Astronomy&Astrophysicsmanuscriptno.Petriella˙ax (cid:13)c ESO2012 January6,2012 The molecular gas around the luminous blue variable star G24.73+0.69 2 1 0 A.Petriella1,2,S.A.Paron1,3,andE.B.Giacani1,3 2 n a 1 InstitutodeAstronom´ıayF´ısicadelEspacio(CONICET-UBA),CC67,Suc.28,1428Buenos J Aires,Argentina 5 e-mail:[email protected] ] 2 CBC-UniversidaddeBuenosAires,Argentina R 3 FADU-UniversidaddeBuenosAires,Argentina S . h Received¡date¿;Accepted¡date¿ p - o ABSTRACT r t s a Aims.Westudythemolecular environment of theluminous bluevariablestarG24.73+0.69 to [ investigatetheoriginofthetwoinfraredshellsaroundthismassivestaranddetermineitseffects 2 onthesurroundinginterstellarmedium. v Methods.Weanalyzethedistributionofthemoleculargasusingthe13COJ=1–0emissionex- 3 4 tracted from the Galactic Ring Survey. We use near and mid-infrared data from 2MASS and 0 GLIMPSEtoidentifytheyoungstellarobjectsinthefield. 6 . Results.WediscoverthemolecularcounterparttotheouterinfraredshellaroundG24.73+0.69. 1 1 TheCOshellwasprobablyblownbythestellarwindofthestarmainlyduringitsmainsequence 1 phase.Wealsofindmoleculargasthatcorrespondstotheinnerinfraredshell,althoughitsorigin 1 : remainsuncertain.Weidentifysevenyoungstellarobjectswithinthemolecularmaterial,whose v i birthmighthavebeentriggeredbythestellarwindoftheluminousbluevariablestar.Wesug- X gestthatbothG24.73+0.69andtheprogenitorofthenearbysupernovaremnantG24.7+0.6were r a formedfromthesamenatalcloudandrepresentthemostevolvedmembersofasofarundetected clusterofmassivestars. Keywords.stars:individual:G24.73+0.69–stars:winds,outflows–ISM:clouds–stars:for- mation 1. Introduction Luminous blue variable (LBV) stars are very massive objects that evolve from O-type main se- quence(MS)starsburninghydrogenintheircoretobecomeWolf-Rayet(WR)heliumcoreburn- ingstars(Maeder1989;Humphreysetal.1989).Thistransitionalstageischaracterizedbyahigh mass-lossrate(typicallybetween10−5and10−4M /yr)sometimesaccompaniedbyso-calledgiant ⊙ eruptions,andsignificantphotometricvariabilityontimescalesfrommonthstoyears(Humphreys &Davidson1994).TheLBVphaseisshort-livedandasaconsequenceonly12casesand23candi- dateshavebeenreportedinourGalaxysofar(Clarketal.2005).Asaresultofthemassloss,most Sendoffprintrequeststo:A.Petriella A.Petriellaetal.:ThemoleculargasaroundG24.73+0.69 of the LBV stars (either confirmed or candidates) are surroundedby a nebula that expandswith characteristicvelocitiesofbetween30kms−1and200kms−1(seeClarketal.2005).Thesenebulae havedustyandgaseouscomponents(ofa fewsolarmasses) andalargevarietyofmorphologies, fromcirculartobipolar(Notaetal.1995;Weis2001). SincenebulaearoundLBVstarsarestrongemittersintheinfrared(IR)regime,mostofthem havebeenobservedinthiswavelengthrange.Atpresent,thereareonlyafewcasesin whichthe chemicalevolutionandthepresenceofcircumstellarmoleculargasrelatedtothese nebulaehave beendeterminedbymolecularstudies,themostrepresentativesourcesbeingAGCar(Notaetal. 2002)andG79.29+0.46(Rizzoetal.2008;Jime´nez-Estebanetal.2010).Molecularmaterialwas alsodiscoveredaroundtheyellowhypergiant(YHG)starsIRC+10420andAFGL2343*(Castro- Carrizoetal.2007).Theoreticalmodelsofstellarevolutionandobservationsofpost-MSmassive stars (Meynet & Maeder 2000;Humphreys& Davidson 1994) suggest that low luminousLBVs may pass through a cooler red supergiant (RSG)/yellow hypergiant phase prior to the LBV pe- riod.TheRSG/YHG phaseis also characterizedbymass-loss activity(fora review,see de Jager 1998)thatcanleadtothepresenceofmoleculargasaroundthesemassivestars.Byanalyzingthe molecularmaterial,we can determinethe mass-losshistory ofthe massivestar andits effects on thesurroundinginterstellarmedium(ISM). 2. PresentationofG24.73+0.69 TheringnebulaaroundtheLBVstarG24.73+0.69(hereafterG24)wasdiscoveredbyClarketal. (2003) in the mid-IR. Fig. 1 displays the emission in the Spitzer-IRAC 8 µm band toward G24, which clearly shows the nebula around the central massive LBV star. It has a roughly circular morphologywithaslightelongationinadirectionparalleltotheGalacticplane.Itsshapecanbe approximatedbyanellipseof40′′×34′′.Takinganexpansionvelocityof200kms−1,Clarketal. (2003)estimatedamass-lossrateof∼ 9.5×10−5M /yrfortheLBV starandanageof∼ 4,800 ⊙ yrforthenebula.Theyquotedanupperlimitof5.2kpcforthedistancebasedontheconsistency between the modeled and the observed spectral energydistribution of the star. In addition, there is a fragmentaryoutershell (OS) of a bipolarmorphologywith lobes(labeled 1 and 2 in Fig. 1) projectingintooppositedirections.Thisstructureformsanincompleteshellof4.6′×2.3′ oriented ∼ 60◦ with respectto the Galactic plane,whose geometriccenter doesnotmatch the position of theLBVstar.Fig.1alsoshowsthepositionoftheIRdarkcloud(IRDC)024.789+0.633,whichis adjacenttothelobe2.AllIRDCsareconsideredastheprecursorsofprotostars,beingasignature ofactivestarformation(Rathborneetal.2006,2007). ToexplaintheoriginoftheIRshells,Clarketal.(2003)arguedthattheinnerone(i.e.thering nebula)originatesinmaterialejectedfromthecentralstarduringtheLBVphase.However,based onthesizeandageofthebipolarOS,theysuggestthatitformedfromtheinteractionbetweenthe stellar wind and the ISM and/or the natal molecular cloud (MC) in a period prior to the current phase. Inthiswork,westudythemoleculargastowardG24.73+0.69anditsenvironmentwiththeaim ofunveilingtheoriginoftheseIRshells. A.Petriellaetal.:ThemoleculargasaroundG24.73+0.69 Fig.1.EmissionintheSpitzer-IRAC8µmbandtowardtheLBVstarG24.73+0.69.Weindicatethepositions oftheLBVstaranditsnebula,thelobesofthebipolaroutershell,andtheIRDC024.789+0.633. 3. Resultsanddiscussion 3.1.Thedistributionofthemoleculargas WestudythemoleculargasaroundG24usingdatafromtheGalacticRingSurvey(GRS,Jackson et al. 2006). The GRS was performed by the Boston University and the Five College Radio Astronomy Observatory (FCRAO). The survey maps the Galactic ring in the 13CO J=1–0 line with an angular and spectral resolutions of 46′′ and 0.2 km s−1, respectively. The observations were performedin both position-switchingand on-the-fly mapping modes, achieving an angular samplingof22′′. Fromtheinspectionofthe13COdatacubeinthewholevelocityrange,wefoundmorphological signatures of a possible association between G24 and the surrounding molecular material in the velocityrangebetween+39and+44kms−1(allvelocitiesherebeingreferredtothelocalstandard ofrest).InFig.2,weshowtheintegratedvelocitychannelmapsofthe13COJ=1–0emissionevery 0.7kms−1 withthemid-IRemissionfromtheSpitzer-IRAC8µmband.Fromthisfigure,wecan discernseveralcondensationsofmoleculargasformingamolecularshellaroundG24(seemainly panelsat+40.9and+41.5kms−1).ThisshelldelineatestheexteriorborderofthebipolarOS.This distributionindicatesthatthereis a connectionbetweenthe moleculargasandthe bipolarOS. If thiswerethecase,bothofthemwouldbeatthesamedistance.UsingtherotationalmodelofFich etal.(1989)andadoptingavelocityof+42kms−1 asasystemicvelocityforthemolecularshell, weobtainedkinematicdistancesofeither3.5kpcor12kpc.Lackinganyadditionaldiscriminator betweenthetwokinematicdistancesandtakingintoaccountthatadistanceof5.2kpcisquotedas anupperlimitforG24(Clarketal.2003),weadoptedadistanceof3.5kpcasthemostplausible value for the LBV star and the molecular shell. This new distance led to a substantial reduction in the calculated intrinsic luminosity of G24. Clark et al. (2003)quoted log(L /L ) = 5.6 for a ⋆ ⊙ A.Petriellaetal.:ThemoleculargasaroundG24.73+0.69 Fig.2. Two-color image of the field around the LBV star. In red: Spitzer-IRAC 8 µm band. In green: the integrated13COJ=1–0emissionevery0.7kms−1.TheCOcontourslevelsare0.5,0.9,1.8,and2.7Kkms−1. distance of 5.2 kpc. Taking a distance of 3.5 kpc, the luminosity drops to log(L /L ) ∼ 5.25, ⋆ ⊙ whichwouldmakeitoneofthefaintestLBVsyetidentified(seeforcomparisontheHRdiagram ofClarketal.2009),thusapossiblepostRSG/YHGobject. We were able to derive a number of parameters characterizing the CO. By assuming local thermodynamic equilibrium (LTE), we estimated the H mass of the molecular shell using the 2 equations T +0.88 N(13CO)=2.42×1014 ex τ dv, 1−e−5.29/Tex Z 13 where T is the excitationtemperatureof the 13CO transition and τ is the opticaldepth of the ex 13 line.Assumingthatthe13COJ=1–0lineisopticallythin,wecanusetheapproximation 1 τ dv∼ T dv, Z 13 J(T )−J(T )Z B ex b where 5.29 J(T)= , e5.29/T −1 T = 2.7 K is the backgroundtemperature,and T is the brightnesstemperatureof the line. We b B assumed that T = 10 K and used the relation N(H )/N(13CO)∼ 5×105 (Simon et al. 2001)to ex 2 estimatethecolumndensityofmolecularhydrogenN(H ).Themassofthemolecularclumpswas 2 calculatedfrom M=µm D2ΩN(H ) , H 2 Xh i whereΩisthesolidanglesubtendedbythe13COJ=1–0beamsize,m isthehydrogenmass,µis H themeanmolecularweightassumedtobe2.8bytakingintoaccountarelativeheliumabundance of 25 %, and D ∼ 3.5 kpc is the distance. Our summation was performedover the area of each molecularclump.We summedthe massof the clumpsaroundG24 and foundthat the molecular shellhasatotalmassof∼ 1,000M .Theoriginalambientdensityn ,animportantparameterto ⊙ 0 studythedynamicsoftheshell,couldbeestimatedbyassumingthatthecalculatedtotalmasswas originallydistributedinthevolumelimitedbythebipolarOS,whichhasameanradiusof∼ 3.5′. Atadistanceof3.5kpc,thiscorrespondstoameanradiusr ∼3.5pc.Usingthisvalue,wefound 0 thatn ∼230cm−3. 0 A.Petriellaetal.:ThemoleculargasaroundG24.73+0.69 3.2.Theoriginofthemolecularshell Thereiscompellingevidenceofshellsofinterstellarmaterialproducedbytheeffectofthestrong stellarwindsofmassivestarsontheISM.Theseso-calledstellarwindbubbleshavebeenobserved inneutral(Cappaetal.2005;Cichowolskietal.2008;Giacanietal.2011)andmolecular(Cappa etal.2009,2010)gas.WeexploredthehypothesisthattheactionofthestellarwindoftheLBVstar and/oritsprogenitorO-typestarhasblownacavityofinterstellarmaterialpilingupthemolecular gasintheborderandformingthemolecularshelldiscoveredinthepresentwork. Totestthisscenario,wecomparedthemechanicalenergyE releasedbythestarintotheISM ω duringthelifetimeofthemolecularshell,withthekineticenergyE oftheswept-upmaterial.We k firstestimatedthedynamicalage(t ) oftheshellusingthe equationofWhitworthetal.(1994) dyn for a stellar wind bubble:t ∼ 0.02r5/3L−1/3n1/3 Myr, where r is the radius of the shell in pc, dyn 0 37 3 0 L is the mechanical luminosity L of the stellar wind in units of 1037 erg s−1, and n is the 37 ω 3 originalambientdensityinunitsof103 cm−3.We calculated L = 1/2M˙v2 bytakingthetypical ω ω parametersofanO-typestarinPrinjaetal.(1990)andMokiemetal.(2007),namelyamass-loss rate M˙ = 2×10−6 M /yr and a stellar wind velocity v = 2,000 km s−1. Thus, we found that ⊙ ω L ∼ 2.5×1036 erg s−1. Taking the mean radius of the shell ∼ 3.5 pc and the originalambient ω density∼ 230cm−3, we evaluatedthe t to be∼ 0.2Myr. Fromthisresult, we cansee thatthe dyn COshellismorethananorderofmagnitudeolderthantheageoftheLBVphase,whichtypically hasadurationof. 104yr.ThisindicatesthatthedetectedCOshellmaybethematerialswept-up bythestellarwindofthecentralmassivestarsduringitsMSphase. The kinetic energy can be estimated as E = 1/2Mv2, where M is the mass of the shell and k e v its expansion velocity. We calculated the expansion velocity to be v ∼ 6.2L1/5n−1/5t−2/5 km e e 37 3 dyn s−1 (Whitworth et al. 1994), where t = 0.2 Myr. We obtained v ∼ 13 km s−1. Using M = dyn e 1,000M ,weinferredthatE ∼ 1.7×1048erg.Forthemechanicalenergy,weassumethatE = ⊙ k ω L t ∼1.6×1049erg.Wecalculatedtheefficiencyoftheenergyconversionofthewindǫ = Ek and ω dyn Eω obtaineda valueof ∼ 0.11.This agreeswith the expectedvaluefor an energy-conservingstellar wind bubble (Mellema & Lundqvist2002), hence we conclude that the central star has blown a stellarwindstrongenoughtocreatethemolecularshell.Wealsoevaluatedthecontributionofthe starduringtheLBVphasetotheenergyoutflow.TakingM˙ =9.5×10−5 M /yrandv =200km ⊙ ω s−1 from Clark et al. (2003)and ∼ 104 yr as a typicaldurationfor the LBV phase, we obtained ELBV ∼3.8×1047erg,whichrepresentslessthan3%oftheenergyreleasedbythestarduringthe ω MSphase. Thesecalculationslinktheformationofthemolecularshelltothestellarwindofthecentralstar duringtheMSphase,ingoodagreementwiththeoriginofthebipolarOSsuggestedbyClarketal. (2003).In this scenario, the elongated morphologyof the bipolar OS (and also of the molecular shell) may be a consequence of the asymmetric stellar wind from the central star. Evidence of non-sphericalwinds has been found in other massive stars. For example, Meaburn et al. (2004) discovereda giantlobeprojectingfromtheringnebulaaroundtheLBVstar PCygni.According to the authors,thelobe formedfromthe mass-ejectionactivitypriorto the currenteruptionsthat producedthenebula.Theysuggestedthatthepeculiarmorphologyofthisgiantlobeisduetothe interactionbetweentheejectedmaterialandanasymmetriccavityintheISMblownbythetoroidal stellarwindofthecentralstarduringtheMSphase. A.Petriellaetal.:ThemoleculargasaroundG24.73+0.69 Finally, we note the presence of molecular gas superimposedon the ring nebula (see Fig. 2, panelsat+42.1and +42.8km s−1). Thismaterialmayi) originatein a mass-ejectioneventfrom thecentralLBVstar,asobservedintheringnebulaaroundG79.29+0.46(Jime´nez-Estebanetal. 2010);orii)bepartofthemolecularshell.UsingtheequationsofSect.3.1,weestimatedamass of∼ 20M andadensityof∼120cm−3.Theobtainedmassishigherthanthemassofthenebula ⊙ aroundG24estimatedbyClarketal.(2003)(∼ 0.45M ) andofthenebulaearoundotherLBVs ⊙ (see Smith&Owocki2006andClark etal.2009).Thus,we proposethatthe molecularmaterial locatedrightupontheringnebulabelongsmainlytothemolecularshell.However,wecannotrule outthepresenceofsomemoleculargasejectedbytheLBVstar.Weplantoobserveafieldaround G24withhigherdensitytracersandhigherresolutiontoconfirmthepresenceofthismaterial. 3.3.StarformationactivityaroundG24.73+0.69 The environmentof the LBV star G24 might be one that promotes triggered star formation. As wehaveshownintheprevioussection,themassivestarhasbeeninteractingwiththeneighboring moleculargasbymeansofitsstrongstellarwind.Tosearchforprimarytracersofstarformation, weidentifiedtheyoungstellarobject(YSO)candidatesusingtheGLIMPSEPointSourceCatalog (GPSC)intheSpitzer-IRACbands.Weconstructeda[5.8]-[8.0]versus[3.6]-[4.5]color-color(CC) diagramforthesourcesaroundG24.IntheCCdiagram,weusedthephotometriccriteriaofAllen etal.(2004)toclassifythesourcesaccordingtotheirevolutionarystage:classIareprotostarswith prominentcircumstellarenvelopes,classIIaredisk-dominatedobjects,andclassIIIarethemost evolvedYSOswhoseemissioncomesmainlyfromthecentralstar. Fig.3.Two-color imagetoward G24.73+0.69. Ingreen withcontours: emission of the13COintegratedbe- tween+39and+44kms−1(contourlevelsare2.7,4.4,and6.2Kkms−1).Inred:8µmband.Themagenta crossesaretheclassIYSOcandidatesselectedaccordingtothecriteriondiscussedinthetext. Fig.3displaysthedistributionoftheclassIYSOcandidatesaroundG24.Wecandiscernseven oftheseYSOcandidatessuperimposedonthemoleculargasswept-upbythemassivestar.Fourof them(sources1,2,3,and4)spatiallycoincidewiththemaximumofmolecularemission.Wenote A.Petriellaetal.:ThemoleculargasaroundG24.73+0.69 thatthisregioncoincideswiththeIRDC024.789+0.633(indicativeofactivestar-formingactivity) andliesnexttothelobe2ofthebipolarOS. Wefitthespectralenergydistribution(SED)oftheclassIYSOcandidatesusingthefluxesin the2MASSJ,H,andKsbandsandinthefourSpitzer-IRACbands.Weusedthetooldevelopedby Robitailleetal.(2007)andavailableonline1.Weassumedthedistancetobebetween3and4kpc.In Table1,wereporttheclassIYSOcandidatesmagnitudesinthe2MASSandSpitzer-IRACbands. Robitailleetal.(2006)definedthreeevolutionarystagesbasedonthevaluesofthecentralsource massM ,thediskmassM ,theenvelopemassM ,andtheenvelopeaccretionrateM˙ .Stage ⋆ disk env env I YSOsarethose thathave M˙ /M > 10−6 yr−1, i.e.,protostarswithlargeaccretionenvelopes; env ⋆ stageIIarethosewith M˙ /M > 10−6 yr−1 and M˙ /M < 10−6 yr−1,i.e.,youngobjectswith disk ⋆ env ⋆ prominentdisks;andstageIIIarethosewithM˙ /M <10−6yr−1andM˙ /M <10−6yr−1,i.e., disk ⋆ env ⋆ evolvedsourceswherethefluxisdominatedbythecentralsource.Thegoodnessofthefittingfor eachmodelwasmeasuredbyaχ2 value.Wedefinedthe“selectedmodels”asthosesatisfyingthe equationχ2−χ2 < 2N,whereχ2 correspondstothebest-fittingmodelandNisthenumberof min min inputdatafluxes(fluxesspecifiedasupperlimitdonotcontributetoN).Thefittingtoolalsofitthe IRfluxestoastellarphotospheretocheckwhetherthesourcecouldbemodeledbyamain-sequence starwithinterstellarreddening.Thegoodnessofthefittingisdefinedbyaχ2 value. star Table1.2MASSandSpitzer-IRACmagnitudesofclassIYSOcandidates. Source Source(GPSC) 2MASSQual. J H KS 3.6µm 4.5µm 5.8µm 8.0µm 1 G024.7956+00.6558 N/D 13.047 12.173 11.715 11.321 2 G024.8051+00.6456 UUA 18.131 17.059 13.707 10.548 9.589 8.791 8.059 3 G024.7901+00.6410 N/D 12.874 11.096 9.983 9.639 4 G024.7907+00.6379 N/D 13.439 12.518 11.638 11.059 5 G024.7545+00.6771 AAA 14.818 13.227 12.158 10.967 10.497 10.194 9.859 6 G024.7532+00.6400 UUA 14.643 12.784 12.312 11.792 11.463 11.722 11.386 7 G024.7735+00.6068 AAA 13.898 13.172 12.803 11.907 11.485 10.083 8.577 Notes.2MASS Qual.:Aisthebestphotometric quality, withasnr ≥ 10,and Umeansthat themagnitude valueisanupperlimit.N/Dindicatesnodetectionofthesourceinthe2MASSsurvey. InTable2,we reporttheresultsoftheSEDfitting forthesevenclassIcandidateswithinthe molecularshell.Forallofthem,alltheselectedmodelscorrespondtostageIandII(exceptsource 2 for which we get one stage III model). Moreover, for all of them apart from source 6 we get χ2 <χ2 .Thus,wecanconfirmthattheyareyoungsourcesattheearlierstagesofevolution. min star Aswenoteintheprevioussection,themolecularshellmighthaveformedasaconsequenceof theinteractionbetweenthestellar windofthe centralmassivestarandtheISM.Thepresenceof YSOcandidateswithinthemolecularshellandanIRDCaresignsofactivestar-formingactivity. We suggest that the birth of these new stars might have been triggered by the expanding wind bubbleactingonthemoleculargas. 1 http://caravan.astro.wisc.edu/protostars/ A.Petriellaetal.:ThemoleculargasaroundG24.73+0.69 Table2.ResultsoftheSEDfittingforclassIYSOcandidates.Inthelastcolumn,wereporttheevolutionary stageofthesource,basedonthecriterionofRobitailleetal.(2006)fortheselectedmodels.Whenthemodels correspondtodifferentstages,thelesslikelyispresentedinbrackets. Source χ2 /N χ2 /N Stage min star 1 0.4 15 Ior(II) 2 4 77 II 3 0.1 93 I 4 0.02 37 Ior(II) 5 0.9 4 IIor(I) 6 2.3 2 II 7 10 91 II 3.4.G24.73+0.69anditssurrounding:thebigpicture Massive stars form in giant molecular clouds which, under certain circumstances, fragment into denseclumpsthatcollapsetoformnewstars.Thesestarsspendashortperiodoftime(∼ 106yrs) in the MS before evolving to become LBV and WR stars, which eventually end their lifetimes explodingas supernovae.Theseexplosionsusuallyoccurwhenthe progenitorstar still lies close toits natalcloudandwhileothercompanionstars maystill bein theMSorLBV/WR phase.As aconsequence,severalsupernovaremnantshavebeenobservedinteractingwithevolvedmassive stars(seeVela´zquezetal.2003;Sushchetal.2011)andmoleculargas(seeJiangetal.2010foran exhaustivelistofSNR/MCassociations). TheLBVstarG24.73+0.69lies∼7′fromtheSNRG24.7+0.6.Intheradioband,thisremnant displaysacoupleofincompleteshellsandapolarizedfilledcentralcorewithaflatspectrum(Reich et al. 1984),which indicates that it consists of a plerionpowered by an undetectedpulsar. Thus, theSNRformedfromthecollapseofamassivestar. Petriellaetal.(2008)reportedtheexistence ofmoleculargasinteractingwithG24.7+0.6inthevelocityrangebetween+38and+50kms−1, whichinterestinglyplacestheSNRatthesamekinematicdistanceasG24.Inaddition,activestar formation probably triggered by the SNR and/or its progenitor was also discovered around the remnant(Petriella et al. 2010).In Fig. 4, we show the emission of the 13CO J=1–0 integratedin thevelocityrangebetween+38and+50kms−1.Weindicatethepositionofthedifferentfeatures inthefield:theLBVstar(redcross),theSNR(inbluecontours),andtheMCinteractingwiththe remnant(cloud2inthenomenclatureofPetriellaetal.2008). Fromthepreviousfigure,weseethatthislargeregion,whichharborsarichvarietyofobjects (aLBVstaranditsnebula,aSNR,abundantmolecularmaterialhostingdarkclouds,possiblestar- formingsites),isanideallaboratorytoinvestigatethegeneticconnectionbetweendifferentstellar populations. On the basis of the morphology and distribution of the molecular gas, it is likely thattheprogenitorstaroftheSNRG24.7+0.6andtheLBVstarmayhaveformedfromthesame giant MC that now we observe fragmentedinto smaller features. They may be the most evolved membersofasofarundetectedcluster/associationofmassivestarsthatalsoformedfromthesame molecularmaterial.Inaddition,theymayhavetriggeredtheformationofa secondgenerationof starsthatnowweobserveasyoungobjectsdeeplyembeddedinthemoleculargas.Thisscenario should be investigated further by searching for the missing intermediate-age stellar population, A.Petriellaetal.:ThemoleculargasaroundG24.73+0.69 Fig.4.Emissionofthe13COintegratedbetween+38and+50kms−1.Thebluecontoursaretheradiocontin- uumemissionat20cmoftheSNRG24.7+0.6takenfromtheMAGPIS.Theredcrossindicatestheposition oftheLBVstarG24.73+0.69. namelymassivestarsstillintheMSphase,whichformedtogetherwiththeLBVandthesupernova progenitor. 4. Summary Wehaveanalyzedthe13COemissioninthesurroundingsoftheLBVstarG24.73+0.69.Wehave discoveredafragmentedmolecularshellinthevelocityrangebetween+39kms−1and+44kms−1, whichdelineatestheinfraredbipolaroutershellofG24.Onthebasisofspatial,morphological,and kinematiccoincidenceoffeatures,wesuggestthatthereisaconnectionbetweenthisIRshelland themoleculargas.Wearguethatthemolecularshellformedfromtheinterstellarmaterialswept-up bythe stellar windof the centralstar mainlyduringits MSphase. Theelongatedmorphologyof the bipolar and molecular shells may be a consequence of the asymmetric stellar wind from the centralmassivestar.Wehavealsodetectedmolecularemissionprobablyassociatedwiththeinner infrarednebula,butobservationsof higherangularresolutionare neededto spatially resolvethis emissionandestablishitsorigin. WehavestudiedthestarformationactivityaroundG24anddiscoveredsevenYSOswithspec- tralcharacteristicsofprotostars,projectedonthemolecularcloudthatinterestinglycoincideswith the IRDC 024.789+0.633.Thus, this region harborsthe typical componentscommonlyfoundin thevicinityofstarformingregions,namelyanIRDC, severalsolarmassesofmoleculargas,and embedded YSO candidates. We propose that the birth of these young objects might have been triggeredbytheexpandingstellarwindbubble. FromthestudyofthedistributionofthemoleculargasinalargeregiontowardG24,wesuggest a link betweenthe originofthe LBV star and the progenitorstar of the nearbySNR G24.7+0.6. ThisSNR isalso interactingwith the neighboringmoleculargasandshowsstar-formingactivity in its surroundings.We proposea scenario where both massive stars belong to a first generation ofstarsthatformedfromthe same natalMC, pointingto thepossibilityof findingothermassive A.Petriellaetal.:ThemoleculargasaroundG24.73+0.69 starswitha commonorigin.Thestrongstellarwindsofthese massivestarsmighthavetriggered theformationofasecondgenerationofstars,whichnowappearasprotostarsdeeplyembeddedin themoleculargas. Acknowledgments We wish to thank the anonymous referee whose comments and suggestions have helped to im- provethepaper.A.P.isadoctoralfellowofCONICET,Argentina.S.P.andE.G.aremembersof theCarreradelinvestigadorcient´ıficoof CONICET, Argentina. This research was partially sup- ported by Argentina Grants awarded by CONICET, ANPCYT and University of Buenos Aires (UBACYT). References Allen,L.E.,Calvet,N.,D’Alessio,P.,etal.2004,ApJS,154,363 Cappa,C.,Niemela,V.S.,Mart´ın,M.C.,&McClure-Griffiths,N.M.2005,A&A,436,155 Cappa,C.E.,Rubio,M.,Mart´ın,M.C.,&Romero,G.A.2009,A&A,508,759 Cappa,C.E.,Vasquez,J.,Pineault,S.,&Cichowolski,S.2010,MNRAS,403,387 Castro-Carrizo,A.,Quintana-Lacaci,G.,Bujarrabal,V.,Neri,R.,&Alcolea,J.2007,A&A,465,457 Cichowolski,S.,Pineault,S.,Arnal,E.M.,&Cappa,C.E.2008,A&A,478,443 Clark,J.S.,Crowther,P.A.,Larionov,V.M.,etal.2009,A&A,507,1555 Clark,J.S.,Egan,M.P.,Crowther,P.A.,etal.2003,A&A,412,185 Clark,J.S.,Larionov,V.M.,&Arkharov,A.2005,A&A,435,239 deJager,C.1998,A&ARev.,8,145 Fich,M.,Blitz,L.,&Stark,A.A.1989,ApJ,342,272 Giacani,E.,Smith,M.J.S.,Dubner,G.,&Loiseau,N.2011,A&A,531,A138+ Humphreys,R.M.&Davidson,K.1994,PASP,106,1025 Humphreys,R.M.,Lamers,H.J.G.L.M.,Hoekzema,N.,&Cassatella,A.1989,A&A,218,L17 Jackson,J.M.,Rathborne,J.M.,Shah,R.Y.,etal.2006,ApJS,163,145 Jiang,B.,Chen,Y.,Wang,J.,etal.2010,ApJ,712,1147 Jime´nez-Esteban,F.M.,Rizzo,J.R.,&Palau,A.2010,ApJ,713,429 Maeder, A. 1989, in Astrophysics and Space Science Library, Vol. 157, IAU Colloq. 113: Physics of Luminous Blue Variables,ed.K.Davidson,A.F.J.Moffat,&H.J.G.L.M.Lamers,15–23 Meaburn,J.,Boumis,P.,Redman,M.P.,Lo´pez,J.A.,&Mavromatakis,F.2004,A&A,422,603 Mellema,G.&Lundqvist,P.2002,A&A,394,901 Meynet,G.&Maeder,A.2000,A&A,361,101 Mokiem,M.R.,deKoter,A.,Vink,J.S.,etal.2007,A&A,473,603 Nota,A.,Livio,M.,Clampin,M.,&Schulte-Ladbeck,R.1995,ApJ,448,788 Nota,A.,Pasquali,A.,Marston,A.P.,etal.2002,AJ,124,2920 Petriella,A.,Paron,S.,&Giacani,E.2008,BoletindelaAsociacionArgentinadeAstronomia,51,209 Petriella,A.,Paron,S.,&Giacani,E.2010,BoletindelaAsociacionArgentinadeAstronomia,53,221 Prinja,R.K.,Barlow,M.J.,&Howarth,I.D.1990,ApJ,361,607 Rathborne,J.M.,Jackson,J.M.,&Simon,R.2006,ApJ,641,389 Rathborne,J.M.,Simon,R.,&Jackson,J.M.2007,ApJ,662,1082 Reich,W.,Furst,E.,&Sofue,Y.1984,A&A,133,L4 Rizzo,J.R.,Jime´nez-Esteban,F.M.,&Ortiz,E.2008,ApJ,681,355 Robitaille,T.P.,Whitney,B.A.,Indebetouw,R.,&Wood,K.2007,ApJS,169,328 Robitaille,T.P.,Whitney,B.A.,Indebetouw,R.,Wood,K.,&Denzmore,P.2006,ApJS,167,256 Simon,R.,Jackson,J.M.,Clemens,D.P.,Bania,T.M.,&Heyer,M.H.2001,ApJ,551,747 Smith,N.&Owocki,S.P.2006,ApJ,645,L45