The minus order and range additivity MarkoS.Djikic´a,1,GuillerminaFongib,2,AlejandraMaestripierib,c,3,∗ aDepartmentofMathematics,FacultyofSciencesandMathematics,UniversityofNiš,Višegradska33,18000Niš, Serbia. bInstitutoArgentinodeMatemática“AlbertoP.Calderón"Saavedra15,Piso3(1083),BuenosAires,Argentina. cDepartamentodeMatemática,FacultaddeIngeniería,UniversidaddeBuenosAires. 7 1 0 2 n a Abstract J WestudytheminusorderonthealgebraofboundedlinearoperatorsonaHilbertspace. By 2 givingacharacterizationintermsofrangeadditivity,weshowthattheintrinsicnatureofthe ] A minusorderisalgebraic. Applicationstogeneralizedinversesofthesumoftwooperators,to F systemsofoperatorequationsandtooptimizationproblemsarealsopresented. . h Keywords: minusorder,rangeadditivity,generalizedinverses,leastsquaresproblems t a 2000MSC:06A06,47A05 m [ 1 1. Introduction v 6 TheminusorderwasintroducedbyHartwig[25]andindependentlybyNambooripad[32], 7 4 inbothcasesonsemigroups,withtheideaofgeneralizingsomeclassicalpartialorders.Itwas 0 extendedtooperatorsininfinitedimensionalspacesindependentlybyAntezana,Corachand 0 Stojanoff[2]andbySˇemrl[36]. Thereisnowanextensiveliteraturedevotedtothisorderand . 1 other related partial orders on matrices, operators and elements of various algebraic struc- 0 7 tures. Seeforexample,[8,30,31]. 1 Themaingoalofthisworkistoobtainanewcharacterizationoftheminusorderforop- : v eratorsactingonHilbertspacesintermsofthesocalledrangeadditivityproperty. Giventwo i X linearboundedoperatorsA and B actingonaHilbertspace(cid:72),wesaythatA and B havethe r rangeadditivitypropertyifR(A+B)=R(A)+R(B),whereR(T)standsfortherangeofanop- a eratorT. Operatorswiththispropertyhavebeenstudiedin[4]and[5](seealso[10]). Recall thatifA andB aretwoboundedlinearHilbertspaceoperatorsthenA≤− B (wherethesymbol “≤−”standsfortheminusorderofoperators)ifandonlyifthereareobliqueprojectionsP and Q suchthatA =PB andA∗=QB∗. Inthispaper,weprovethatthisisequivalenttotherange ∗Correspondingauthor Emailaddresses:[email protected](MarkoS.Djikic´),[email protected] (GuillerminaFongi),[email protected](AlejandraMaestripieri) 1SupportedbyGrantNo.174007oftheMinistryofEducation,ScienceandTechnologicalDevelopmentofthe RepublicofSerbia 2PartiallysupportedbyCONICET(PIP4262013-2015) 3PartiallysupportedbyCONICET(PIP1682014-2016) PreprintsubmittedtoElsevier January3,2017 ofB beingthedirectsumofrangesofA andB−A andtherangeofB∗beingthedirectsumof rangesofA∗ and B∗−A∗. Thustheminusorderisintrinsicallyalgebraicinnature. Thisplays anequivalentroletoaknowncharacterizationwhenA andB arematrices[25,31];thatA≤− B ifandonlyiftherankof B−A isthedifferenceoftherankof B andtherankofA. As a consequence, diverse concepts that have been developed for matrices and opera- tors are in fact manifestations of the minus order. These include, for example, the notions ofweaklybicomplementarymatricesdefinedduetoWerner[37],andquasidirectadditionof operatorsdefinedbyLešnjakandŠemrl[28]. Althoughinthesepaperstheminusorderdoes notappearexplicitly,thesenotionswhenappliedtooperatorsA and B areequivalenttosay- ing that A ≤− A+B. The minus order also lurks in the papers of Baksalary and Trenkler [9], Baksalary,SˇemrlandStyan[7],Mitra[29]andArias,CorachandMaestripieri[5]. The minus order can be weakened to what we call left and right minus orders. As with theminusorder,theseordersareeasilyderivedfromarangeadditivitycondition. Ithappens that they truly differ from the minus order only in the infinite dimensional setting. When A≤− B,wegivesomeapplicationstoformulasforgeneralizedinversesofsumsA+B interms ofgeneralizedinversesofAandB,andweshowthatcertainoptimizationproblemsinvolving theoperatorA+B canbedecoupledintoasystemofsimilarproblemsforA and B. Thepaperisorganizedasfollows.InSection2wecollectsomeusefulknownresultsabout rangeadditivity,whileinSection3,theminusorderisdefinedandtheconnectionwithrange additivity is made. Motivated by the concepts of the left and the right star orders, we define leftandtherightminusorderson L((cid:72)). Formatrices,theseareequivalenttotheminusor- der,withdifferencesonlyemergeintheinfinitedimensionalcontext. Proposition3.13char- acterizes the left minus order in terms of densely defined, though not necessarily bounded, projections. Additionally,theleftminus,therightminusandtheminusordersarecharacter- ized in terms of (densely defined) inner generalized inverses, generalizing a matricial result (see[30]). Finally,Section4isdevotedtoapplications.Webeginbyrelatingtheminuspartialorderto someformulasforreflexiveinnerinversesofthesumoftwooperators. Inparticular,wegive analternativeprooffortheFill-FishkindformulafortheMoore-Penroseinverseofasum,as found in [21] for matrices and extended to L((cid:72)) by Arias et al. [5]. We also apply the new characterizationoftheminusordertosystemsofequationsandleastsquaresproblems. We include a final remark about a possible generalization of the minus order involving densely definedprojectionswithclosedrange. 2. Preliminaries Throughout, ((cid:72),〈·,·〉) denotes a complex Hilbert space and L((cid:72)) the algebra of linear boundedoperatorson(cid:72),(cid:81)isthesubsetofL((cid:72))ofobliqueprojections,i.e.,(cid:81)={Q∈L((cid:72)): Q2=Q}and(cid:80) thesubsetof(cid:81) oforthogonalprojections,i.e.,(cid:80) ={P∈L((cid:72)):P2=P=P∗}. Given(cid:77) and(cid:78) twoclosedsubspacesof(cid:72),write(cid:77) +˙ (cid:78) forthedirectsumof(cid:77) and (cid:78) ,(cid:77) ⊕(cid:78) theorthogonalsumand(cid:77) (cid:9)(cid:78) =(cid:77) ∩((cid:77) ∩(cid:78) )⊥. If(cid:77) +˙ (cid:78) =(cid:72),theoblique projection with range (cid:77) and null space (cid:78) is P(cid:77)//(cid:78) and P(cid:77) = P(cid:77)//(cid:77)⊥ is the orthogonal projectiononto(cid:77). 2 ForA ∈L((cid:72)),R(A)standsfortherangeofA,N(A)foritsnullspaceandP forP . The A R(A) Moore-PenroseinverseofA isthe(denselydefined)operatorA†:R(A)⊕R(A)⊥→(cid:72),defined byA†|R(A)=(A|N(A)⊥)−1 andN(A†)=R(A)⊥. ItholdsthatA†∈L((cid:72))ifandonlyifA hasaclosed range. Given (cid:77) and (cid:78) two closed subspaces of (cid:72), the minimal angle between (cid:77) and (cid:78) is α ((cid:77),(cid:78) )∈[0,π/2],thecosineofwhichis 0 c ((cid:77),(cid:78) )=sup(cid:8)|(cid:10)ξ,η(cid:11)|: ξ∈(cid:77), (cid:107)ξ(cid:107)≤1, η∈(cid:78) , (cid:107)η(cid:107)≤1(cid:9) ∈[0,1]. 0 Whentheminimalanglebetween(cid:77) and(cid:78) isstrictlylessthat1,thenthesum(cid:77) +(cid:78) is closedanddirect,moreover,wehavethefollowing. Proposition2.1. Let (cid:77) and (cid:78) be two closed subspaces of (cid:72). The following statements are equivalent: (1) c ((cid:77),(cid:78) )<1; 0 (2) (cid:77) +˙ (cid:78) isclosed; (3) (cid:72) =(cid:77)⊥+(cid:78) ⊥. Foraproof,seeLemma2.11andTheorem2.12in[15]. ForA,B ∈L((cid:72)),italwaysholdsthatR(A+B)⊆R(A)+R(B). WesaythatA andB havethe rangeadditivitypropertyifR(A+B)=R(A)+R(B).Inthiscase,R(A)⊆R(A+B).Conversely,if R(A)⊆R(A+B)then,forx ∈(cid:72),Bx =(A+B)x−Ax ∈R(A+B).Wehaveprovedthefollowing. Lemma2.2([5,Proposition2.4]). ForA,B ∈L((cid:72)),R(A+B)=R(A)+R(B)ifandonlyifR(A)⊆ R(A+B). Operators having the range additivity property were characterized in [5, Theorem 2.10]. CloselyrelatedisthefollowingforoperatorsA,B ∈L((cid:72))satisfyingtheconditionR(A)∩R(B)= {0}. Proposition2.3([5, Theorem 2.10]). Consider A,B ∈ L((cid:72)) such that R(A)∩R(B)={0} then R(A+B)=R(A)+˙ R(B)ifandonlyif(cid:72) =N(A)+N(B). ThenextresultwillbeusefulincharacterizingtheminusorderinSection3(see[5,Propo- sition2.2]). Proposition2.4. ForA,B ∈L((cid:72))considerthefollowingstatements: (1) R(A∗)+˙ R(B∗)isclosed; (2) thereexistsQ∈(cid:81) suchthatA∗=Q(A∗+B∗); (3) N(A)+N(B)=(cid:72); 3 (4) R(A+B)=R(A)+R(B). Then(1)⇔(2)⇔(3)⇒(4). Theimplication(4)⇒(3)holdsifR(A)∩R(B)={0}. Foraproofof(1)⇔(2)see[2, Proposition4.13]. (1)⇔(3)wasstatedinProposition2.1. Theimplication(3)⇒(4)followsfromtheproofof[3,Proposition2.8]. (4)⇒(3)followsfrom Proposition2.3sinceR(A)∩R(B)={0}. 3. Theminusorder Differentdefinitionshavebeengivenfortheminus(partial)order. Foroperatorsweoffer onewhichequivalenttothoseappearingin[2]and[36]. Definition3.1. ForA,B ∈L((cid:72)),A≤− B ifthereexistP,Q∈(cid:81) suchthatA=PB andA∗=QB∗. Proofsthat≤− isapartialorderonL((cid:72))canbefoundin[2,Corollary4.14]and[36,Corol- lary 3]. It is easy to see that the ranges of P and Q can be fixed so that R(P) = R(A) and R(Q)=R(A∗). Fordetails,see[2,Proposition4.13]andthedefinitionofminusorderin[36]. Inthenextpropositionwecollectsomecharacterizationsoftheminusorderintermsof angleconditionsandsumofclosedsubspaces. Proposition3.2. ConsiderA,B ∈L((cid:72)). Thefollowingstatementsareequivalent: (1) A≤− B; (2) c (R(A),R(B−A))<1andc (R(A∗),R(B∗−A∗))<1; 0 0 (3) R(B)=R(A)+˙ R(B−A)andR(B∗)=R(A∗)+˙ R(B∗−A∗); (4) N(A)+N(B−A)=N(A∗)+N(B∗−A∗)=(cid:72); (5) thereexistsP∈(cid:81) suchthatA=PB andR(A)⊆R(B). Proof. The equivalences (1) ⇔ (2) ⇔ (4) follow applying the definition of the minus order andProposition2.1totheoperatorsA, B−A,A∗and B∗−A∗,seealso[2,Proposition4.13]. For (2) ⇔ (3), suppose that c (R(A),R(B−A)) < 1 and c (R(A∗),R(B∗−A∗)) < 1. Then 0 0 R(A) +˙ R(B−A) and R(A∗) +˙ R(B∗−A∗) are closed. In this case, R(B) ⊆ R(A) +˙ R(B−A). On the other hand, applying Proposition 2.4, there existsQ ∈ (cid:81) such that A∗ =QB∗. Then N(B∗) ⊆ N(A∗) and N(B∗) ⊆ N(B∗−A∗), or R(A) ⊆ R(B) and R(B−A) ⊆ R(B). Then R(B) = R(A)+˙ R(B−A). Similarly,R(B∗)=R(A∗)+˙ R(B∗−A∗). Seealso[36,Theorem2]. Conversely, if item 3 holds, then R(A) +˙ R(B−A) and R(A∗) +˙ R(B∗−A∗) are closed or equivalently, by Proposition2.1,item2holds. Next consider (1)⇔(5). If A ≤− B then A =PB = BQ∗ with P,Q ∈(cid:81), so that A =PB and R(A)⊆R(B). Conversely,supposeR(A)⊆R(B)andthereexistsP∈(cid:81) suchthatA=PB. Then byLemma2.2itholdsthatR(B)=R(A)+R(B −A). MoreoverR(A)∩R(B −A)={0}because R(A) ⊆ R(P) and R(B −A) ⊆ N(P), so that R(B) = R(A) +˙ R(B −A). In this case, (4) ⇒ (2) of Proposition 2.4 can be applied so that there existsQ ∈ (cid:81) such that A∗ =QB∗. Therefore A≤− B. 4 The following is a key result that will be useful on many occasions throughout the pa- per. Itgivesanewcharacterizationoftheminuspartialorderintermsoftherangeadditivity property,showingthattheminusorderhasanalgebraicnature. Theorem3.3. ConsiderA,B ∈L((cid:72)). Thenthefollowingassertionsareequivalent: (1) A≤− B; (2) R(B)=R(A)+˙ R(B−A)andR(B∗)=R(A∗)+˙ R(B∗−A∗). Proof. Suppose that A ≤− B. By Proposition 3.2, it follows that R(A) +˙ R(B−A) and R(A∗) +˙ R((B−A)∗)areclosed. Inparticular,R(A)∩R(B−A)=R(A∗)∩R(B∗−A∗)={0}. Also,itfollows fromProposition2.4thatR(B∗)=R(A∗)+R(B∗−A∗)andR(B)=R(A)+R(B −A). Therefore, R(B)=R(A)+˙ R(B−A)andR(B∗)=R(A∗)+˙ R(B∗−A∗). Conversely,supposethatR(B)=R(A)+˙ R(B−A)andR(B∗)=R(A∗)+˙ R(B∗−A∗).Applying (4)⇒(1)inProposition2.4,itfollowsthatR(A)+˙ R(B−A)andR(A∗)+˙ R(B∗−A∗)areclosed. Hence,byProposition3.2andProposition2.1,A≤− B. Let A ∈ L((cid:72)) for 1 ≤ i ≤ k. Lešnjak and Šemrl [28] give the following definition: the i k operatorA=(cid:80)A isthequasidirectsumiftherangeofA isthedirectsumoftherangesofthe i i=1 A sandtheclosureoftherangeofA isthedirectsumoftheclosuresoftherangesoftheA s. i i Thenextresultmayberestatedassayingthat B isthequasidirectsumofA and B−A ifand onlyifA≤− B. Corollary3.4. IfA,B ∈L((cid:72)),thefollowingconditionsareequivalent: (1) A≤− B; (2) R(B)=R(A)+˙ R(B−A)andR(B)=R(A)+˙ R(B−A). Proof. (1)⇒(2)followsfromProposition3.2andTheorem3.3. Fortheconverse,sinceR(A)+˙ R(B−A)isclosed,fromProposition2.4wehavethatR(B∗)= R(A∗)+R(B∗−A∗). Toseethatthissumisdirect,applyingProposition2.4againandusingthe fact that R(B)=R(A)+˙ R(B −A) we get that R(A∗)∩R(B∗−A∗)={0}. Thus R(B∗)=R(A∗)+˙ R(B∗−A∗),andsobyTheorem3.3,A≤− B. The next result shows the behavior of the minus order when the operators have closed ranges. Corollary3.5. ConsiderA,B ∈L((cid:72))suchthatA ≤− B. ThenR(B)isclosedifandonlyifR(A) andR(B−A)areclosed. Proof. If A ≤− B, then by Corollary 3.4, R(B) = R(A) +˙ R(B−A) and R(B) = R(A) +˙ R(B−A). IfR(B)isclosedthenR(A)+˙ R(B−A)=R(A)+˙ R(B−A). HenceR(A)=R(A)andR(B−A)= R(B −A). Infact, givenx ∈R(A), thenx ∈R(A)+˙ R(B −A), sothatthereexistx ∈R(A)and 1 x ∈R(B−A)suchthatx =x +x . Butx −x =x ∈R(A)∩R(B)={0},andsox =x ∈R(A); 2 1 2 1 2 1 thatis,R(A)=R(A). Similarly,R(B−A)=R(B−A). TheconversefollowsbyCorollary3.4. 5 3.1. Theleftandrightminusorders Inthissectionwedefinetheleft andrightminusordersandshowthattheyareageneral- izationoftheleftandrightstarorders. Aswewillsee,theseordersarereallyonlyinteresting oninfinitedimensionalspaces. Formatrices,theycoincidewiththeminusorder. Webeginanalyzingthepropertiesoftheleftandrightstarorders. Originally,Drazin[20] introduced the star order on semigroups with involutions, Baksalary and Mitra [6] defined the left and right star orders for complex matrices, and later, Antezana, Cano, Mosconi and Stojanoff[1]extendedthestarordertothealgebraofboundedoperatorsonaHilbertspace. SeealsoDolinarandMarovt[18],DengandWang[14]andDjikic´ [16]. Given A,B ∈ L((cid:72)), the star order, left star order and right star order are respectively de- finedby ∗ • A≤B ifandonlyifA∗A=A∗B andAA∗=BA∗, • A∗≤B ifandonlyifA∗A=A∗B andR(A)⊆R(B),and • A≤∗B ifandonlyifAA∗=BA∗andR(A∗)⊆R(B∗). ∗ IfA,B ∈L((cid:72)),thenA≤B ifandonlyifthereexistP,Q∈(cid:80) suchthatA=PB andA∗=QB∗ (see[1,Proposition2.3]or[18,Theorem5]). WecanalwaystakeP=PA andQ=PA∗. Thenextresultisastraightforwardconsequenceof[14,Theorem2.1].Weincludeasimple proof. Proposition3.6. LetA,B ∈L((cid:72)). IfA∗≤B thenA≤− B. Proof. If A ∗≤ B , then A∗A = A∗B, or equivalently A∗(A −B) = 0. Hence P (A −B) = 0, or A A = P B. Conversely, if A = P B, then A∗A = A∗B. So A ∗≤ B is equivalent to A = P B and A A A R(A)⊆R(B). ByProposition3.2(5),thisgivesA≤− B. Thefollowingresultscharacterizetheleftandrightstarordersintermsofanorthogonal rangeadditivityproperty. Proposition3.7. ForA,B ∈L((cid:72)),A∗≤B ifandonlyifR(B)=R(A)⊕R(B−A). Proof. FromtheproofofProposition3.6,A∗≤B ifandonlyifA=P B andR(A)⊆R(B). Thus A R(B)=R(A)⊕R(B−A)sinceR(B−A)⊆N(P )=R(A)⊥. A Conversely, if R(B) = R(A) ⊕ R(B −A), then R(A) ⊆ R(B) and R(B −A) ⊆ R(A)⊥, so that A=P B. HenceA∗≤B. A Corollary3.8. ForA,B ∈L((cid:72)),A≤∗B ifandonlyifR(B∗)=R(A∗)⊕R(B∗−A∗). The next characterization of the star order follows from the previous results (or alterna- tively,fromTheorem3.3). Corollary3.9. GivenA,B ∈L((cid:72)),thefollowingstatementsareequivalent: 6 ∗ (1) A≤B; (2) A∗≤B andA≤∗B; (3) R(B)=R(A)⊕R(B−A)andR(B∗)=R(A∗)⊕R(B∗−A∗). ∗ Proof. Obviously, A ∗≤ B and A ≤∗ B. On the other hand, if A ≤ B, then by the proof of Proposition3.6,A =PAB andA∗ =PA∗B∗. HenceR(A∗)⊆R(B∗)andR(A)⊆R(B). Thus(1)⇔ (2). Theequivalenceoftheseto(3)followsfromProposition3.7. Asageneralizationoftheleftandrightstarorders,wenowdefinetheleft andrightminus orders. Definition3.10. ForA,B ∈L((cid:72)), • A−≤B ifandonlyifR(B)=R(A)+˙ R(B−A),and • A≤−B ifandonlyifR(B∗)=R(A∗)+˙ R(B∗−A∗). Proposition3.11. Therelations−≤and≤−definepartialorders. Proof. Weonlygivetheprooffor−≤,sincetheprooffor≤−isidentical. First of all, −≤ is clearly reflexive. So consider A,B ∈ L((cid:72)) such that A −≤ B and B −≤A. Then R(B) = R(A) +˙ R(B −A) and R(A) = R(B) +˙ R(B −A). From the last equality R(B − A) ⊆ R(A). But R(B −A)∩R(A) = {0}, so that R(B −A) = {0}. Therefore A = B thus −≤ is antisymmetric. To prove −≤ is transitive, consider A,B,C ∈ L((cid:72)) such that A −≤ B and B −≤ C. Then R(B)=R(A)+˙ R(B−A)andR(C)=R(B)+˙ R(C−B). SinceR(A)⊆R(B)⊆R(C),byLemma2.2, R(C)=R(A)+R(C −A). ItremainstoshowthatR(A)∩R(C −A)={0}. SinceR(A)∩R(C −A)⊆ R(A)∩(R(C−B)+R(B−A))wecanwritex ∈R(A)asx =x +x ,x ∈R(C−B)andx ∈R(B−A). 1 2 1 2 Thenx −x =x ∈R(B)∩R(C −B)={0},andsox =x . Hencex ∈R(A)∩R(B−A)={0};that 2 1 2 isx =0andR(A)∩R(C −A)={0}. ThisimpliesthatR(C)=R(A)+˙ R(C −A),orequivalently, A−≤C,andso−≤istransitive. ThenextcorollaryisaconsequenceofTheorem3.3. Corollary3.12. ForA,B ∈L((cid:72)),A−≤B andA≤−B ifandonlyifA≤− B. It follows from Proposition 2.4 that A −≤ B if and only if A∗ =QB∗ forQ ∈ (cid:81) and R(A)∩ R(B−A)={0}.Thereisalsoacharacterizationoftheleftminusordersimilartothatoftheleft starorderasfoundintheproofofProposition3.6. Weleavetheobviousversionfortheright minusorderunstated. Proposition3.13. For A,B ∈ L((cid:72)), A −≤ B if and only if there exists a (possibly unbounded) denselydefinedprojectionP suchthatA=PB andR(A)⊆R(B). 7 Proof. IfA−≤B thenR(B)=R(A)+˙ R(B−A)sothatR(A)⊆R(B).DefineP=PR(A)//R(B−A)⊕N(B∗). Then P is a densely defined projection and it is easy to check that A = PB. Conversely, if A = PB for a densely defined projection and R(A) ⊆ R(B) then R(B) = R(A)+R(B −A) by Lemma2.2,andthesumisdirectsinceR(A)⊆R(P)andR(B−A)⊆N(P). Remark 3.14. Theminusordercanbeseenasastarorderafterapplyingsuitableweightsto theHilbertspacesinvolved. Recallthat,ifA,B ∈L((cid:72),(cid:75))aresuchthatA≤− B thenthereexist projectionsP ∈L((cid:75))andQ ∈L((cid:72))suchthatA =PB = BQ. TheoperatorsW =Q∗Q+(I − 1 Q∗)(I−Q)∈L((cid:72))andW =P∗P+(I−P∗)(I−P)∈L((cid:75))arepositiveandinvertible. Hencethe 2 innerproductsin(cid:72) and(cid:75) respectively, (cid:10)x,y(cid:11) =(cid:10)W x,y(cid:11), forx,y ∈(cid:72) and 〈z,w〉 =〈W z,w〉, forz,w ∈(cid:75) W1 1 W2 2 give rise to equivalent norms. With these new inner products, the projections P andQ are ∗ orthogonalin(cid:75) =((cid:75),〈·,·〉 )and(cid:72) =((cid:72),〈·,·〉 ),respectively,andsoA≤B. W2 W2 W1 W1 On the other hand, A −≤ B if and only if there exists a densely defined projection P such thatA=PB andR(A)⊆R(B).Inthiscase,itispossibletofindapositiveandinvertibleweight W on(cid:75) suchthatP issymmetricwithrespectto〈·,·〉 (orequivalentlyA∗≤B inL((cid:72),(cid:75) )) ifa2ndonlyifP admitsaboundedextensionP˜∈(cid:81) (orWe2quivalentlyA≤− B). W2 Hereisaproofofthelaststatement: supposethatthereexistsaweightW on(cid:75) positive 2 andinvertiblesuchthatP issymmetricwithrespectto〈·,·〉 . SinceP isa(denselydefined) W2 idempotent then (cid:68)(P) = R(P) +˙ N(P), where (cid:68)(P) is the domain of P. Moreover, given x ∈ R(P)andy ∈N(P)wehave(cid:10)x,y(cid:11) =(cid:10)Px,y(cid:11) =(cid:10)x,Py(cid:11) =0becauseP issymmetricwith W2 W2 W2 respectto〈·,·〉 andy ∈N(P). Hence(cid:68)(P)=R(P)⊕ N(P),andconsequently(cid:72) =R(P)⊕ W2 W2 W2 N(P), where the closures are taken with respect to 〈·,·〉 . Then P = P is a bounded W2 R(P)//N(P) extensionofP. Conversely,supposethatthereexistsP˜∈(cid:81)suchthatP⊆P˜,andletW =P˜∗P˜+(I−P˜)∗(I− 2 P˜), which is positive and invertible and satisfies W P˜ = P˜∗W . Finally, P is symmetric with 2 2 respectto〈·,·〉 . Infact,ifx,y ∈(cid:68)(P)then(cid:10)Px,y(cid:11) =(cid:172)P˜x,y(cid:182) =(cid:172)W P˜x,y(cid:182)=(cid:172)x,W P˜y(cid:182)= (cid:172)W x,P˜y(cid:182)=(cid:172)Wx2,P˜y(cid:182) =(cid:10)x,Py(cid:11) . W2 W2 2 2 2 W2 W2 Corollary3.15. LetA,B ∈L((cid:72))besuchthatA−≤B. ThenR(B∗)=R(A∗)+˙ R(B∗−A∗). Proof. FromProposition3.13(3),ifA−≤B,thenA=PB andN(B)⊆N(A)orR(A∗)⊆R(B∗)and inthesameway,R(B∗−A∗)⊆R(B∗). ThenbyProposition2.4(1),R(A∗)+˙ R(B∗−A∗)⊆R(B∗). Ontheotherhand,R(B∗)⊆R(A∗)+R(B∗−A∗)⊆R(A∗)+˙ R(B∗−A∗). Hence R(B∗)⊆R(A∗)+˙ R(B∗−A∗)⊆R(B∗). ButR(A∗)+˙ R(B∗−A∗)isclosedbyProposition2.4. Therefore,R(B∗)=R(A∗)+˙ R(B∗−A∗). Corollary3.16. LetA,B ∈L((cid:72))suchthatA−≤B. IfR(B)isclosedthenR(A)andR(B−A)are closedandA≤− B. 8 Proof. Since A −≤ B, by Corollary 3.15, R(B∗) = R(A∗) +˙ R(B∗−A∗). If R(B) is closed, then R(B∗)isclosedand R(A∗)+˙ R(B∗−A∗)=R(B∗)=R(B∗)⊆R(A∗)+˙ R(B∗−A∗). ThereforeR(A∗)+˙ R(B∗−A∗)=R(A∗)+˙ R(B∗−A∗).ThisimpliesthatR(A∗)=R(A∗)andR(B∗−A∗)= R(B∗−A∗)andA≤− B. Theabovecorollaryshowsthat,unliketheleft(right)starorder,theleft(right)minusorder coincideswiththeminusorderwhenappliedtomatrices.Howeverforoperatorstheseorders arenotthesame. Example3.17(Seealso[7]). LetA∈L((cid:72))beanoperatorsuchthatR(A)(cid:54)=R(A)andthatthere existsx ∈R(A)\R(A)whichisnotorthogonaltoN(A). Forexample,consider(cid:72) =l2((cid:78))the spaceofallsquare-summablesequences,operatorA definedasA :(xn)n∈(cid:78)(cid:55)→((1/n)xn+1)n∈(cid:78), and take x to be x = (1/n)n∈(cid:78). Define operator B as B = A+Px, where Px is the orthogonal projection onto the one-dimensional subspace spanned by {x}. Since N(A) (cid:54)⊆ N(P ), and x N(P )isofco-dimensionone,wehave(cid:72) =N(A)+N(P ),whichaccordingtoProposition2.4 x x showsthatA andP arerange-additive; thatis,R(A)+R(B −A)=R(B). WealsohaveR(A)∩ x R(B −A)={0}showingthatA −≤ B. Ontheotherhand,R(A)∩R(B−A)(cid:54)={0}soA ≤− B does nothold. ApplyingTheorem3.3itispossibletodefinetheminusorderintermsoftheinnergener- alizedinversesoftheoperatorsinvolved. ByaninnerinverseofanoperatorA ∈L((cid:72),(cid:75))we meanadenselydefinedoperatorA−:(cid:68)(A−)⊆(cid:75) →(cid:72) satisfyingR(A)⊆(cid:68)(A−)andAA−A=A. Proposition3.18. ForA,B ∈L((cid:72)),thefollowingconditionsareequivalent: (1) A−≤B; (2) there exists an inner inverse A− of A such that A−A =A−B and AA−x = BA−x for every x ∈(cid:68)(A−). Proof. SupposethatA −≤ B. If(cid:78) isacomplementofR(B),then(cid:72) =R(A)+˙ R(B−A)+˙ (cid:78) . From Proposition 2.4 we know that N(A)+N(B −A)=(cid:72); so if (cid:77) =N(B −A)(cid:9)N(A), then (cid:72) = N(A) +˙ (cid:77). Let A be the restriction of A to (cid:77), and define A− as A−1 on R(A), and 1 1 as the null operator on R(B −A) +˙ (cid:78) . Then A− is densely defined and the domain of A− is (cid:68)(A−)=R(B)+˙ (cid:78) .Inthiscase,(A−B)A−x =0foreveryx ∈(cid:68)(A−),becauseR(A−)⊆N(A−B). Ontheotherhand,sinceR(A−B)⊆(cid:68)(A−),wefindthatA−(A−B)=0sinceR(A−B)⊆N(A−). Fortheconverse,supposethatthereexistsaninnerinverseA− ofA suchthatA−A =A−B and AA−x = BA−x for every x ∈ (cid:68)(A−). In particular, if z ∈ (cid:72) then Az ∈ R(A) ⊆ D(A−), so thatAz =AA−Az =BA−Az. HenceR(A)⊆R(B),showingthatR(B)=R(A)+R(B−A). From A−A=A−B wehaveR(A−B)⊆N(A−),whileN(A−)∩R(A)={0},andsoR(B)=R(A)+˙ R(B−A). Therefore,A−≤B. Corollary3.19. ForA,B ∈L((cid:72)),thefollowingconditionsareequivalent: 9 (1) A≤− B; (2) thereexistinnerinversesA−ofA and(A∗)−ofA∗suchthat (i) A−A=A−B andAA−x =BA−x foreveryx ∈(cid:68)(A−), (ii) (A∗)−A∗=(A∗)−B∗andA∗(A∗)−x =B∗(A∗)−x foreveryx ∈(cid:68)((A∗)−). 4. Applications 4.1. GeneralizedinversesofA+B InthissectionwestatetheformulasforarbitraryreflexiveinversesofA+B intermsofthe inversesofAandB,whenA−≤A+B.Forthesakeofsimplicity,webeginbygivingtheformula for the Moore-Penrose inverse. Theorem 4.7 states the result in the most general form, and fromthistheoremmanyexistingresultsinthesubjectcanberecovered. IfA ≤− A+B thenA =P(A+B)forsomeP ∈(cid:81). UsingtheprojectionP wecanconstruct a projection E ∈ (cid:81) onto R(A+B) that will be useful in stating the formula for the Moore- PenroseinverseofA+B. Lemma4.1. LetA,B ∈L((cid:72))besuchthatA≤− A+B,andP∈(cid:81) besuchthatA=P(A+B). Set E =P P+P (I −P). A B Then E ∈ (cid:81) and R(E) = R(A+B). Moreover, E is selfadjoint if and only if P = P(cid:77)//(cid:78) where (cid:77) =R(A)⊕(cid:77) ,(cid:78) =R(B)⊕(cid:78) with(cid:77) and(cid:78) closedsubspacessuchthat(cid:77) ,(cid:78) ⊆N(A∗)∩ 1 1 1 1 1 1 N(B∗). Proof. If A = P(A+B) then R(A) ⊆ R(P) and R(B) ⊆ N(P). Therefore P P and P (I −P) are A B projections,withR(P P)=R(A)andR(P (I −P))=R(B). Moreover, A B P PP (I −P)=P (I −P)P P=0. A B B A Therefore E =P P+P (I −P)isaprojection. Also,R(A)=R(P P)=R(EP)⊆R(E). Applying A B A Lemma2.2,R(E)=R(A)+R(B)=R(A+B)becauseA≤− A+B. Finally,ifP =P(cid:77)//(cid:78) thenthereexistclosedsubspaces(cid:77)1,(cid:78)1 suchthat(cid:77) =R(A)⊕(cid:77)1 and (cid:78) = R(B) ⊕ (cid:78) . Hence P P = P , P (I −P) = P and E = 1 A R(A)//R(B)+˙(cid:78)1+˙(cid:77)1 B R(B)//R(A)+˙(cid:77)1+˙(cid:78)1 P . SinceA ≤− A+B,itfollowsthat E∗=E ifandonlyif(cid:77) +˙ (cid:78) =(R(A+B))⊥= R(A+B)//(cid:77)1+˙(cid:78)1 1 1 (R(A)+˙ R(B))⊥=N(A∗)∩N(B∗),orequivalently,(cid:77) and(cid:78) areincludedinN(A∗)∩N(B∗). 1 1 Definition4.2. LetA,B ∈L((cid:72))suchthatA ≤− A+B. ConsiderP,Q ∈(cid:81) suchthatA =P(A+ B)=(A+B)Q,thenP willbecalledoptimalforA andB ifE =P P+P (I−P)isselfadjoint. In A B asymmetricway,sinceA∗=Q∗(A∗+B∗),Q willbecalledoptimalforA and B ifQ∗ isoptimal forA∗and B∗,i.e.,F =PA∗Q∗+PB∗(I −Q∗)isselfadjoint. 10