweak 1 2 n isomorphismifϕi andϕi+1 areisomorphisms forsome1≤i ≤n (withϕn+1:=Σϕ1). Notethatthecompositionoftwoweakisomorphismsneednotbeaweakisomorphism. Also,notethatiftwon-Σ-sequences A•andB•areweaklyisomorphicthroughaweak isomorphism A•−→ϕ B•,thentheredoesnotnecessarilyexistaweakisomorphismB•→ A•intheoppositedirection. Let N be a collection of n-Σ-sequences in C. Then the triple (C,Σ,N ) is an n- angulatedcategoryifthefollowingfouraxiomsaresatisfied: (N1) (a) N isclosedunderdirectsums,directsummandsandisomorphismsofn- Σ-sequences. (b) ForallA∈C,thetrivialn-Σ-sequence A→−1 A→0→···→0→ΣA belongstoN . (c) Foreachmorphismα: A →A inC,thereexistsann-Σ-sequenceinN 1 2 whosefirstmorphismisα. (N2) Ann-Σ-sequencebelongstoN ifandonlyifitsleftrotationbelongstoN . (N3) Giventhesolidpartofthecommutativediagram A α1 A α2 A α3 ··· αn−1 A αn ΣA 1 2 3 n 1 ϕ1 ϕ2 ϕ3 ϕn Σϕ1 B β1 B β2 B β3 ··· βn−1 B βn ΣB 1 2 3 n 1 with rows in N , the dotted morphisms exist and give a morphism of n-Σ- sequences. (N4) Giventhesolidpartofthediagram A1 α1 A2 α2 A3 α3 A4 α4 ··· αn−2 An−1 αn−1 An αn ΣA1 ϕ2 ϕ3 ψ4 ϕ4 ϕn−1 ψn ϕn A1 β1 B2 β2 B3 β3 B4 β4 ··· βn−2 Bn−1 βn−1 Bn βn ΣA1 α1 θ3 θ4 θn−1 θn Σα1 A2 ϕ2 B2 γ2 C3 γ3 C4 γ4 ··· γn−2 Cn−1 γn−1 Cn γn ΣA2 THEMORPHISMAXIOMFORn-ANGULATEDCATEGORIES 3 withcommutingsquaresandwithrowsinN ,thedottedmorphismsexistsuch thateachsquarecommutes,andthen-Σ-sequence −α4 0 −α5 0 0 α3 ϕ4−β3 −ϕ5−β4 0 A −−ϕ−3→A ⊕B −"−−ψ−4−−−θ−3→# A ⊕B ⊕C −"−−ψ−5−−−θ−4−γ−3→# 3 h i 4 3 5 4 3 −α5 0 0 −α6 0 0 −ϕ5−β4 0 ϕ6−β5 0 −"−−ψ−5−−−θ−4−γ−3→# A ⊕B ⊕C −"−−ψ−6−−−θ−5−γ−4→# ··· 6 5 4 −αn−1 0 0 (−1)n−1ϕn−1 −βn−2 0 (−1)nϕn −βn−1 0 ···−"−−−−ψ−n−−−1−−−−−θn−−−2−γ−n−−−3→# An⊕Bn−1⊕Cn−2−·−−−ψ−n−−−−−θn−−−1−γ−n−−−2→¸ (−1)nϕn −βn−1 0 −·−−−ψ−n−−−−−θn−−−1−γ−n−−−2→¸ Bn⊕Cn−1−[−θ−n−γ−n−−−1→] Cn−Σ−α−2−◦−γ→n ΣA3 belongstoN . Inthiscase,thecollectionN isann-angulationofthecategoryC (relativetothe automorphism Σ), and the n-Σ-sequences in N are n-angles. If (C,Σ,N ) satisfies (N1), (N2)and (N3), then N isapre-n-angulation, andthe triple(C,Σ,N ) isapre- n-angulatedcategory. Remark2.1. (1)In[3],thefourthdefiningaxiomisthe“mappingconeaxiom”,which says that in the situation of (N3), the morphisms ϕ ,...,ϕ can be chosen in such a 3 n waythatthemappingconeof(ϕ ,ϕ ,...,ϕ )belongstoN . Whenn=3,thatis,inthe 1 2 n triangulated case, itwasshownbyNeemanin [6,7]thatthis mapping cone axiomis equivalenttotheoctahedralaxiom,whentheotherthreeaxiomshold. Whenn=3,thediagraminouraxiom(N4)ispreciselytheoctahedraldiagram,and theaxiomistheoctahedralaxiom.Thus(N4)canbethoughtofasahigheranalogueof theoctahedralaxiom.Itwasshownin[2]thatwhen(N1),(N2)and(N3)hold,then(N4) andthemappingconeaxiomsareequivalent.1 Thusourdefinitionofann-angulated categoryisequivalenttothatofGeiss,KellerandOppermannin[3]. (2)LetBbeanobjectinC.Anyn-Σ-sequence A•inducesaninfinitesequence ···→(B,Σ−1A )−(−Σ−−−1α−n−)→∗ (B,A )−(−α−1)→∗ (B,A )→···→(B,A )−(−α−n−)→∗ (B,ΣA )→··· n 1 2 n 1 ofabeliangroupsandhomomorphisms, where(B,A)denotesHomC(B,A). Ifthisse- quenceisexactforallB, then A• iscalledanexact n-Σ-sequence. By[3, Proposition 2.5],everyn-angleinapre-n-angulatedcategoryisexact. Now modify axiom (N1) into a new axiom (N1*), whose parts (b) and (c) are un- changed, but with the following part (a): if A• →B• is a weak isomorphism of exact n-Σ-sequences with A• ∈N , then B• belongs to N . Moreover, let (N2*) be the fol- lowingweakversionofaxiom(N2): theleftrotationofevery n-Σ-sequenc inN also belongstoN .Thenby[2,Theorem3.4],thefollowingareequivalent: (i) (C,Σ,N )satisfies(N1),(N2),(N3), (ii) (C,Σ,N )satisfies(N1*),(N2),(N3), (iii) (C,Σ,N )satisfies(N1*),(N2*),(N3). Itisnotknownwhether onlyaxiom(N2)canbereplacedby(N2*), without replacing (N1)by(N1*). 1WethankGustavoJassoforshowingusthecompactdiagramwehaveusedinaxiom(N4).Thisaxiomis notstrictlythesameasaxiom(N4*)in[2].However,itfollowsfromtheproofsin[2,Section4]thatthetwoare equivalent. 4 EMILIEARENTZ-HANSEN,PETTERANDREASBERGH,ANDMARIUSTHAULE 3. AXIOM(N3)ISREDUNDANT Inthissectionweshowthatthemorphismaxiom,i.e.axiom(N3),followsfromthe other axioms. In light of Remark2.1(2), it would perhaps seem natural to ask which axiomsoneshouldusetoprovethis.Inotherwords,shouldoneuseaxioms(N1),(N2), (N4),axioms(N1*),(N2),(N4),oraxioms(N1*),(N2*),(N4)? Theansweristhatitdoes notmatter.Infact,axiom(N3)isaconsequenceof(N1)(c)and(N4). Theorem3.1. Axiom(N3)followsfrom(N1)(c)and(N4). Proof. Assumethatweareinthesituationofaxiom(N3),i.e.thatwearegiventhesolid partofthecommutativediagram A α1 A α2 A α3 ··· αn−1 A αn ΣA 1 2 3 n 1 ϕ1 ϕ2 ϕ3 ϕn Σϕ1 B β1 B β2 B β3 ··· βn−1 B βn ΣB 1 2 3 n 1 withrowsinN .Wemustprovethatdottedmorphismsϕ ,...,ϕ existandgiveamor- 3 n phism(ϕ ,ϕ ,ϕ ,...,ϕ )ofn-Σ-sequences. 1 2 3 n Byassumption,theequalityϕ ◦α =β ◦ϕ holds;wedefineγ tobethismorphism, 2 1 1 1 1 i.e.γ =ϕ ◦α =β ◦ϕ .Nowapplyaxiom(N1)(c)tothethreemorphisms 1 2 1 1 1 γ : A →B , ϕ : A →B , ϕ : A →B 1 1 2 2 2 2 1 1 1 inC,andobtainthreen-Σ-sequences A −γ→1 B −γ→2 C −γ→3 ···−γ−n−−→1 C −γ→n ΣA , 1 2 3 n 1 A −ϕ−→2 B −δ→2 D −δ→3 ···−δ−n−−→1 D −δ→n ΣA 2 2 3 n 2 and A −ϕ−→1 B −ǫ→2 E −ǫ→3 ···−ǫ−n−−→1 E −ǫ→n ΣA 1 1 3 n 1 inN .Next,considerthetwodiagrams A1 α1 A2 α2 A3 α3 A4 α4 ··· αn−2 An−1 αn−1 An αn ΣA1 ϕ2 ρ3 ρ4 ρn−1 ρn A1 γ1 B2 γ2 C3 γ3 C4 γ4 ··· γn−2 Cn−1 γn−1 Cn γn ΣA1 α1 θ3 θ4 θn−1 θn Σα1 A2 ϕ2 B2 δ2 D3 δ3 D4 δ4 ··· δn−2 Dn−1 δn−1 Dn δn ΣA2 and A1 ϕ1 B1 ǫ2 E3 ǫ3 E4 ǫ4 ··· ǫn−2 En−1 ǫn−1 En ǫn ΣA1 β1 ψ3 ψ4 ψn−1 ψn A1 γ1 B2 γ2 C3 γ3 C4 γ4 ··· γn−2 Cn−1 γn−1 Cn γn ΣA1 ϕ1 η3 η4 ηn−1 ηn Σϕ1 B1 β1 B2 β2 B3 β3 B4 β4 ··· βn−2 Bn−1 βn−1 Bn βn ΣB1 Notethatalltherowsinthesetwodiagramsaren-Σ-sequencesinN .Moreover,itfol- lowsfromthedefinitionofthemorphismγ thatthesolidpartsofthediagramscom- 1 mute.Wemaythereforeapplyaxiom(N4);thereexistdottedmorphismssuchthateach THEMORPHISMAXIOMFORn-ANGULATEDCATEGORIES 5 squarecommutes.Axiom(N4)alsogivesothermorphisms,thediagonalones,butthese arenotneededhere. Thetwodiagramssharethesamemiddlerow.Wemaythereforecombinetheupper partofthefirstdiagramandthelowerpartofthesecond,andobtainthecommutative diagram A1 α1 A2 α2 A3 α3 A4 α4 ··· αn−2 An−1 αn−1 An αn ΣA1 ϕ2 ρ3 ρ4 ρn−1 ρn A1 γ1 B2 γ2 C3 γ3 C4 γ4 ··· γn−2 Cn−1 γn−1 Cn γn ΣA1 ϕ1 η3 η4 ηn−1 ηn Σϕ1 B1 β1 B2 β2 B3 β3 B4 β4 ··· βn−2 Bn−1 βn−1 Bn βn ΣB1 Finally,byomittingthemiddlerow,weobtainthecommutativediagram A1 α1 A2 α2 A3 α3 A4 α4 ··· αn−2 An−1 αn−1 An αn ΣA1 ϕ1 ϕ2 η3◦ρ3 η4◦ρ4 ηn−1◦ρn−1 ηn◦ρn Σϕ1 B1 β1 B2 β2 B3 β3 B4 β4 ··· βn−2 Bn−1 βn−1 Bn βn ΣB1 Nowforeach3≤k≤n,defineamorphismϕ byϕ =η ◦ρ .Then(ϕ ,ϕ ,ϕ ,...,ϕ ) k k k k 1 2 3 n isamorphismofn-Σ-sequences,andthiscompletestheproof. (cid:3) Remark3.2. (1)Asnotedintheproof,notallofaxiom(N4)isneeded. Thediagonal morphismsprovidedbytheaxiomplaynorole,and,consequently,neitherdoesthen- Σ-sequenceinvolvingthesemorphisms. (2)Notethatifn=3,thatis,inthetriangulatedcase,theresultrecoversthatofMay in[5],butwithaslightlydifferentsetup.Indeed,May’sresultwastheinspirationforthe theorem. REFERENCES [1] P.A.Bergh,G.Jasso,M.Thaule,Highern-angulationsfromlocalrings,J.LondonMath.Soc.93(2016),no. 1,123–142. [2] P.A.Bergh,M.Thaule,Theaxiomsforn-angulatedcategories,Algebr.Geom.Topol.13(2013),no.4,2405– 2428. [3] C.Geiss,B.Keller,S.Oppermann,n-angulatedcategories,J.ReineAngew.Math.675(2013),101–120. [4] G.Jasso,n-abelianandn-exactcategories,toappearinMath.Z. [5] J.P.May,Theadditivityoftracesintriangulatedcategories,Adv.Math.163(2001),no.1,34–73. [6] A.Neeman,Somenewaxiomsfortriangulatedcategories,J.Algebra139(1991),no.1,221–255. [7] A.Neeman, Triangulatedcategories,AnnalsofMathematicsStudies,148,PrincetonUniversityPress, Princeton,NJ,2001. DEPARTMENTOFMATHEMATICALSCIENCES,NTNU,NO-7491TRONDHEIM,NORWAY E-mailaddress:[email protected] E-mailaddress:[email protected] E-mailaddress:[email protected]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.