ebook img

The missing metals problem: II. How many metals are in z ~ 2.2 galaxies? PDF

0.19 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The missing metals problem: II. How many metals are in z ~ 2.2 galaxies?

Mon.Not.R.Astron.Soc.000,1–5(0000) Printed4February2008 (MNLATEXstylefilev2.2) The missing metals problem: II. How many metals are in z ≃ 2.2 galaxies? Nicolas Bouch´e1⋆, Matthew D. Lehnert1, C´eline P´eroux2 1Max Plank Institut fu¨r extraterrestrische Physik, Giessenbachstraße, D-85748 Garching, Germany 2European Southern Observatory, Karl-Schwarzschild-Str 2, D-85748 Garching, Germany 6 0 0 2 Accepted —.Received—;inoriginalform— n a J ABSTRACT In the context of the “missing metals problem”, the contributions of the UV-selected 9 z ≃ 2.2 “BX” galaxies and z ≃ 2.5 “distant red galaxies” (DRGs) have not been 2 discussedpreviously.Here weshowthat:(i)DRGs onlymakeamarginalcontribution v to the metal budget (∼ 5%); (ii) BX galaxies contribute as much as 18% to the 8 metal budget; and (iii) the K-bright subsample (K <20) of the BX sample (roughly 9 equivalent to the ‘BzK’ selected samples) contributes roughly half of this 18%, owing 6 both to their larger stellar masses and higher metallicities, implying that the rareK- 1 brightgalaxiesatz >2 area majorsourceofmetals in the budget. We showedin the 1 firstpaper ofthis series that submm galaxies(SMGs) brighterthan 3 mJy contribute 5 ∼5%(.9%asanupperlimit)tothemetalbudget.AddingthecontributionofSMGs 0 and damped Lyα absorbers,to the contribution of UV selected galaxies, implies that / h at least30%of the metals (in galaxies) have been accountedfor atz ≃2. The cosmic p metal density thus accounted for is ρZ,galaxies ≃ 1.3×106 M⊙ Mpc−3 or in terms of o- the closure density, ΩZ =9.6×10−6. This is a lower limit given that galaxies on the r faint-endoftheluminosityfunctionarenotincluded.Anestimateofthedistributionof st metalsinlocalgalaxiesasafunctionluminositysuggeststhatgalaxieswithluminosity a <L⋆ contributeabouthalfofthe totalmassofmetals.Ifthemetalsingalaxiesatz∼2 : are similarly distributed then faint galaxies alone cannot solve the ‘missing metals v i problem.’ Galaxy populations at z∼2 only account for about 50% of the total metals X predicted. r a Key words: cosmology:observations—galaxies:high-redshift—galaxies:evolution — galaxies:abundances 1 INTRODUCTION movingmetal density is: For a given initial mass function (IMF), the total expected ρZ,expected = 4.0×106 M⊙ Mpc−3, (1) amount of metals ρ formed at a given time t is Z,expected simply the integral of the star formation history (SFH) (Bouch´eet al.2005;Pettini2003)usingtheSFHparameter- or star formation rate density (SFRD; Lilly et al. 1996; ized (in a LCDM cosmology) either as in Cole et al. (2001) Madau et al.1996;Giavalisco et al.2004;Hopkins2004,and or by a constant star formation rate (SFR) beyond z = 2. others): i.e., ρ = ρ˙ (t)× < p >, where < p > is Equation 1 is about 25% of thez =0 metals. Z,expected ⋆ z z the mean stellar yield (Songaila et al. 1990). Madau et al. Atredshiftsz≃2−3,ourknowledgeofthecosmicmetal (1996) found that < p >= 1 or 2.4% using a Salpeter budget is still highly incomplete, contrary to the situation z 42 IMFextendingfrom0.1to125M⊙ 1 andthetypeIIstellar atredshift z =0(e.g. Fukugita& Peebles2004).Untilvery yields(forsolar metallicity) p (m)from Woosley & Weaver recently,it was thought that only a small fraction (20%) of z (1995). After integrating the SFH over the redshift z range thebudgetisactuallyaccountedforwhenoneaddsthecon- from 4 to 2 (or 1.75 h−1 Gyr), we find that the total co- tributionoftheLyαforest (NHi =1013−17 cm−2),damped 70 Lyα absorbers (DLAs) (NHi > 1020.3 cm−2), and galaxies such as Lyman break galaxies (LBGs) (Pettini et al. 1999; ⋆ E-mail:[email protected] (NB) Pagel 2002; Pettini 2003; Wolfe et al. 2003). 1 Madauetal. (1996) notes that the conversion is fairly insen- Over the last decade, numerous samples of z > 2 sitive to the IMF as long as the stellar population extends as a galaxies have emerged thanks to the increasing size and powerlawtomassivestars,50-100M⊙. sensitivity of near-infrared detectors and to the availabil- 2 N. Bouch´e, M. D. Lehnert, C. P´eroux ity of ultraviolet-sensitive instruments. On the one hand, The last piece of information needed to estimate the the z = 3 Lyman break technique (e.g. Steidel et al. 1999) contributionoftheBXgalaxiestothemetalbudgetistheir was extended to lower redshifts (z ∼ 1.5–2.5) using dif- metallicity. Few BXs have had their gas phase metallicities ferent U GR colour criteria (Steidel et al. 2004). Samples published.Forinstance,Shapley et al.(2004)foundthatthe n selected in this way are referred to as ‘BX/BM’ galax- metallicities of7BXgalaxiesareclose tosolar,buttheme- ies (Adelberger et al. 2004). Usingnear-infrared imaging to dianofamuchlargersampleappearstobeabouthalfsolar select red galaxies with J − K > 2.3 colour, the Faint (Pettini 2005). s Infrared Extragalactic Survey (FIRES) (Franxet al. 2003; Using these estimates, we find that BX galaxies con- van Dokkumet al. 2003) unveiled significant numbers of tribute: galaxies at z ∼ 2.5 which they dubbed ‘distant red galax- <Z > ies’ (DRGs). The FIRES near-infrared selection includes ρZ,BX ≃3.8×105 0.5Z⊙ M⊙ Mpc−3 (2) both passively evolving (PE) and reddened star-forming (SF)galaxieswithE(B−V)>0.3(F¨orster Schreiberet al., to the cosmic metal density or about 10% of the expected 2004).TheK <20criterion (hereafter‘K20’;Cimattietal. metal density at z∼2 (equation 1). 2002) and in particular the B−z vs. z−K colour criteria BX galaxies with K-band magnitudes brighter than (hereafter ‘BzK’; Daddi et al. [2004,2005]) also revealed a 20 (hereafter BX+K20) appear to be more evolved sys- significant number of galaxies with 1.5 < z < 2.5 with a tems. Indeed, they seem to have higher stellar masses [< range of star-formation histories includingboth SF and PE logM >= 11±0.6, Shapley et al. (2005)], and are more ⋆ galaxies. metal rich: their median metallicity is slightly below so- This paper is the second in our series to estimate the lar [Z ∼ 4/5Z⊙, Pettini (2005)]. However, they are signif- contribution of various galaxy populations at z ∼ 2 to the icantly rarer: their number density is a factor of 10 lower total metal budget. In Bouch´e et al. (2005) (paper I), we [n∼1.7×10−4 h3 Mpc−3,Shapley et al.(2005)].Theout- 70 showed from current observations of z ≃2 submm galaxies come is that K -bright BX galaxies contribute significantly s (SMGs)thatSMGs(brighterthan3mJy)contain∼5%(and to themetal budget: certainly .9%) ofthemetal budgetat z≃2.Inthispaper, iwees dtoisctuhsesmtheetaclobnturdibguett.ioWneofwzil≃l s2h.o2wcotlhoautrcsoelloecutredsegleacltaexd- ρZ,BX,K<20 ≃3.0×105 <0.8ZZ>⊙ M⊙ Mpc−3 (3) galaxies (‘BX’ galaxies) contribute significantly (∼ 18%) or8%oftheestimatedtotalmetaldensity(equation1). to the metal budget. The K-bright (Ks < 20, hereafter These numbersare summarized in Table 1. BX+K20) subsample contributes 8% to the metal budget, Unlike for the SMGs in paperI, we have not applied a or almost half of the 18%. Since these samples are all mag- correction for the “duty cycle”, the fraction of cosmic time nitude limited, we discuss likely contribution of the sample over which they meet the observational selection criteria. ofgalaxiesatz∼2ifoneconsidersthefaintendofthelumi- ThedutycycleofBXscanbeestimatedfromthecomparison nosity function using the metal-luminosity relation in local of the clustering strength to the observed number density galaxies. Such an analysis suggests that galaxy populations (Adelberger et al. 2005). Adelberger et al. (2005) find that atz∼2onlycontributeabout50%tothetotalmetalbudget. thedutycycleforthe“BM/BX”galaxiesis∼1.0,suggesting In paper III, we will explore whether the remaining metals nocorrection to our estimate is required. havebeenexpelledfromsmallgalaxiesintotheintergalactic medium (IGM). In the remainder of this paper, we used Ω = 0.3, M ΩΛ =0.7, Ho =70 h70 kms−1 Mpc−1 and h=h100. 2.2 The contribution of DRGs Rednear-infraredcolourselectionofgalaxies(suchasDRGs with J − K > 2.3 Franxet al. 2003; van Dokkum et al. s 2 THE METAL BUDGET AT Z ∼2.2 2003) was designed to discover large numbers of z ∼ 2.5 evolvedgalaxieswithastrongBalmerbreak.DRGsaremas- 2.1 The contribution of ‘BX’ galaxies sivegalaxiesandincludebothheavilyreddenedSFgalaxies, Using colour selection criteria similar to those of z = 3 andPEgalaxies(F¨orster Schreiber et al.,2004;Labb´e et al. LBGs,Steidelandcollaboratorshaveconstructedlargesam- 2005). ples of galaxies at z ≃ 2.2 (BX) and 1.7(BM). The me- The space density of DRGs is about 1 × dian redshifts of these samples are 2.22±0.34 (BX), and 10−4 h3 Mpc (Labb´eet al. 2005; Reddyet al. 2005). 70 1.70±0.34(BM), respectively (e.g. Adelberger et al. 2004). F¨orster Schreiber et al., (2004) found, from modelling the The observed number density of BX and BM galax- spectral energy distributions (SEDs) of DRGs, that their ies (n ) is somewhat higher than z = 3 LBGs. In- mean stellar mass is about 5 timeshigher thanz∼3LBGs, BX/BM deed,accordingtoAdelberger et al.(2005),nBX =(6±3)× or M⋆ ≃ 1×1011 M⊙(for a Salpeter IMF between 0.1 and 10−3 h3100 Mpc−3,andnBM =(5±2.5)×10−3 h3100 Mpc−3, 100 M⊙) and only varies by a factor of ∼2 depending on whereasnLBG =(4±2)×10−3 h3100 Mpc−3.Wesummarize thestar formation history assumed. these numbersin Table 1 for h70. van Dokkumet al. (2004) estimated the metallicity of Shapley et al.(2005)derivedthestellarmasses(M )of a couple of DRGs from Keck NIRSPEC spectra. They ⋆ 72 spectroscopically-confirmed z = 2.2±0.3 galaxies using foundthatthemetallicities, asdeterminedusing[NII]/Hα, UVtomid-IRobservations.ThemeanM oftheirsampleis are high, 1-1.5 times the solar value. From the long slit ⋆ <logM >=10.3±0.5 for a Salpeter IMF extending from kinematics, van Dokkumet al. (2004) estimated that the ⋆ 0.1 to 100 M⊙. dynamical masses are about ∼ 1 × 1011 M⊙, in agree- The metals in BX galaxies 3 ment with the mass estimates using the SED modelling of onlyconsideredthebrightend(&L )ofthegalaxyluminos- ⋆ F¨orster Schreiber et al., (2004). ity function. One obvious criticism of our approach is that Based on these published results, we find that the cos- given the limited depth of the selection images and the ob- mic metal density contributed by DRGsis: viousincompleteness,couldthemetalshideinlowluminos- ity/lowmassgalaxies? Whileitisdifficulttoestimatewhat <Z > ρZ,DRGs≃2×105 1Z⊙ M⊙ Mpc−3 (4) the contribution of the faint end of the luminosity function mightbetothetotalmetalbudget,perhapsconsideringthe or 5% of theexpected metal density (equation 1). localpopulationofgalaxiesmightbeusefulasaguide.Inthe localUniverse,whilegalaxiesatthefaint-endoftheluminos- ityfunctionaremorenumerousthantheluminousgalaxies, 3 DISCUSSION & CONCLUSIONS they are also more metal-poor (e.g., Tremonti et al. 2004). For the local Universe, we estimate the contribution Table 1 summarizes the observations discussed here. The of the faint-end of the luminosity function φ(L) using properties of z=3 LBGs are listed for comparison. the well-known luminosity-metallicity (LZ) relation (e.g. Fromtheobservationsdiscussedabove,wefindthatthe Tremonti et al.2004;Garnett2002).Usingmass-to-lightra- metal density in BX galaxies is: tios [M/L(L)] from Kauffmannet al. (2003), the z =0 LZ <Z > relation(O/H(M)orZ(M))fromGarnett(2002)andφ(L) ρZ,BX =3.8×105 0.5Z⊙M⊙ Mpc−3 , (5) from Driver et al. (2005), one can estimate the cumulative metal density (R φ(L)M/L(L)Z(M)). Fig. 1 shows the cu- or 10% of the metal budget, assuming a mean metallicity mulative Oxygen density M(O) at z = 0. The right axis < Z > of one-half solar and the above co-moving space showsthetotalmetaldensityM(Z).The5th,50thand90th densities. percentiles are shown. From Fig. 1, one sees that, at z =0, Themoreevolvedsub-sampleoftheBXsources,namely 50%ofthemetalsareingalaxiesfainterthanL .Notethat ⋆ BX+K20 galaxies, are rarer (by a factor of 10), but more themetaldensityreaches∼2×107 M⊙ Mpc−3,closetothe massive(byafactorof5),andmoremetalrich(byafactorof metal density obtained from integrating the SFH down to 2).Thus,theydoublethetotalcontributionof‘BX’galaxies z=0, i.e. ρZ,z=0=1.8×107 M⊙ Mpc−3,showing that the tothemetalbudget.Themetaldensityofthissubsampleis: normalization must be approximately correct. Constraints <Z > on the LZ relation at z > 2 are just becoming available ρZ,BX+K20 =3.0×105 4/5Z⊙M⊙ Mpc−3 (6) (Savaglio et al. 2005; Erb et al. 2005, C.C. Steidel, private communication). or8%ofthemetalbudget.Thus,therareK-brightgalaxies Based ontheselocal results, at least 50% ofthemetals atz>2areamajor sourceofmetalsinthebudget.Weare in galaxies are in objects on the faint-end of theluminosity still far from closing the metal budget however. If we take function (L.L⋆). The limiting depths of the surveys that these numbers at face-value, as much as 18% of the metals findz∼2 galaxies reach to or even beyond L⋆. Ifwe assume could bein BX galaxies. for simplicity that our numbers and estimates are appro- Regarding the ‘BzK’ selection of z ∼ 2 galaxies priate for L⋆ and more luminous galaxies and that the z∼2 by Daddiet al. (2004), we note that the mean redshifts galaxieshaveasimilarrelativefraction ofmetalsaboveand for BzK/SF (star-forming) galaxies and BzK/PE (passive belowL⋆,itwouldsuggestthatweneedtocorrectourtotal evolving) galaxies is < z >≃ 2±0.3 and 1.7±0.2, respec- metalestimatebyaboutafactorof2.Thisislikelyanover- tively(Reddyet al.2005).Focusingonthez>2subsample estimateofthetruecorrectionnecessaryforthefaintendof (i.e., BzK/SF), Reddyet al. (2005) showed that the ‘BX’ the luminosity function and shows that the total contribu- selection criteria and that the ‘BzK/SF’ selection criteria tiontothemetalbudgetisroughly60%orless.Inaddition, overlapsignificantly(∼80%)toK =22.Wethereforeview s this sum might also count some of the galaxy types twice, these two populations (BX and BzK/SF) as two strongly given that we effectively extrapolate to the faint end of the overlappingsamples whichdonotrequireseparateanalyses LF for each of the samples. Given these caveats, one can of their contribution tothe metal budget at z∼2. easily account for ∼30—60% of the metal budget. We will Havingnowconsideredasubstantialnumberofsamples discussinpaperIIIthepossibility thattheremaining miss- of galaxies selected at z∼2, we can now estimate the total ing metals could have been ejected from small galaxies via metalbudgetingalaxies.Wehaveestimatedthat5%(.9%) galactic outflows intothe IGM. of the metals are in z ∼ 2.4 SMGs (brighter than 3 mJy; as shown in paper I), 18+5% in UV-selected and J −K- selected galaxies, and 5% in DLAs (Pettini et al. 2003, and ACKNOWLEDGMENTS theforthcoming paper III).The resulting sum is: Wethanktherefereeforapromptreport;M.Pettiniforin- ρZ,galaxies ≃1.3×106 M⊙ Mpc−3 (7) teresting discussions and for sharing his results before pub- or ∼33% of the expected metal density at z ≃ 2 (equa- lication; and N. F¨orster Schreiber for sharing her extensive tion 1) 2. knowledge of DRGs. However,equation7isalowerlimitgiventhatwereally REFERENCES 2 We note that at z ∼ 3, the “missing metals problem” likely remains more acute. Unlike the “BM/BX” galaxies, LBGs only AdelbergerK.L.,Steidel C.C.,ShapleyA.E.,HuntM.P.,Erb contributeabout5-10%ofthetotalmetalsatz∼3. D.K.,ReddyN.A.,PettiniM.,2004,ApJ,607,226 4 N. Bouch´e, M. D. Lehnert, C. P´eroux Table1.Summaryofproperitesofz>2galaxies.References:(a)Adelbergeretal.(2005),(b)Pettini(2005),(c)Shapleyetal.(2005), (d)Pettinietal.(2001)(e)Shapleyetal.(2004),(f)Reddy etal.(2005),(g)Labb´eetal.(2005),(h)Fo¨rsterSchreiberetal.,(2004),(i) vanDokkumetal.(2004). <z> n(h370 Mpc−3) Z/Z⊙ M⋆ (M⊙) ρZ (M⊙ Mpc−3) ΩZ 10−3 1010 105 10−6 BX 2.2±0.3 2±1a 0.5b 2c 3.8 2.8 BX+K20 2.2±0.3 0.2c 0.8b 10c 3.0 2.2 DRGs 2.5±0.4 0.1f,g 1.0i 10h 1.9 1.4 LBGs 3.0±0.3 1.3±0.7a 0.33d 1.2e 3.0 2.2 2005,MNRAS,360,81 ErbD.K.,etal.,2005, ApJ,submitted Fo¨rsterSchreiberN.M.etal.2004,ApJ,616,40 Franx M., Labb´e I., Rudnick G., van Dokkum P. G., Daddi E., Fo¨rsterSchreiberN.M.,MoorwoodA.,RixH.,Ro¨ttgeringH., vandeWelA.,vanderWerfP.,vanStarkenburgL.,2003,ApJ, 587,L79 FukugitaM.,PeeblesP.J.E.,2004, ApJ,616,643 GarnettD.R.,2002, ApJ,581,1019 Giavalisco M., Dickinson M., Ferguson H. C., Ravindranath S., KretchmerC.,MoustakasL.A.,MadauP.,FallS.M.,Gardner J.P.,LivioM.,PapovichC.,RenziniA.,SpinradH.,SternD., RiessA.,2004,ApJ,600,L103 HopkinsA.M.,2004,ApJ,615,209 Kauffmann G., Heckman T. M., White S. D. M., Charlot S., Tremonti C., Peng E. W., Seibert M., Brinkmann J., Nichol R.C.,SubbaRaoM.,YorkD.,2003,MNRAS,341,54 Labb´eI.,HuangJ.,FranxM.,RudnickG.,BarmbyP.,DaddiE., vanDokkumP.G.,FazioG.G.,SchreiberN.M.F.,Moorwood A. F. M., Rix H.-W., Ro¨ttgering H., TrujilloI., van der Werf P.,2005, ApJ,624,L81 Lilly S. J., Le Fevre O., Hammer F., Crampton D., 1996, ApJ, Figure1.ThecumulativeOxygencosmicdensityusingthez=0 460,L1 luminosity function from Driveretal. (2005), the LZ relation MadauP.,FergusonH.C.,DickinsonM.E.,GiavaliscoM.,Steidel fromGarnett(2002)andtheM/LfromKauffmannetal.(2003). C.C.,Fruchter A.,1996,MNRAS,283,1388 The right-axis shows the cosmic metal density. The 5th, 50th PagelB.E.J.,2002,inASPConf.Ser.253:ChemicalEnrichment and90th percentiles areshown asacross,triangleand circlere- ofIntracluster andIntergalactic Medium.p.489 spectively. Because of the very opposite slopes of the LF and of Pettini M., 2003, in Esteban C., Herrero A., Garcia Lopez R., the LZ relation, the 50th percentile arises at around L ≃ L⋆. Sanchez F., eds, Cosmochemistry: The melting Pot of Ele- As a consequence, 50% (or more) of the metal budget lies in ments.CambridgeUniv.Press,Cambridge,(astro-ph/0303272) the faint end of the LF. Note that the metal density reaches Pettini M., 2005, in LeFevre O., ed., The faboulous destiny of ∼2×107 M⊙ Mpc−3,closetothemetaldensityobtainedfrom galaxies:bridgingpastandpresent.Marseille,France integratingtheSFH,i.e.1.8×107 M⊙ Mpc−3,showingthatthe PettiniM.,EllisonS.L.,SteidelC.C.,BowenD.V.,1999,ApJ, normalizationappearstobecorrect. 510,576 Pettini M., Madau P., Bolte M., Prochaska J. X., Ellison S. L., FanX.,2003, ApJ,594,695 AdelbergerK.L.,SteidelC.C.,PettiniM.,ShapleyA.E.,Reddy PettiniM.,ShapleyA.E.,SteidelC.C.,CubyJ.,DickinsonM., N.A.,ErbD.K.,2005,ApJ,619,697 Moorwood A. F. M., Adelberger K. L., Giavalisco M., 2001, Bouch´e N., Lehnert M. D., P´eroux C., 2005, MNRAS, 364, 319 ApJ,554,981 (paperI) ReddyN.A.,ErbD.K.,SteidelC.C.,ShapleyA.E.,Adelberger Bouch´eN.,LehnertM.D.,P´erouxC.,AguirreA.,2005,MNRAS, K.L.,PettiniM.,2005,ApJ,633,748 inpreparation (paperIII) Savaglio S., Glazebrook K., Le Borgne D., Juneau S., Abraham Cimatti A., Mignoli M., Daddi E., Pozzetti L., Fontana A., R.,ChenH..,CramptonD.,McCarthyP.,CarlbergR.,Marzke Saracco P., Poli F., Renzini A., Zamorani G., Broadhurst T., R.,RothK.,JorgensenI.,MurowinskiR.,2005,ApJ,635,260 Cristiani S., D’Odorico S., Giallongo E., Gilmozzi R., Menci Shapley A. E., Erb D. K., Pettini M., Steidel C. C., Adelberger N.,2002, A&A,392,395 K.L.,2004, ApJ,612,108 ColeS.etal.,2001,MNRAS,326,255 ShapleyA.E.,SteidelC.C.,ErbD.K.,ReddyN.A.,Adelberger Daddi E., Cimatti A., Renzini A., Fontana A., Mignoli M., K.L.,PettiniM.,BarmbyP.,HuangJ.,2005,ApJ,626,698 Pozzetti L.,TozziP.,ZamoraniG.,2004,ApJ,617,746 SongailaA.,CowieL.L.,LillyS.J.,1990,ApJ,348,371 Daddi E., Renzini A., Pirzkal N., Cimatti A., Malhotra S., Sti- Steidel C. C., Adelberger K. L., Giavalisco M., Dickinson M., avelliM.,XuC.,PasqualiA.,RhoadsJ.E.,BrusaM.,diSerego PettiniM.,1999,ApJ,519,1 Alighieri S., Ferguson H. C., Koekemoer A. M., Moustakas Steidel C. C., Shapley A. E., Pettini M., Adelberger K. L., Erb L.A.,PanagiaN.,WindhorstR.A.,2005, ApJ,626,680 D.K.,ReddyN.A.,HuntM.P.,2004,ApJ,604,534 DriverS.P.,LiskeJ.,CrossN.J.G.,DeProprisR.,AllenP.D., TremontiC.A.,HeckmanT.M.,KauffmannG.,BrinchmannJ., The metals in BX galaxies 5 CharlotS., White S. D. M.,Seibert M.,Peng E.W., Schlegel D.J.,UomotoA.,FukugitaM.,BrinkmannJ.,2004,ApJ,613, 898 vanDokkumP.G.etal.,2003,ApJ,587,L83 vanDokkumP.G.etal.,2004,ApJ,611,703 WolfeA.M.,GawiserE.,ProchaskaJ.X.,2003,ApJ,593,235 WoosleyS.E.,Weaver T.A.,1995,ApJS,101,181 ThispaperhasbeentypesetfromaTEX/LATEXfilepreparedby theauthor.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.