ebook img

The Moment-Weight Inequality and the Hilbert–Mumford Criterion: GIT from the Differential Geometric Viewpoint PDF

193 Pages·2021·2.312 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Moment-Weight Inequality and the Hilbert–Mumford Criterion: GIT from the Differential Geometric Viewpoint

Lecture Notes in Mathematics 2297 Valentina Georgoulas Joel W. Robbin Dietmar Arno Salamon The Moment-Weight Inequality and the Hilbert–Mumford Criterion GIT from the Differential Geometric Viewpoint Lecture Notes in Mathematics Volume 2297 Editors-in-Chief Jean-MichelMorel,CMLA,ENS,Cachan,France BernardTeissier,IMJ-PRG,Paris,France SeriesEditors KarinBaur,UniversityofLeeds,Leeds,UK MichelBrion,UGA,Grenoble,France AlessioFigalli,ETHZurich,Zurich,Switzerland AnnetteHuber,AlbertLudwigUniversity,Freiburg,Germany DavarKhoshnevisan,TheUniversityofUtah,SaltLakeCity,UT,USA IoannisKontoyiannis,UniversityofCambridge,Cambridge,UK AngelaKunoth,UniversityofCologne,Cologne,Germany László Székelyhidi , Institute of Mathematics, Leipzig University, Leipzig, Germany ArianeMézard,IMJ-PRG,Paris,France MarkPodolskij,UniversityofLuxembourg,Esch-sur-Alzette,Luxembourg SylviaSerfaty,NYUCourant,NewYork,NY,USA GabrieleVezzosi,UniFI,Florence,Italy AnnaWienhard,RuprechtKarlUniversity,Heidelberg,Germany This series reports on new developments in all areas of mathematics and their applications-quickly,informallyandatahighlevel.Mathematicaltextsanalysing newdevelopmentsinmodellingandnumericalsimulationarewelcome.Thetypeof materialconsideredforpublicationincludes: 1. Researchmonographs 2. Lecturesonanewfieldorpresentationsofanewangleinaclassicalfield 3. Summerschoolsandintensivecoursesontopicsofcurrentresearch. Textswhichareoutofprintbutstillindemandmayalsobeconsiderediftheyfall withinthesecategories.Thetimelinessofamanuscriptissometimesmoreimportant thanitsform,whichmaybepreliminaryortentative. Titles from this series are indexed by Scopus, Web of Science, Mathematical Reviews,andzbMATH. Moreinformationaboutthisseriesathttp://www.springer.com/series/304 Valentina Georgoulas (cid:129) Joel W. Robbin (cid:129) Dietmar Arno Salamon The Moment-Weight Inequality and the Hilbert–Mumford Criterion GIT from the Differential Geometric Viewpoint ValentinaGeorgoulas JoelW.Robbin Zürich,Switzerland DepartmentofMathematics UniversityofWisconsin–Madison Madison,WI,USA DietmarArnoSalamon DepartmentofMathematics ETHZürich Zürich,Switzerland ISSN0075-8434 ISSN1617-9692 (electronic) LectureNotesinMathematics ISBN978-3-030-89299-9 ISBN978-3-030-89300-2 (eBook) https://doi.org/10.1007/978-3-030-89300-2 MathematicsSubjectClassification:53D20,14L24,32Q15 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerland AG2021 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewhole orpart ofthematerial isconcerned, specifically therights oftranslation, reprinting, reuse ofillustrations, recitation, broadcasting, reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Thisbookgivesanessentiallyself-containedexposition(exceptforanappealtothe Lojasiewicz gradient inequality) of geometric invariant theory from a differential geometricviewpoint.Centralingredientsare the moment-weightinequality(relat- ingtheMumfordnumericalinvariantstothenormofthemomentmap),thenegative gradientflowofthemomentmapsquared,andtheKempf–Nessfunction. Thelastauthor,DAS,owesalottothelecturesbyandconversationswithSimon Donaldson,GáborSzékelyhidi,XiuxiongChen,andSongSun.Thesecondauthor, JWR, learned much from a course given by and conversations with Sean Paul at the University of Wisconsin. Most of this book was written when JWR visited theForschungsinstitutfürMathematikatETHZürichandhethanksthemfortheir hospitality.ThefirstversionofthisbookwascompletedwhileDASvisitedtheIAS, Princeton,andtheSCGP,StonyBrook;hethanksbothinstitutesfortheirhospitality. ThankstoSamuelTrautweinforhelpfuldiscussions.ThankstoAmandaJennyfor pointingouterrorsinearlierversionsofthemanuscript. Zürich,Switzerland ValentinaGeorgoulas Madison,WI,USA JoelW.Robbin Zürich,Switzerland DietmarA.Salamon August2021 v Contents 1 Introduction................................................................. 1 2 TheMomentMap .......................................................... 7 3 TheMomentMapSquared................................................ 13 4 TheKempf–NessFunction ................................................ 19 5 µ-Weights.................................................................... 29 6 TheMoment-WeightInequality .......................................... 37 7 StabilityinSymplecticGeometry......................................... 51 8 StabilityinAlgebraicGeometry.......................................... 59 9 Rationality................................................................... 65 10 TheDominantµ-Weight................................................... 75 11 TorusActions................................................................ 89 12 TheHilbert–MumfordCriterion ......................................... 95 13 CriticalOrbits............................................................... 105 14 Examples .................................................................... 131 A NonpositiveSectionalCurvature.......................................... 151 B TheComplexifiedGroup .................................................. 159 C TheHomogeneousSpaceM =Gc/G .................................... 169 D ToralGenerators............................................................ 173 E ThePartialFlagManifoldGc/P≡G/C................................. 177 References......................................................................... 185 Index............................................................................... 189 vii Chapter 1 Introduction Many important problems in geometry can be reduced to a partial differential equationoftheform μ(x)=0, where x ranges over a complexifed group orbit in an infinite-dimensional sym- plectic manifold X and μ:X →g is an associated moment map (see Cal- abi[6–8],Yau[79–81],Tian[75],Chen–Donaldson–Sun[18–20],Atiyah–Bott[2], Uhlenbeck–Yau [76], Donaldson [27–30, 32]). Problems like this are extremely difficult. The purpose of this book is to explain the analogous finite-dimensional situation,whichisthesubjectofGeometricInvariantTheory. GITwasoriginallydevelopedtostudyactionsofacomplexreductiveLiegroup Gc onaprojectivealgebraicvariety1 X ⊂P(V). Here Gc is the complexification of a compact Lie group G and the Hermitian structureonV canbechosensothatGactsbyunitaryautomorphisms.Inthesmooth caseXinheritsthestructureofaKählermanifoldfromthestandardKählerstructure onP(V).TheG-actionisgeneratedbythestandardmomentmap μ:X →g (withvaluesintheLiealgebraofG).IntheoriginaltreatmentofMumford[63]the symplecticformandthemomentmapwerenotused.Subsequentlyseveralauthors 1Mumford’s original theory even applies to varieties over general ground fields other than the complexnumbers.Theseextensionsarenotdiscussedinourtreatment. ©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2021 1 V.Georgoulasetal.,TheMoment-WeightInequalityandtheHilbert–Mumford Criterion,LectureNotesinMathematics2297, https://doi.org/10.1007/978-3-030-89300-2_1 2 1 Introduction discovered the connection between the theory of the moment map and GIT (see Kirwan [53] and Ness [66]). In the article of Lerman [56] it is noted that both Guilleman–Sternberg[42] andNess [66] creditMumfordfor the relationbetween thecomplexquotientandtheMarsden–Weinsteinquotient X//G:=μ−1(0)/G. InourexpositionweassumethatXisaclosedKählermanifoldbutdonotassume thatitisaprojectivevariety.Inthelattercasetheaforementionedstandardmoment map satisfies certain rationality conditions (Chap.9) which we do not use in our treatment.AsaresulttheMumfordnumericalinvariants w (x,ξ):= lim(cid:5)μ(exp(itξ)x),ξ(cid:6) μ t→∞ associatedtoapointx ∈Xandanelementξ ∈g\{0}(Chap.5)neednotbeintegers astheyareintraditionalGIT.IntheclassicaltheorytheLiealgebraelementbelongs totheset Λ:={ξ ∈g\{0}| exp(ξ)=1} and thus generates a one-parameter subgroup of Gc. In our treatment ξ can be a generalnonzeroelementofg. Acentralingredientinourtreatmentisthemoment-weightinequality −w (x,ξ) sup μ ≤ inf |μ(gx)|. (1.1) ξ∈g\{0} |ξ| g∈Gc We give two proofs of this inequality in Chap.6, one due to Mumford [63] and Ness [66, Lemma 3.1] and one due to Xiuxiong Chen [15]. (For an in depth discussion of this inequality see Atiyah–Bott [2], in the setting of bundles over Riemann surfaces, and Donaldson [34], Székelyhidi [72], Chen [15, 16], in the setting of Kähler–Einstein geometry.) Following an argument of Chen–Sun [23] we also provethatequality holdsin (1.1)wheneverthe righthandside is positive (Theorem 10.4). We also prove that the supremum on the left is always attained (Theorem 10.1) and that the supremum over all ξ ∈ g \ {0} agrees with the supremum over all ξ ∈ Λ (Theorem 12.1). In the projective case the supremum is attained at an element ξ ∈Λ by a theorem of Kempf [51], however, that need not be the case in our more general setting. The Hilbert–Mumford numerical criterion for μ-semistability is an immediate consequence of the aforementioned results(Theorem12.2).Itassertsthat Gc(x)∩μ−1(0)(cid:10)=∅ ⇐⇒ w (x,ξ)≥0∀ξ ∈Λ. μ 1 Introduction 3 Further consequencesof the moment-weightinequalityinclude the Kirwan–Ness Inequalitywhichassertsthatifxisacriticalpointofthemomentmapsquaredthen |μ(x)|= inf |μ(gx)| g∈Gc (Corollary 6.2), the Moment Limit Theorem which asserts that each negative gradient flow line of the moment map squared converges to a minimum of the momentmapsquaredonthecomplexifiedgrouporbit(Theorem6.4),andtheNess UniquenessTheoremwhichassertsthatanytwocriticalpointsofthemomentmap squaredinthesameGc-orbitinfactbelongtothesameG-orbit(Theorem6.3)and, moreover,thattheminimumofthemomentmapsquaredontheclosureofaGc-orbit istakenonatauniqueG-orbit(Theorem6.5). Acentralingredientintheproofsofthesetheoremsisthenegativegradientflow ofthemomentmapsquared f := 1|μ|2 :X →R. 2 Thegradientflowequationtakestheform x˙ =−JL μ(x) (1.2) x whereL :g→T XdenotestheinfinitesimalactionoftheLiealgebraonX.Each x x Gc-orbitGc(x)⊂Xisinvariantunderthisflow,becauseeverysolutionof(1.2)has theformx(t)=g(t)−1x,whereg :R→Gc satisfiesthedifferentialequation g−1g˙ =iμ(g−1x). (1.3) Equation(1.3)isthenegativegradientflowoftheKempf–Nessfunction Φ :Gc/G→R. x ThehomogeneousspaceGc/Gissimplyconnectedandcompletewithnonpositive sectional curvature, and the Kempf–Ness function is Morse–Bott and is convex along geodesics (Theorem 4.3); its critical manifold may be empty. Moreover, the Kempf–Ness Theorem characterizes the stability conditions in terms of the propertiesofthe Kempf–Nessfunction(Theorem7.3);forexamplea pointx ∈X isμ-semistable,i.e.theclosureofitsGc-orbitintersectsthezerosetofthemoment map,ifandonlyiftheKempf–NessfunctionΦ isboundedbelow. x ThemomentmapsquaredisingeneralfarfrombeingMorse–Bottandmayhave verycomplicatedcriticalpoints.However,theaforementionedtheorems(Kirwan– Ness Inequality,Ness Uniqueness,MomentLimit Theorem)exhibita structureof the gradient flow that resembles the stratification by stable manifolds associated to a Morse–Bott function. More precisely, an element x ∈X is a critical point of the moment map squared if it satisfies the equation L μ(x)=0. Critical points x

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.